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Autocorrelation-based noise subtraction
method with smoothing, overestimation,
energy, and cepstral mean and variance
normalization for noisy speech recognition
Gholamreza Farahani

Abstract

Autocorrelation domain is a proper domain for clean speech signal and noise separation. In this paper, a method is
proposed to decrease effects of noise on the clean speech signal, autocorrelation-based noise subtraction (ANS).
Then to deal with the error introduced by assumption that noise and clean speech signal are uncorrelated, two
methods are proposed. Also to improve recognition rate of speech recognition system, overestimation parameter is
used. Finally, with the addition of energy and cepstral mean and variance normalization to features of speech,
recognition rate has improved considerably in comparison to standard features and other correlation-based
methods. The proposed methods are tested on the Aurora 2 database. Between different proposed methods,
autocorrelation-based noise subtraction method with smoothing, overestimation, energy, and cepstral mean and
variance normalization (ANSSOEMV) method has a best recognition rate improvement in average than MFCC
features which is 64.91% on the Aurora 2 database.
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1 Introduction
The accuracy of speech recognition systems will degrade
severely when the systems are operated in adverse
acoustical environments. Various sources may cause
such a mismatch including additive background noise,
convolutional channel distortions, acoustic echo, and
different interfering signals. In this paper, additive back-
ground noise is our major concern. In recent years,
many approaches have been developed to address the
problem of robust speech recognition.
These methods can be very roughly classified into

model-based and feature-based, which in this paper our
concentration is on the feature-based robust speech
recognition.
If one aims to appropriately handle mismatches in the

features, he may either try to improve the signal quality

before starting to extract recognition features or may try
to develop features that are more robust to noise. The
first approach is usually known as speech enhancement
and is usually dealt with separately from the issue of
speech recognition. There are many techniques pro-
posed to solve the speech enhancement problem, most
of which concentrate on the spectral domain. On the
other hand, several approaches try to extract more
noise-robust features for speech recognition. Such
methods try to improve recognition performance in
comparison to the rather standard features, mel-
frequency cepstral coefficients (MFCCs) that have shown
good performance in clean-train/clean-test conditions,
but deteriorated performance in the cases of mismatch.
In Meyer et al. [28], the condition of mismatches is

created and with behavioral experiment has reviewed
the effects of such acoustic disturbances on speech per-
ception in conditions approaching ecologically valid
contexts.
A very well-known and widely used enhancement

method that deals with the signal spectrum is spectral
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subtraction (SS) [4]. Although spectral subtraction is
simple in implementation, some levels of success have
been observed from its use in combination with speech
recognizers. However, this has been limited. Inherent er-
rors in this approach, such as phase, magnitude, and
cross-term errors [9], can lead to performance limita-
tions in enhancement. However, when used in combin-
ation with speech recognition systems, some of these
errors can be disregarded. Meanwhile, some other en-
hancement methods have been able to achieve more
improved performance when used in combination with
speech recognizers.
Plenty of research work has been dedicated to extrac-

tion of more robust features for speech recognition. One
approach that we are particularly interested in, and has
shown some degrees of success in recent works, is the
use of autocorrelation in the feature extraction process.
Autocorrelation, among its different properties, is known
to have a pole-preserving property [27]. As an example,
if the original signal is modeled by an all-pole sequence,
the poles of the autocorrelation sequence will be the
same as those of the original signal. Therefore, there ex-
ists a possibility of replacing features extracted from the
original speech signal with those extracted from its auto-
correlation sequence. Consequently, any effort resulting
in an improved autocorrelation sequence in the presence
of noise could also be helpful in finding more appropri-
ate speech features.
Autocorrelation domain is useful in the different parts

related to speech. In Jalil et al. [22], different methods of
separating voiced and unvoiced segments of a speech
signals based on short time energy calculation, short
time magnitude calculation, and zero crossing rate cal-
culation on the basis of autocorrelation of different seg-
ments of speech signals are introduced.
Pitch detection algorithms (PDAs) for simple audio

signals based on zero-cross rate (ZCR) and autocorrelation
function (ACF) in Amado and Filho [2] are presented also
in Muhammad [29], with use of autocorrelation function
noise-robust pitch detection is performed, and experimen-
tal results have shown the superiority of proposed method
over other methods.
Several methods have been reported in autocorrelation

domain, leading to more robust sets of features. These
methods may be divided into two groups: one dealing
with the magnitude of the autocorrelation sequence
whilst the other works on the phase of the autocorrel-
ation sequence.
Dealing with the magnitude of the autocorrelation se-

quence, which is our concern in this paper, is among the
most successful methods; we can name differentiated
relative autocorrelation sequence spectrum (DRASS) [3],
short-time modified coherence (smc) [26], one-sided auto-
correlation LPC (OSA LPC) [17], relative autocorrelation

sequence (RAS) [36], autocorrelation mel-frequency
cepstral coefficients (AMFCC) [33], and differentiation
of autocorrelation sequence (DAS) [14]. Also, it has
been shown that the use of spectral peaks obtained
from a filtered autocorrelation sequence can lead to a
good performance under noisy conditions [10, 11].
In DRASS, autocorrelation will be calculated by biased

estimator after frame blocking and pre-emphasis. Then
after filtering, FFT will be calculated and absolute ampli-
tude of differentiated FFT square amplitude will be used
for mel-scale frequency bank. Finally, log of coefficients
and their cepstrum will be used as DRASS coefficients.
In SMC, after calculation of autocorrelation with co-

herence estimation and hamming filtering, the FFT of
autocorrelation amplitude is found. Then, applying IFFT,
the LPC coefficients are calculated with Levinson-
Durbin method and finally the cepstrum of LPC is found
as SMC coefficients.
In OSA LPC, calculation of autocorrelation is carried

out by biased estimator and hamming filtering; the LPC
coefficients are calculated using Levinson-Durbin
method and the LPC cepstrals are found as the final co-
efficients. Among the methods that have made use of
the phase of the autocorrelation sequence to obtain a
more robust set of features, we can name phase autocor-
relation (PAC) approach [21] and autocorrelation peaks
and phase features (APP) [11].
Noise-robust feature extraction method for speech

recognition using the robust perceptual minimum vari-
ance distortionless response (MVDR) spectrum of tem-
porally filtered autocorrelation sequence is proposed in
Seyedin et al. [32] which has improved speech recogni-
tion rate.
New set of (perceptual linear predictive) PLP vector is

autocorrelation domain proposed in Rahali et al. [31]
and tested in various noisy conditions, and significant
improvement is obtained in comparison to traditional
feature extraction techniques.
In DRHOASS, differential of relative higher order of

autocorrelation sequence spectrum will calculate which
results show these new features more robust than tradi-
tional MFCC features in additive noise conditions [7].
Selecting the number of feature coefficients is important

for speech recognition accuracy. Therefore, in this paper
Fisher-Markov selector is evaluated to identify those fea-
tures that are most useful in speech recognition [6].
In this paper, we will consider a few developed

autocorrelation-based methods and discuss their ap-
proach to achieving robustness. Then we will explain a
simple method that can lead to better results in robust
speech recognition in comparison to its predecessors in
autocorrelation domain. Later, we will discuss the issue
of the error terms introduced in this approach due to
the estimation of noise autocorrelation sequence. We
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will show that taking into account the above parameters
in the estimation of clean signal autocorrelation se-
quence can lead to even better system performance.
The remainder of this paper is organized as follows: in

Section 2, we will present the theory of autocorrelation
function. Section 3 will describe some autocorrelation-
based approaches that are related to our proposed
algorithms. Section 4 is dedicated to discussion on our
proposed method for speech recognition enhancement
in autocorrelation domain. In Section 5, some imple-
mentation issues regarding the proposed methods will
be addressed. Section 6 includes the experimental results
on Aurora 2 task and compares our results with those of
the traditional methods such as MFCC and other
autocorrelation-based methods. Section 7 will conclude
the paper.

2 Theory of autocorrelation function
In this section, we will describe the theory of autocorrel-
ation function for speech signal. This section will give us
an appropriate insight to the advantages and disadvan-
tages of using autocorrelation function in robust feature
extraction.

2.1 Formulation of clean speech signal, noise, and noisy
speech signal in autocorrelation domain
First relationship between the autocorrelation sequences
of clean, noise and noisy signals will be explain. If we
assume v(m,n) to be the additive noise and x(m,n) to be
clean speech signal, then noisy speech signal, y(m,n),
could be written as

y m; nð Þ ¼ x m; nð Þ þ v m; nð Þ 0≤m≤M−1 0≤n≤N−1

ð1Þ

where N is the frame length, n is the discrete time index
in a frame, m is the frame index, and M is the number
of frames. Note that in this paper, as our goal is suppres-
sion of the effect of additive noise from noisy speech sig-
nal, the channel distortion effects are not considered in
the equations. Generally, clean speech signal and noise
will consider uncorrelated, therefore, if x(m,n) and
v(m,n) are considered uncorrelated, then the autocorrel-
ation of the noisy speech signal can be written as

ryy m; kð Þ ¼ rxx m; kð Þ þ rvv m; kð Þ 0≤m≤M−1 0≤k≤N−1

ð2Þ

where ryy(m, k), rxx(m, k), and rvv(m, k) are the short-time
one-sided autocorrelation sequences of the noisy speech,
clean speech, and noise, respectively, and k is the auto-
correlation sequence index within each frame. The one-
sided autocorrelation sequence of noisy speech signal
may be calculated using an unbiased estimator, i.e.,

ryy m; kð Þ ¼ 1
N−k

XN−1−k

i¼0

y m; ið Þy m; iþ kð Þ ð3Þ

Meanwhile, although reasonable in practice, consider-
ing the clean speech signal, x(m,n), and noise, v(m,n),
completely uncorrelated may not always be an accurate
assumption. We will discuss this issue later. In a more
general case, that clean speech signal and noise have
correlation Eq. (2) should be written as

ryy m; kð Þ ¼ rxx m; kð Þ þ rvv m; kð Þ þ E x m; kð Þ:v� m; kð Þf g
þE x� m; kð Þ:v m; kð Þf g ¼ rxx m; kð Þ
þrvv m; kð Þ þ rxv m; kð Þ þ rvx m; kð Þ
0≤m≤M−1 0≤k≤N−1

ð4Þ

where rxv(m, k) = E{x(m, k). v*(m, k)} and rvx(m, k) =
E{v(m, k). x*(m, k)} are the cross-correlation terms be-
tween the clean speech signal and noise.
With an assumption that noise autocorrelation se-

quence is relatively constant across frames, we can find
an estimate of rvv(m, k) using the non-speech sections of
an utterance specified, for example, by a voice activity
detector (VAD) or by the initial normally non-speech
periods and denote it as r̂vv kð Þ. Then Eq. (4) can be writ-
ten as

ryy m; kð Þ ¼ rxx m; kð Þ þ r̂vv kð Þ þ rxv m; kð Þ þ rvx m; kð Þ
0≤m≤M−1 0≤k≤N−1:

ð5Þ

Obviously, an assumption of v(m, n) having zero mean
and being uncorrelated with x(m, n) will reduce the
terms rxv(m, k) and rvx(m, k) to zero [20].

3 Review of autocorrelation-based methods for
robust feature extraction in noisy condition
Until now, several autocorrelation-based methods have
been proposed, where usually the speech signal and
noise were considered uncorrelated. In order to get
some insight on how autocorrelation properties may be
used to achieve robustness, some of these methods are
described.

3.1 Relative autocorrelation sequence (RAS) method
As explained in Yuo and Wang [36], this method as-
sumed the noise as stationary and uncorrelated to the
clean speech signal. Therefore, the relationship between
the autocorrelations of noisy and clean signals and noise
could be written as
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ryy m; kð Þ ¼ rxx m; kð Þ þ rvv kð Þ; 0≤m≤M−1 0≤k≤N−1

ð6Þ

If the noise part could be considered stationary, differen-
tiating both sides of (6) with reference to the frame index
m would remove the effect of noise from the results, i.e.,

∂ryy m; kð Þ
∂m

¼ ∂rxx m; kð Þ
∂m

þ ∂rvv kð Þ
∂m

≅
∂rxx m; kð Þ

∂m

¼

XL
t¼−L

t:ryy mþ t; kð Þ

XL
t¼−L

t2
; 0≤m≤M−1 0≤k≤N−1:

ð7Þ

The right side of Eq. (7) is equal to filtering on the
one-sided autocorrelation sequence by a high-pass FIR
filter, where L is the length of the filter. This high-pass
filter (differentiation), named RAS filter, was used to
suppress the effect of noise in the autocorrelation se-
quence of the noisy signal. Therefore, this method is ap-
propriate for noises which have slow variations in the
autocorrelation domain, i.e., could be considered as rela-
tively stationary. After calculating one-sided autocorrel-
ation sequence and differentiating both sides of (6) with
respect to m, the autocorrelation of noise was removed,
i.e., differentiation of noisy speech signal is equal to the
differentiation of clean speech signal with respect to the
frame index, m, in autocorrelation domain. Obviously,
this filtering will also have some slight negative effects
on the lower modulation frequencies of speech. However,
this has been found to be quite small (refer to Section 6
for RAS performance in clean speech conditions).

3.2 Autocorrelation mel-frequency cepstral coefficients
(AMFCC) method
In this approach [33], the MFCC coefficients were ex-
tracted from the noisy speech signal autocorrelation se-
quence after removing some of its lower lag coefficients.
These lower lag coefficients were shown to have the
highest influence on the noisy speech signal for many
noise types, including those with least correlations among
frames. The lag threshold value used was 3 ms and was
set by finding the first valley in the absolute autocorrel-
ation function found over TIMIT speech frames.
As reported in Shannon and Paliwal [33], this method

works well for car and subway noises in Aurora 2 task,
but not for babble and exhibition noises. The reason was
believed to be wider autocorrelation functions of the latter
ones. However, for some other noise types, such as babble,
they are spread out in different lags. Therefore, the main
reason for limited success of AMFCC in noises such as
babble and exhibition is that the noise autocorrelation

properties are more similar to those of the speech signal,
which makes their separation difficult.

3.3 Differentiation of autocorrelation sequence (DAS)
method
This algorithm combines the use of the enhanced auto-
correlation sequence of the noisy speech, and the spec-
tral peaks found from the autocorrelation sequence, as
they are known to convey the most important informa-
tion of the speech signal [14].
In this method, in order to preserve speech spectral

peaks, spectral differentiation has been used. With this
differentiation, the flat parts of the spectrum were al-
most removed, and each spectral peak was split into
two, one positive, and one negative. The differential
power spectrum of the noisy signal was defined as

DiffY kð Þ≈
XP
l¼−Q

al:Y k þ lð Þ; 0≤k≤K−1 ð8Þ

where P and Q are the orders of the difference equation,
al are real-valued coefficients, and K is the length of FFT
(on the positive frequency side) [12]. The differentiation
mentioned in Eq. (8) can be carried out in several ways,
as discussed in Farahani et al. [12]. The simple difference
had shown the best results and therefore was used in
Farahani et al. [14], i.e.,

DiffY kð Þ ¼ Y kð Þ−Y k þ 1ð Þ ð9Þ
The procedure of feature extraction was carried out

after high-pass filtering (as in Eq. (7)) and peak extrac-
tion (as in Eq. (9)). As explained earlier for RAS, this fil-
tering can suppress the effect of slowly varying noises
and can also attenuate the effect of slow variation noise
on the speech signal. The spectral peaks were then ex-
tracted through differentiation of the spectrum found
using the filtered autocorrelation sequence, leading to
better suppression of the noise effect. Finally, an MFCC-
like feature set was extracted and used in recognition
experiments.

3.4 Spectral peaks of filtered higher-lag autocorrelation
sequence (SPFH) method
This method was proposed to overcome the main draw-
back of AMFCC, i.e., its inability to deal with noises that
have autocorrelation components spread out over different
lags [13].
In SPFH, after frame blocking and pre-emphasis of the

noisy signal, the autocorrelation sequence of the frame
signal was obtained as in Eq. (3), and its lower lags were
removed. A FIR high-pass filter, similar to RAS filter, was
then applied to the signal autocorrelation sequence to fur-
ther suppress the effect of noise, as in Eq. (7). Then, ham-
ming windowing and short-time fourier transform were
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carried out, and the differential power spectrum of the fil-
tered signal was found using Eq. (9). Since the noise
spectrum may, in many occasions, be considered flat in
comparison to the speech spectrum, the differentiation ei-
ther reduces or omits these relatively flat parts of the
spectrum, leading to even further suppression of the effect
of noise. The final stages included applying the resultant
magnitude of the differentiated autocorrelation-derived
power spectrum to a conventional mel-frequency filter-
bank and passing the logarithm of the outputs to a DCT
block to extract a set of cepstral coefficients per frame.
In fact, the SPFH method tried to attenuate the effect of

noise after preserving higher lags of noisy autocorrelation
sequence by high-pass filtering, as in Eq. (7), and preserving
spectral peaks, as in equation (9), i.e. similar to DAS.

4 Proposed methods for speech recognition
enhancement in noisy conditions at
autocorrelation domain
4.1 Autocorrelation-based noise subtraction (ANS) method
As an ideal assumption, we can consider the autocorrel-
ation of noise as a unit sample at the origin and zero at
other lags. Therefore, that portion of noisy speech auto-
correlation sequence which is far enough from the origin
will have the same autocorrelation as clean speech sig-
nal. This ideal assumption is of course only true for
white noise and for real environmental noises; compo-
nents in lags other than zero are also available.
Investigations showed that there exist some major auto-

correlation components for these noises concentrated
around the origin. This was the reason for introducing
AMFCC and SPFH methods mentioned earlier in
Section 3. However, as these methods drop the lower lags
of the autocorrelation sequence of the noisy speech signal
to suppress the effect of noise, they are not useful for the
cases where important components are seen in higher
autocorrelation lags of the noise, i.e., above 20 to 25 sam-
ples. In such cases, AMFCC approach not only does not
completely suppress the effect of noise, but also removes
some probably useful lower lag portions of the autocorrel-
ation sequence of the clean speech signal. As an alterna-
tive to such methods, we follow a newer approach. In
ANS method, in place of removing the lower lag autocor-
relation components of the noisy signal, we try to estimate
the noise autocorrelation sequence and deduct it from the
noisy signal autocorrelation sequence. This is conceptually
similar to the well-known spectral subtraction with the ex-
ception that it is not magnitude spectrum, but to the auto-
correlation sequence [13]. An instant advantage of ANS
method is that there is no need to deal with phase issue.
In Farahani et al. [13], the average autocorrelation of a

number of non-speech frames of the utterance is used as
an estimate of the noise autocorrelation sequence. We
write this as

r̂vv kð Þ ¼

XP−1
i¼0

ryy i; kð Þ

P
; 0≤k≤N−1 ð10Þ

where P is the number of non-speech frames of the ut-
terance used and r̂vv kð Þ is the noise autocorrelation
estimate.
Therefore, we may write the estimate of the autocor-

relation sequence of the clean speech signal as

r̂xx m; kð Þ ¼ ryy m; kð Þ−r̂vv kð Þ: ð11Þ
In order to estimate the noise autocorrelation in ANS

method, a voice activity detector (VAD), or the initial si-
lence of the speech utterances, can be used. Note that
procedures similar to many other widely used noise esti-
mation methods could also be used here.

4.2 Kernel method
Generally, assuming the speech signal and noise to be
completely uncorrelated, we write the autocorrelation of
the noisy speech signal as the sum of the autocorrela-
tions of clean speech signal and noise as Eq. (6). If we
square both sides of autocorrelation magnitude in Eq.
(6), then each frame will be as follows:

ryy mð Þ�� ��2 ¼ rxx mð Þj j2 þ rvvj j2 þ 2: rxx mð Þj j: rvvj j: cosθ mð Þ
0≤m≤M−1

ð12Þ
where ryy(m), rxx(m) and rvv are the short-time one-sided
autocorrelation vectors of the noisy speech, clean
speech, and noise in each frame index m, respectively,
and according to the autocorrelation definition) dot
products of two vectors), θ(m) is the instantaneous
phase difference between clean speech signal autocorrel-
ation, rxx(m), and noise autocorrelation, rvv or in other
words, θ(m) is the angle between autocorrelation of
rxx(m) and rvv vectors, |ryy(m)|, |rxx(m)|, and |rvv| are
noisy speech, clean speech, and noise autocorrelation
amplitude, respectively. From Eq. (12), we will have [30]

rxx mð Þj j2 ¼ ryy mð Þ�� ��2− rvvj j2: 1þ 2r mð Þ: cosθ mð Þð Þ
¼ ryy mð Þ�� ��2−M r mð Þ; θ mð Þð Þ: rvvj j2

ð13Þ
Where

r mð Þ ¼ rxx mð Þj j
jrvvj

M r mð Þ; θ mð Þð Þ ¼ 1þ 2r mð Þ: cosθ mð Þ ð14Þ
Therefore, in order to remove the noise effect pre-

cisely, we should not only consider the exact noise
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autocorrelation, rvv, but also the function M(r(m), θ(m))
should be calculated for each lag.
The variation of the kernel function M(r(m), θ(m)) in a

frame is drawn in Fig. 1. We normalized |rvv| between 0
~ 1 and named it |d|. Also θ(m) changes between − π
and + π with clean speech amplitude equal to 1.
As it is clear from Fig. 1, when the noise autocorrel-

ation amplitude |rvv| is large, changes in θ(m) result in
large changes in M(r(m), θ(m)).
In the following equation, we have the noise autocor-

relation component of each frame as [30]

z mð Þ ¼ ryy mð Þ�� ��− rxx mð Þj j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx mð Þj j2 þ rvvj j2 1þ 2r mð Þ: cosθ mð Þð Þ

q
− rxx mð Þj j

¼ rvvj j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 mð Þ þ 2r mð Þ: cosθ mð Þ þ 1

p
−r mð Þ� �

ð15Þ
Since we do not know the exact value of phase difference,

θ(m), the value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 mð Þ þ 2r mð Þ: cosθ mð Þ þ 1

p
−r mð Þ ð16Þ

cannot be calculated exactly. Instead, we will use its ex-
pected value instead of it, i.e.,

γ r mð Þð Þ ¼ 1
2π

Z π

−π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r mð Þ2 þ 2:r mð Þ: cosθ mð Þ þ 1

q
−r mð Þ

� �
dθ

ð17Þ
This is a function of r(m) and is shown in Fig. 2.

Therefore, the noise autocorrelation component is

z mð Þ ¼ rvvj j:γ r mð Þð Þ ð18Þ
and the clean speech signal autocorrelation amplitude in
each frame is estimated by

rxx mð Þ ¼ ryy mð Þ−z mð Þ ð19Þ

For the sake of simplicity, according to Fig. 2, we
change the function γ(r(m)) in one frame of utterance to
γ(r) and replace it with an approximate value found
using the following equation, which has roughly a simi-
lar shape and is found empirically

γ rð Þ ¼ exp a−brð Þ ð20Þ

where a was set to 1.2 and b to 0.45 in our experiments.
Therefore, in our implementations, we have used (19)

instead of (11). We named this method as kernel
method.

Fig. 1 Variation of M(r(m), θ(m)) versus |d| and θ(m)

Fig. 2 Function γ(r). The bunch of curves represents the estimation
of the function according to different values of b. The other curve
represents the real values of γ(r)
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4.3 Consideration of cross-correlation term in noisy
speech recognition
Figure 3 displays the autocorrelation sequences for
two examples of clean speech, noise, and noisy speech
signals with the noises being babble and factory, ex-
tracted from the NATO RSG-10 corpus [34], as well
as the sum of autocorrelation sequences of speech and
noise. One should expect the clean speech signal and
noise, in most circumstances, to be completely uncorre-
lated. However, in this case, according to Fig. 3, the auto-
correlation sequence of the noisy speech signal is not
equal to the sum of those of clean speech and noise. In
order to be able to have a more accurate estimate of the
clean speech signal autocorrelation, one needs to consider
some correlation among clean speech and noise signals to
compensate for this difference. It should be noted that this
difference is in fact due to the short-time nature of our
analysis, as the simple form of additive autocorrelation
mentioned in Eq. (2) is only possible when an infinitely

long signal is considered in the analysis [25]. We have
used the two following approaches in order to consider
the cross-correlation term in autocorrelation calculations:

4.3.1 Autocorrelation averaging method
We used autocorrelation averaging as an alternative way
for reducing the observed correlation effect between
noise and clean speech signal. We remind the reader
that, as already mentioned, this correlation might even
solely be the result of autocorrelation analysis on finite-
duration signals. In Kitaoka and Nakagawa [24], it was
shown that a smoothing approach can help in spectral
subtraction to overcome the speech/noise correlation
problems. The reason is that the probability density
function (PDF) of the cosine of the angle between
speech and noise vectors has been shown to have a
minimum at zero, while smoothing leads to a PDF with
a maximum at zero and smaller variances with larger
numbers of frames taking part in smoothing1. As a

Fig. 3 Sample autocorrelation sequences of the clean speech, noisy speech, and noise as well as sum of the autocorrelations of clean speech
signal and noise with a babble noise and b factory noise, with an SNR of 10 dB
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result, as will be further explained later, ignoring the
term including cos(θ), i.e., assuming cos(θ) = 0, would be
less harmful after smoothing.
We define the average of the noisy autocorrelation se-

quence as

ryy m; kð Þ ¼
XT−1
i¼0

bi:ryy m−i; kð Þ;
XT−1
i¼0

bi ¼ 1 ð21Þ

i.e., weighted averaging of the noisy speech autocorrel-
ation on T frames where bi is a weighting parameter lar-
ger than 0 and less than or equal to 1.
By replacing ryy(m − i, k) in Eq. (21) with the value

found in Eq. (4) we have

ryy m; kð Þ ¼
XT−1
i¼0

bi:ryy m−i; kð Þ

¼
XT−1
i¼0

bi:rxx m−i; kð Þ þ
XT−1
i¼0

bi:rvv m−i; kð Þ

þE
XT−1
i¼0

bi:x m−i; kð Þ:v� m−i; kð Þ
( )

þE
XT−1
i¼0

bi:x
� m−i; kð Þ:v m−i; kð Þ

( )

ð22Þ

If the variations in noise and speech could be assumed
negligible during a period T, we can write

XT−1
i¼0

bi:rxx m−i; kð Þ≈rxx m; kð Þ; ð23Þ

XT−1
i¼0

bi:rvv m−i; kð Þ≈rvv m; kð Þ; ð24Þ

E
XT−1
i¼0

bi:x m−i; kð Þ:v� m−i; kð Þ
( )

≈E x m; kð Þj j: v m; kð Þj j:
XT−1
i¼0

bi: cosθ m−i; kð Þg;
(

ð25Þ
and

E
XT−1
i¼0

bi:x
� m−i; kð Þ:v m−i; kð Þ

( )

≈E x m; kð Þj j: v m; kð Þj j:
XT−1
i¼0

bi: cosθ m−i; kð Þg:
(

ð26Þ

Setting the value of the parameters T and bi will be
discussed in the parameter settings section (Section 5.3),
and we will see that with the values used for T, the above
mentioned assumption holds.

It was shown in Kitaoka and Nakagawa [24] that if the
phase differences between the clean speech and noise in
successive frames are assumed to be uncorrelated, the
PDFs of the summation terms in Eqs. (25) and (26), de-
pending on the value of T, would peak at zero and have

a standard deviation of 1=
ffiffiffiffiffiffi
2T

p
. Therefore, the above

two terms may be considered as almost zero and Eq.
(22) would be rewritten as

ryy m; kð Þ≈rxx m; kð Þ þ rvv m; kð Þ ð27Þ
By replacing ryy(m, k) with ryy m; kð Þ in Eq. (11) we

have

r̂xx m; kð Þ ¼ ryy m; kð Þ−r̂vv m; kð Þ≈rxx m; kð Þ
þ rvv m; kð Þ−r̂vv m; kð Þ ð28Þ

Therefore, if we estimate the autocorrelation sequence
of noise, r̂vv m; kð Þ more accurately, our estimate of the
clean speech signal would also be more accurate. The
above mentioned process will also have a slight effect on
the speech signal. However, as the results of the applica-
tion of this method on the clean speech show (Section 6),
this effect is negligible.
We will call this approach autocorrelation-based noise

subtraction with smoothing (ANSS). Details of the set-
ting of the length of averaging window in this approach
will be discussed in the parameter setting section (5.3).

4.4 ANS versus spectral subtraction
Due to the similarity of ANS and spectral subtraction
(SS) in concept, in this section, we would like to make a
comparison between the two methods. The first, and by
far the most important, difference between these two
methods is that the subtraction in SS takes place in
spectral domain whereas for ANS, the subtraction is car-
ried out in the autocorrelation domain (temporal do-
main). Note that in the implementation of spectral
subtraction, reported in this section, the overestimation
factor is set equal to that used for ANS, and the flooring
parameter was set to 0.002.
Although traditional spectral subtraction suffers from

a few problems that affect the quality of enhanced
speech, the important source of distortion in this
method is known to be the negative values encountered
during subtraction that should be mapped to a spectral
floor [35]. This non-linear mapping causes an effect that
is usually known as musical noise and is always associ-
ated with the basic spectral subtraction method.
In ANS, as the subtraction is carried out in autocorrel-

ation domain, negative and positive values are not
treated differently, and therefore, there is no need for
flooring or other non-linear mappings. In fact, problems
associated with non-linearity are not encountered any-
more, and inaccuracies in speech spectral estimates are
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only due to errors in noise autocorrelation estimation
and its associated problems.
Figure 4 displays the power spectra of a frame of an

utterance of the word “one”, uttered by a female speaker
and contaminated with train station noise at 0 and
10 dB SNRs. This utterance is extracted from test set A
of the Aurora 2 task. In this figure, the power spectra of
signal after the application of ANS and spectral subtrac-
tion are shown. As it is clear, the power spectrum ex-
tracted after the application of ANS to the noisy speech
closely follows the peaks and valleys of the clean
spectrum while the SS-treated one has a more different
appearance.
The normalized average spectral errors of both

methods have also been shown in Table 1. Apparently,
the root mean square error (RMSE) of ANS is much less
than that of spectral subtraction.

5 Subjects in implementation of proposed
algorithms
In this section, we will discuss a number of subjects in
implementation regarding our proposed methods. Also

in this section, we will consider the overestimation par-
ameter to enable us better estimate the noise autocorrel-
ation sequence.

5.1 Considering cross-correlation term in autocorrelation
domain
To consider the cross-correlation term, we have imple-
mented a method, as discussed in Subsections 4.3.1.
The procedure for feature extraction in our proposed

methods is as follows:

(a)Frame blocking and pre-emphasis.
(b)Hamming windowing
(c)Calculation of unbiased autocorrelation sequence of

noisy speech signal
(d)Estimation of noise autocorrelation sequence in each

utterance and subtracting it from the speech signal
autocorrelation sequence in each frame of the
utterance (more details of parameter settings will be
found in Subsection 5.3)

(e)Autocorrelation averaging calculation
(see Subsection 4.3.1)

Fig. 4 Log power spectrum of a speech frame of ‘FAK_1B.08’ utterance from test set A of Aurora 2 task contaminated with subway noise at 0
and 10 dB SNRs in logarithmic scale
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(f ) Inserting cross-correlation term in the estimation of
the autocorrelation of the clean speech signal

(g)Fast fourier transform (FFT) calculation.
h) Calculation of the logarithms of mel-frequency filter

bank outputs
(i) Application of DCT to the sequence resulting from

previous step
(j) Calculation of the feature vectors including 12

cepstral and a log-energy parameter and their first
and second order dynamic parameters

In this algorithm, almost all the steps are rather straight-
forward. Only steps e and f are added to our implementa-
tion of ANS, which are related to inclusion of the cross-
correlation term. The accuracy of the cross-correlation
term estimation would be crucial at this stage. The results
of our implementations will be given in Section 6.

5.2 Considering overestimation parameter in
autocorrelation methods
Since our algorithm is applied to the autocorrelation of
the noisy signal, the flooring parameter used in spectral
subtraction will not be needed in the application of our
algorithm. The reason is that flooring in spectral subtrac-
tion is usually needed to remove the negative spectral
values, while this would not be a problem in autocorrel-
ation domain.
As shown in Fig. 5, in the autocorrelation sequence of

noise, valleys and peaks may be observed whose lag loca-
tions and magnitudes might vary from one frame to an-
other. Although smoothed to some extent, such perhaps
unrealistic peaks and valleys might still show up in our
estimate of the noise autocorrelation sequence. By sub-
tracting the noise autocorrelation sequence from that of
the noisy speech, some peaks and valleys will be added
to the estimated clean speech autocorrelation sequence,
resulted from valleys and peaks in the estimated noise
autocorrelation sequence. In order to decrease the ef-
fects of these peaks and valleys, we have used an over-
estimation parameter by modifying the ANS equation to

ryy m; kð Þ ¼ rxx m; kð Þ þ α:r̂vv kð Þ; ð29Þ

where α ≥ 1 is the overestimation parameter. Note that
when α = 1, Eq. (29) is identical to the equation used for
ANS.

Apparently, having α > 1 leads to some attenuation in
the peaks of the estimated clean speech signal autocor-
relation, due to increase in the last term of Eq. (29).
Various values of α were tested to get the best result on
the Aurora 2 task.
In order to reduce the speech distortions caused by

large values of α, we have changed this parameter with
SNR [23]. The SNR was calculated frame by frame as ex-
plained in the parameter setting section (5.3). Figure 6
shows the trend of change we used for parameter α with
SNR. Clearly, with increasing SNR, the values of α
should decrease and vice versa. The trend of this change
was set to linear, as shown in Fig. 6, according to changes
observed in system recognition performance in practice
[13]. We tested the proposed method with/without taking
into account the signal/noise cross correlation. If we con-
sider the issue of cross correlation, as explained in
Section 4.3, together with the overestimation parameter,

Fig. 5 Autocorrelation sequences for five consecutive frames of
factory noise

Fig. 6 Change in the parameter α with SNR on Aurora 2 task

Table 1 Normalized average of spectral subtraction and ANS
spectrum errors (RMSE criteria) on test set A of Aurora 2 task

Method Average of spectrum error

20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

SS 332 378 488 653 982 1500

ANS 22.4 28.1 39.3 55.9 87.9 142
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the following relationship for clean speech signal estima-
tion will result in

r̂xx m; kð Þ ¼ ryy m; kð Þ−α:r̂vv kð Þ−γ:r̂yv m; kð Þ: ð30Þ
Meanwhile, considering the cross-correlation term as

in Section 4.3.1, together with the overestimation param-
eter, we will have the following equation, which gives an
approximate value of the speech signal.

r̂xx m; kð Þ ¼ ryy m; kð Þ−α:r̂vv kð Þ≈rxx m; kð Þ
þ rvv m; kð Þ−α:r̂vv kð Þ ð31Þ

5.3 Parameter settings
In our implementation of RAS, the length of the filter
was set to L = 2 according to Yuo and Wang [36]. Also
the duration for lower lag elimination in the AMFCC
method was set to 2.5 ms (20 samples in 8 kHz sampling
rate for Aurora 2 task) similar to Shannon and Paliwal
[33]. The same duration was also used for SPFH imple-
mentation [12].
In order to estimate the noise autocorrelation se-

quence, in all our experiments, we have used 20 initial
frames of each utterance, considering them as non-
speech sections. As shown in Farahani et al. [15], this
number of frames resulted in best recognition rates on
Aurora 2 task.
In the implementation of ANSS, in order to get the

best results, we have tried different numbers of frames
(T in Eq. (21) to Eq. (26)) for averaging. Figure 7 shows
the results. As depicted, the grand average recognition
rates on the three sets of Aurora 2 task have shown the
best performance with three frames used in autocorrel-
ation averaging. Therefore, in our experiments, we have
used this number for noisy speech autocorrelation aver-
aging. Regarding bi, in our experiments, simple averaging
was carried out.

In the implementations using overestimation parameter,
this parameter was changed as a function of SNR in each
frame. An estimate of SNR in each frame was found as
Eq. (32).

SNR ¼ 10log10

XN−1

k¼0

Y kð Þj j2

XN−1

k¼0

V̂ kð Þ�� ��2 ð32Þ

where N is the FFT length, Y(k) is the spectrum of the
noisy speech signal and V̂ kð Þ is the FFT of the first few
frames of the noise autocorrelation sequence estimation.
After calculating SNR, we found the overestimation
parameter as shown in Fig. 6. The parameter setting
for Fisher-Markov selector is carried out similar to
Hegde et al. [16].

6 Experiments and comparison of methods
In this section, we will describe the data used and the
procedures followed in our experiments. Our implemen-
tations include some of the previous methods for com-
parison purposes as well as our proposed approaches.

6.1 Database
The experiments were carried out on Aurora 2 task [18].
The features in this case were computed using 25 ms
frames with 10 ms of frame shifts. The pre-emphasis
coefficient was set to 0.97. For each speech frame, a 23-
channel mel-scale filter-bank was used. The feature vectors
for proposed methods were composed of 12 cepstral and a
log-energy parameter, together with their first and second
order derivatives. Also with use of Fisher-Markov selector,
comparison of different number of MFCC coefficients will
carry out [6]. All model creation, training, and tests in all
our experiments have been carried out using the standard
hidden Markov model toolkit [19] with 16 states and 3
mixture components per state. The HMMs were trained in
clean condition, i.e., with clean training data.

6.2 Number of MFCC features using Fisher-Markov selector
According to Hegde et al. [16], 8 MFCC coefficients,
with the use of Fisher’s ratio technique, could have bet-
ter classification accuracy than other number of coeffi-
cients 3 to 12 MFCCs for 5 vowels in Kannada
language. In this paper, the results of MFCC for different
number of coefficients with Fisher-Markov selector are
evaluated on the Aurora 2.0 database. The average rec-
ognition results are shown in Table 2.
Figure 8 shows the effects of the number of MFCC on

the recognition rate for each set of Aurora 2 database
and overall average of it with Fisher-Markov selector. As
it is clear from Table 2 and Fig. 8, the best recognition

Fig. 7 Normalized recognition rates for test sets of Aurora 2 task
versus the number of frames used in noise autocorrelation sequence
averaging and their grand average
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rate of MFCC with Fisher-Markov selector will obtain
12 MFCC. Although the Fisher-Markov selector in com-
parison to MFCC reduces the recognition rate slightly,
but it will reduce the times of MFCC feature calculations
considerably. Therefore, for our comparison with other
autocorrelation-based methods, because in this paper
our target is maximization of recognition rate, we used
12 MFCCs and a log-energy parameter, together with
their first and second order derivatives.

6.3 Implementation results using cross-correlation terms
The setting of our parameters is as described in 5.3.
Figure 9 includes ANS, kernel, and ANSS recognition

results on the Aurora 2 data. Also, for comparison
purposes, the results of baseline MFCC, together with
RAS, AMFCC, and MFCC-SS are included. RAS and
AMFCC were chosen as two of the most successful
autocorrelation-based methods. Also note that the pa-
rameters used in MFCC-SS are the same used in the
implementation of spectral subtraction explained in
Section 4. While the results of ANS, kernel, and ANSS
show considerable improvement over the baseline MFCC
in noisy conditions, ANSS has shown superior perform-
ance in comparison to ANS and kernel methods. In fact,
ANSS has performed quite well, outperforming the stand-
ard MFCC with a very large margin, especially in lower
SNRs, reaching a value of up to 35% absolute reduction in
word error rate. In comparison to ANS, which itself
performs satisfactorily in noisy conditions, the higher per-
formance of ANSS is noticeable. A prompt conclusion
could be that including the effect of noise-signal cross
correlation in autocorrelation-based noise subtraction
method can further improve the performance boundaries
of this method.
This is indicative of the effectiveness of inserting the

cross-correlation parameter into the autocorrelation cal-
culation of noisy speech signal.

6.4 Implementation results of applying overestimation
parameter to the proposed methods
The results of including the overestimation parameter α
into clean speech autocorrelation estimation procedure

Table 2 Comparison of overall average recognition rates of different number of MFCC features with Fisher-Markov selector on three
test sets of Aurora 2 task

Number of MFCC coefficients Recognition rate (%) Overall average of
recognition rate (%)Set A Set B Set C

3 MFCC + log energy + their first and
second order derivatives

57.38 44.95 51.29 51.21

4 MFCC + log energy + their first and
second order derivatives

58.48 46.25 52.65 52.46

5 MFCC + log energy + their first and
second order derivatives

60.41 48.16 54.46 54.34

6 MFCC + log energy + their first and
second order derivatives

60.27 48.04 54.34 54.22

7 MFCC + log energy + their first and
second order derivatives

62.49 50.13 56.45 56.36

8 MFCC + log energy + their first and
second order derivatives

64.87 52.98 58.31 58.72

9 MFCC + log energy + their first and
second order derivatives

64.23 52.01 57.48 57.91

10 MFCC + log energy + their first and
second order derivatives

65.24 53.18 59.12 59.18

11 MFCC + log energy + their first and
second order derivatives

64.56 52.63 57.98 58.39

12 MFCC + log energy + their first and
second order derivatives

65.96 54.78 60.32 60.35

Fig. 8 Variation of recognition rate with Fisher-Markov selector for
different number of MFCC on the Aurora 2 database
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will be reported here. Figure 10 depicts our recognition
results on Aurora 2 task. The naming conventions for
our methods are as before with OEP being added to in-
dicate the inclusion of the overestimation parameter in
the implementation.
As it is clear, the application of overestimation has led

to improvements in the system recognition performance
in almost all cases. This indicates the potential of the
overestimation parameter in improving autocorrelation-
based noise subtraction.

6.5 Comparison the results of different methods in
autocorrelation domain
In order to reach to an overall conclusion on different
methods discussed, we wish to compare the perfor-
mances of all the mentioned methods on the specified
task. Furthermore, as mentioned in Ahadi et al. [1],
using the normalized energy instead of the logarithm en-
ergy, together with mean and variance normalization of
the cepstral parameters, could lead to improvement in

Fig. 9 Average recognition rates of MFCC, RAS, AMFCC, ANS, kernel,
ANSS, and MFCC-SS on Aurora 2 task. a Test set A, b Test set B.
c Test set C

Fig. 10 Average recognition rates of ANSS + OEP, kernel + OEP, ANS
+ OEP, and ANS approaches on Aurora 2. a Test set A. b Test set B.
c Test set C
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the speech recognition performance in noisy conditions.
Therefore, we have also applied this technique which
has further improved the recognition rate of our best
method discussed, ANSS + OEP. Table 3 shows the aver-
age recognition rates of all these methods on the Aurora
2 task. As usual in Aurora 2 result calculations, the
−5 dB and clean results are not included in the aver-
aging. Furthermore, the percentage of relative improve-
ment of each method in comparison to the baseline
MFCC is also mentioned. We have also included two
other test results in this table; MFCC enhanced with
spectral subtraction (MFCC-SS) and mean subtraction,
variance normalization and ARMA filtering (MVA) [5].
The former is meant to show the performance improve-
ment obtained by spectral subtraction as a basic en-
hancement approach on this task while the latter is just
added as a rather simple method known to perform
among the best in robust speech recognition. The imple-
mentation procedure was exactly similar to our other
tests. Also, in this table, for comparison purposes, the
results obtained from the application of ETSI extended
advanced front-end [8] on the Aurora 2 corpus are re-
ported. This is a standard front-end which uses sophisti-
cated enhancement approaches to improve the quality of
the extracted features. Further details about its perform-
ance are reported in the Appendix.
As expected, by improving more advanced methods in

the autocorrelation domain, i.e., DAS, SPFH, and ANS
using our proposed methods, better results were obtained
in comparison to somewhat more basic autocorrelation-
based methods, i.e., RAS and AMFCC. As it is clear, the

combination of ANSS and overestimation with energy
and cepstral mean and variance normalization (EMVN),
named ANSSOEMV (autocorrelation-based noise sub-
traction method with smoothing, overestimation, en-
ergy, and cepstral mean and variance normalization),
overcame all other proposed methods in average overall
performance on all the three test sets of Aurora 2
which is 64.91% in average than MFCC features. It is
also worth mentioning that this performance is ob-
tained with simple and low complexity computations,
while ETSI-XAFE is a complicated algorithm with large
computational overhead. Also, it is worth mentioning
that, as will be shown in the Appendix, the strongest ad-
vantage of the proposed methods over the ETSI-XAFE is
at very low SNRs (−5 dB in this case), which is not in-
cluded in the figures reported in Table 3.

7 Conclusions
In this paper, we have raised the issue of using
autocorrelation-based noise estimation and subtraction,
taking into account the cross-correlation term error.
Two different methods were introduced for the inser-
tion of the cross-correlation term into the estimation of
clean speech autocorrelation sequence, namely, kernel
and ANSS. The kernel method inserts the cross-
correlation term using a kernel function whereas ANSS
considers the cross-correlation term by averaging on a
few frames. Both approaches were tested on Aurora 2
task and were proved to be useful in further improving
the ANS results. Also, the overestimation parameter, as

Table 3 Comparison of average recognition rates and percentage of improvement in comparison to MFCC for various feature types
on three test sets of Aurora 2 task

Feature type Recognition rate (%) Percentage of improvement (%) Overall average Overall average
improvement (%)Set A Set B Set C Set A Set B Set C

MFCC 61.13 55.57 66.68 – – – 61.13 –

AMFCC 63.41 57.67 69.72 5.87 4.73 9.12 63.60 6.57

RAS 66.77 60.94 71.81 14.51 12.09 15.40 66.51 14.00

DAS 70.90 65.57 77.17 25.14 22.51 31.48 71.21 26.37

SPFH 73.61 68.98 80.89 32.11 30.18 42.65 74.49 34.98

MFCC-SS 69.22 63.46 73.60 20.81 17.76 20.77 68.76 19.78

MVA 76.05 76.35 73.10 38.38 46.77 19.27 75.17 34.81

ANS 77.10 74.32 83.61 41.09 42.20 50.81 78.34 44.70

Kernel 78.90 75.88 84.53 45.72 45.71 53.57 79.77 48.33

ANSS 80.47 79.04 85.53 49.76 52.82 56.57 81.68 53.05

ANS + OEP 78.78 75.98 84.14 45.41 45.94 52.40 79.63 47.92

Kernel + OEP 80.05 77.86 85.40 48.68 50.17 56.18 81.10 51.68

ANSS + OEP 82.37 81.10 86.21 54.64 57.46 58.61 83.23 56.91

ANSSOEMV 84.81 86.63 87.97 60.92 69.91 63.90 86.47 64.91

ETSI-XAFE 86.56 85.19 83.49 65.42 66.67 50.45 85.08 60.85
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an important parameter where autocorrelation sequence
estimation is concerned, was taken into account.
Practical experiments indicated that even better recog-

nition performance could be expected when the over-
estimation parameter was introduced to ANS, kernel,
and ANSS methods. According to these results, although
all the methods performed better when implemented in
conjunction with the overestimation parameter, ANSS
with overestimation parameter (ANSS +OEP) performed
the best among them, and its combination with energy and
cepstral mean and variance normalization (ANSSOEMV)
performed even better than the ETSI-XAFE. Altogether, a
major result is that the features extracted from the auto-
correlation sequence of the speech signal perform rather
well in the presence of noise and the so called mismatch
conditions.

8 Endnote
1A more detailed discussion on this issue can be found

in [30].

9 Appendix
9.1 Comparison with ETSI extended advanced front-end
In order to be able to compare the performance of our
robust speech recognition approach with a standardized
front-end, we implemented ETSI extended advanced
front-end [8] on the Aurora 2 corpus. This is a standard
front-end with a sophisticated enhancement scheme that
tries to improve the quality of speech signal before
extracting features. The ETSI-XAFE was implemented
using the tools provided by ETSI.
The results of our ANSS + OEP method after the ap-

plication of energy, mean, and variance normalization,
abbreviated as ANSSOEMV, and the mean subtraction,
variance normalization, and ARMA filtering (MVA) ap-
proach are also reported here. Figure 11 depicts the rec-
ognition results on Aurora 2 task.
As it is clear, the application of overestimation with

mean and variance normalization of the cepstral pa-
rameters has led to improvements in the system rec-
ognition performance, which in comparison to ETSI-
XAFE has a better recognition rate in most of the
cases. These results also are indicative of the effect of
mean and variance normalization of cepstral coeffi-
cients in improving autocorrelation-based methods for
noise reduction.
One interesting point is the noticeable difference be-

tween the performance of our approach and that of the
other two in very low SNR (−5 dB) in all three test sets.
The experimental results have shown that all ANS-based
methods perform better than ETSI-XAFE at this SNR,
indicating that the methodology used in autocorrelation-
based approaches is performing very well in very low
SNRs, in comparison to that of ETSI-XAFE. In fact, it is

clear from both Figs. 9 and 10 that all the
autocorrelation-based methods as well as spectral sub-
traction follow an almost similar trend of performance
change in low SNRs, while this is quite different for
ETSI-XAFE and MVA. This could be attributed to the
noise estimation procedure followed in these methods
that loses its performance with decreasing SNR grad-
ually, while the other two methods seem to be quite sen-
sitive to high levels of noise.
It is also worth mentioning that our approach was

completed about 30% faster than ETSI-XAFE on the
mentioned task when run on a Pentium 4-based
computer.

Fig. 11 Average recognition rates of ANSSOEMV, ETSI-XAFE, and
MVA approaches on Aurora 2. a Test set A, b Test set B. c Test set C
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