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In this paper, we present a voice conversion (VC) method that does not use any parallel data while training the model.
Voice conversion is a technique where only speaker-specific information in the source speech is converted while
keeping the phonological information unchanged. Most of the existing VC methods rely on parallel data—pairs of
speech data from the source and target speakers uttering the same sentences. However, the use of parallel data in
training causes several problems: (1) the data used for the training is limited to the pre-defined sentences, (2) the
trained model is only applied to the speaker pair used in the training, and (3) a mismatch in alignment may occur.
Although it is generally preferable in VC to not use parallel data, a non-parallel approach is considered difficult to
learn. In our approach, we realize the non-parallel training based on speaker-adaptive training (SAT). Speech signals
are represented using a probabilistic model based on the Boltzmann machine that defines phonological information
and speaker-related information explicitly. Speaker-independent (SI) and speaker-dependent (SD) parameters are
simultaneously trained using SAT. In the conversion stage, a given speech signal is decomposed into phonological
and speaker-related information, the speaker-related information is replaced with that of the desired speaker, and
then voice-converted speech is obtained by combining the two. Our experimental results showed that our approach
outperformed the conventional non-parallel approach regarding objective and subjective criteria.
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1 Introduction

In recent years, voice conversion (VC), which is a tech-
nique used to change speaker-specific information in the
speech of a source speaker into that of a target speaker
while retaining linguistic information, has been garnering
much attention since the VC techniques can be applied
to various tasks [1-5]. Most of the existing approaches
rely on statistical models [6, 7], and the approach based
on the Gaussian mixture model (GMM) [8-11] is one
of the mainstream methods used nowadays. Other sta-
tistical models, such as non-negative matrix factorization
(NMEF) [12, 13], neural networks (NNs) [14], restricted
Boltzmann machines (RBMs) [15, 16], and deep learning
[17, 18], are also used in VC. However, almost all of the
existing VC methods require parallel data (aligned speech
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data from the source and the target speakers so that each
frame of the source speaker’s data corresponds to that of
the target speaker) for training the models, which leads to
several problems. First, the data is limited to pre-defined
articles (both speakers must utter the same articles). Sec-
ond, the trained model is only applied to the speaker pair
used in the training, and it is difficult to reuse the model
on the conversion of another speaker pair. Third, the
training data (the parallel data) is not the original speech
data anymore because the speech data is stretched and
modified in the time axis when aligned. Furthermore, it is
not guaranteed that each frame is aligned perfectly, and
the mismatching may cause some errors in training.
Several approaches that do not use parallel data from
the source to the target speakers' have been also pro-
posed [19-23]. In [19], for example, the authors model
the spectral relationships between two arbitrary speakers
(reference speakers) using GMMs and convert the source
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speaker’s speech using the matrix that projects the fea-
ture space of the source speaker into that of the target
speaker through that of the reference speakers. As a result,
parallel data from the source and target speakers is not
required. In [21, 22], codebooks (eigenvoice) are obtained
using the parallel data of the reference speakers, and a
many-to-many VC is achieved by mapping the source
speaker’s speech into an eigenvoice and the eigenvoice
into the target speaker’s speech. The multistep VC [24] is
also proposed to reduce the training cost of estimating the
mapping functions for each speaker pair.

In this paper, we propose a totally-parallel-data-free?
VC method using an energy-based probabilistic model
and speaker adaptive training (SAT). The idea is simple
and intuitive. A speech signal of an arbitrary speaker is
composed of neutral speech (the speech with the averaged
voice calculated from a collection of speech samples from
multiple speakers) that directly links to the phonologi-
cal information belonging to no one, accompanied with
the speaker-specific information. In this assumption, VC
is achieved by three steps: decomposing a speech sig-
nal into neutral speech and speaker-specific information,
replacing the speaker-specific information with that of
the desired speaker, and composing a speech signal using
the neutral speech and the replaced speaker information.
The proposed model, called a speaker adaptive trainable
Boltzmann machine (SATBM), is designed to help such a
decomposition. The above VC steps can be viewed as a
simplified version of the combination of automatic speech
recognition (ASR) and text-to-speech (TTS) systems: text
estimation from the input speech using the ASR system,
followed by speech generation of the target speaker from
the text using the TTS system. Although the VC can be
realized by this approach, our VC scheme has several
advantages. First, in our approach, we can reduce (or omit)
the cost of training two different systems. Second, the
combination approach requires a large amount of train-
ing data of the target speaker in TTS, while our approach
does not. Third, the latent phonological features in our
approach can be optimized for the VC. Fourth, ideally, the
voice-converted speech can be generated in real time by
our approach due to the frame-wise conversion.

We attempted the non-parallel training using another
probabilistic model named the adaptive restricted Boltz-
mann machine (ARBM) [25] in our previous work. The
architecture is different from the proposed model in this
paper, which makes some differences, e.g., while an ARBM
is based on the model-space transformation, a SATBM is
based on the constrained model-space transformation. In
the following sections, we will discuss this in more detail.

2 Formulation
In general, it is known that the differences of speech
signals in terms of speakers can be represented as
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multiplication in the cepstrum-based domain. After the
general form, we define an acoustic feature vector® &,; =
[3%,---,25] T € RP (D is the number of dimensions) of a
speaker r at time ¢ as follows:

X = Awx: + by, (1)

where x; = [x},--,4P] T € RP, A, € RP*P, and b, €
RP denote the speaker-normalized acoustic feature vector
(acoustic features of the neutral speaker or the averaged
speaker), a speaker adaptation matrix, and a bias vector of
the speaker r, respectively. Note that A, is a global matrix
for all the phonemes or kinds of speech sounds unlike
in MLLR or similar techniques. Here, we assume that
x; is normally distributed with time-varying (phoneme-
dependent) mean u, € RP and time-invariant diagonal
variance ¥ = diag (62),0% = [o7,---,03] T € R given
a latent phonological vector h; = i}, , W] T e B (B
is a binary space and H is the number of dimensions of the
latent vector). At this time, &;; is also normally distributed;
that is,

;CVL"ht ~ N(i}'rtr 2}")7

I}rt = Arpty + by (2)
Y, =AZA/.

The dependence on k; in Eq. (2) is explained as fol-
lows. The speech of the neutral speaker at a certain time
is supposed to be determined by the latent, phonological
information that must exist behind but is not observable.
For example, if the phoneme /e/ is intended at time ¢, then
the neutral speech at ¢ should correspond acoustically to
the phoneme /e/. Therefore, we assume that the mean vec-
tor of the neutral speaker p, is determined using a latent
phonological vector & as

”‘t = Wht + b: (3)

where W € RP*H and b € RP are a matrix and a bias
vector, respectively, that project the phonological space
into the acoustic space. Furthermore, b is also regarded as
a bias vector to realize the speaker characteristics of the
neutral speaker. Incidentally, the conditional probability
p(&y|hy) given hy in Eq. (2) can be calculated as follows:

PGrelly) = N Gy, 5)
X e_%(&rt_ﬂrt)‘ri;l(&rt_ﬂrt)
Lz TS -T2 _phy_aT -1\
e e B ] B

where we introduce I;, =Ab+b,and W, = A, W.
On the other hand, in this paper, we assume that
the phonological information can be determined by

the acoustic features as well. It means /, is Bernoulli-
distributed and its parameter n{ en; G =1,---,H)
that represents the probability p (h/t = 1) is assumed to
be a function of x;. In this formulation, it is beneficial in
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terms of reducing the number of parameters to use the
already-defined parameters. We define & as follows:

nt=¢<WTZ_1xt+c>, (5)

where ¢(-) denotes an element-wise sigmoid function and
¢ € RH is a bias term for the phonological informa-
tion that is independent of time. Considering that x#;, =
Ar_l(fcrt —b,) and T7! = A;rflr_lA,, the conditional
probability, p(h¢|%,+) forms incidentally as follows:

p(he|xpe) = B(y)

—1Aa—1/2 T
o e WTETIA Gr—br)+e) Iy

_ —(—&,th;l\f(f,h—é;rh)’

(6)

where we use the replacement of &, = ¢ — W, 5 1b,.
Now, we consider the joint probability of &, and h;.
From Egs. (4) and (6), we notice that the same term
—&,thlr_ W, h appears in the exponential. Consequently,
the following joint probability satisfies Eqs. (4) and (6):

A 1 _rai
P&y, hy) =5¢ Etrehe)
EGo ) = Gt — bp) 57 Gore — b 7
Xy, ht) —Z(xrt ") r (% r) (7)
— & 5B — & hy,
where Z = f b th e~EGnh) gD3 . is a normalization

term. Furthermore, substituting Eq. (1) for Eq. (7) forms

plxs, hy) = %efﬂxbht) ] .
AT
B ) = P5z — (%) Wi — cTh,

which is nothing more than the definition of a Gaussian-
Bernoulli restricted Boltzmann machine (GB-RBM) [26].
In other words, the model defined in Eq. (7) implies that
it adapts the neutral speech to that of a speaker » when
using a GB-RBM with the visible units of acoustic fea-
tures of the neutral speaker (or the averaged speaker) and
the hidden units of latent phonological features, as shown
in Fig. 1a. In another viewpoint, it can be regarded as
a sort of semi-RBM [27] since there are shared connec-
tions W, between &,; and k; and connections ﬁ],‘ 1 among
Xy but no connections among ilt (Fig. 1b). The differ-
ence is that the model in Eq. (7) assumes the existence
of the neutral speaker and defines additional parameters
that enable speaker-adaptive training. In this paper, we
call the probabilistic model defined in Eq. (7) speaker-
adaptive-trainable Boltzmann machine (SATBM). In our
previous work [25], we have proposed another probabilis-
tic model named adaptive restricted Boltzmann machine
(ARBM), that is an extension of an RBM where only the
connection weights between the visible and hidden units
are speaker-adaptive. The ARBM is based on a model-
space transformation, whereas the SATBM is based on
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both a model-space transformation and a feature-space
transformation (i.e., constrained model-space transfor-
mation), as Egs. (1) and (2) indicate. Specifically, in the
SATBM, the speaker-dependent parameters (means and
covariance matrix) of Gaussian visible units are repre-
sented as A, Wh; + A,b + b, of means and A,EAI of
a covariance matrix. On the other hand, in ARBM, the
speaker-dependent parameters of Gaussian visible units
are represented as A, Wh; + b + b, of means and X
of a covariance matrix. This indicates that the speaker-
dependent Gaussian parameters in the SATBM are more
strongly influenced by the speaker and changed to adapt
to the speaker more than those in the ARBM. In another
perspective, the SATBM directly models the correlations
between the dimensions in the observed features while
the ARBM does not. The observed features take different
values every time a specific speaker pronounces the same
phoneme, and the extent of the variation depends on the
speaker. The SATBM also represents such characteristics
of each speaker. For this reason, we expect the SATBM
would be superior in acoustic modeling to the ARBM.

2.1 One-hot activation of /;
We can further add constraints Z]h; 1 it =1 to our model
resulting in a one-hot vector k;, which indicates that only
a certain phonological component is activated. In the real
speech, only one phoneme, such as /a/ and /e/, should
be activated in the background at a certain frame. There-
fore, this modification may give better representation for
speech. The use of a one-hot representation is inspired by
such a phonological reason.

Such constraints give the following conditional proba-

bility that /, is activated (that is, 77}) as
”i =p <h]t = 1|’A‘rt>

T a1 A
ewly P2 1xrt+CIr

Y, PR v
A T 1A /\‘
=v (W £+ 7)., ©)

where ﬁ/r and &, indicate the jth column vector in W,
and the jth element in ¢;, respectively, and ¥ (-) denotes a
softmax function (we also define ¥ (-) as an element-wise
softmax function for convenience). Equation 9 is used
when we sample 4, instead of Eq. (5), as discussed in the
following sections.

3 Parameter estimation based on SAT

In this section, we describe the method of the parame-
ter estimation in the previously defined model, a SATBM,
based on SAT [28]. For convenience, we use symbols
P = (A, br}f=1 for SD parameters and @5 =
{W, 02, b, c} for SI parameters. Given a collection of the
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Fig. 1 a Proposed model: speaker-adaptive-trainable Boltzmann machine (SATBM) and b its simplified representation, which can be seen as a type

of semi-RBM

speech data, X = {X,}le, X, = {&rt}tT:’l that is com-
posed of R speakers, these parameters are simultaneously
estimated so as to maximize the likelihood as

R T

CRACRE argmax l_[ l_[p(jcrt).
(@SD,@SI) r=1t=1

(10)

According to the SAT paradigm, the SD parameters
©5P undertake the speaker-induced variation, and the SI
parameters 5 capture the remaining information, i.e.,
phonetically relevant variation. Unlike the conventional
SAT+MLLR (maximum likelihood linear regression), the
SATBM explicitly models the relationships between the
speaker-normalized acoustic features and the phonolog-
ical information, which implies the possibility that the
model represents the speech data better than SAT+MLLR.

The parameters are iteratively updated based on gradi-
ent descent. The partial differential of the log-likelihood

I=1og [, T, pGre) = >, >, 1og >, PR, By)) in terms
of a parameter 6 € {®5, ©} is derived as follows:

5 (< aE(fcrt,ht>> ~ <8E<&ﬂ,ht>> )
30 r 90 data 30 model

where (-)data and (-)model denote expectations of the
empirical data and the inner model, respectively. It is
generally difficult to compute the expectations of the
inner model; however, we can still use contrastive diver-
gence (CD) [29] and efficiently approximate them with
the expectations of the reconstructed data. We can ana-
lytically calculate the partial gradients % for each
parameter as follows:

) 1 (ATIC, 57+ 571D,ACT)

JA, 2
AERye &1, 2 °
PG = 5 Gy — by — Wiihy)
OE(Xys,h &_1,A

(g\)t(/ D — _A;r Ey l(xrt - br)h,;r
D) — —Ldiag (A S E 1A, )
OE(Xys,h S—1 /4, 7
EGuh) — _ATHA Gy, — by)
OEXyhy) —h

dc - 2]

where

Cr = (e — b)) Gt — b, — 2W, )T
D, = (&rt - Ifr)(&rt - ?r)T R
Ert = (&rt - br)(&rt - br)T - 2(5‘:” - br) (tht)—r'

4 Application to VC

To use the proposed model for the VC, we follow three
stages of training, adaptation, and conversion. In the
training stage, speaker-independent parameters O3 are
obtained as in Eq. (10) using R reference speakers’ speech
(we discard the speaker-dependent parameters ©°). In
the adaptation stage, new speaker-dependent parameters
@fD = {A;, b;} and @fD = {A,, b,} are estimated using
adaptation data of the source and the target speakers
{&i,}tT; - {fvot}fil while keeping O fixed. That is,

Ty
65 2 argmax [ ] p (4 057, ®S’), relio)l. (1)
O =1

To convert the frame-wise acoustic feature vector of
the source speaker «x;; into that of the target speaker x,,
we take an ML-based approach. In this approach, %, is
computed so as to maximize the probability given x;,
formulated as
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= argmaxp(xorlie)
= ar%croltqax >, P(he|xie)p(xor )
~ ar%cﬁ;axp<@t|xit>p(xat|ﬂt>
= ar%c;;ax p(x0[|i1t)
ot

— AWy (WTE_lAi_l(xit —b)+ c) +A,b+b,,
(12)

8
S
I

where we give ilt 2 E[p(h|xi)]. It is worth noting
that the conversion function is based on the non-linear
transformation.

5 Experimental evaluation

5.1 System configuration

In our VC experiments, we evaluated the performance
of our model, a SATBM, using AS] Continuous Speech
Corpus for Research (ASJ-JIPDEC%). In the training stage
where the SI parameters are estimated, we randomly
selected and used the speech data of five sentences
(approx. 160 k frames) uttered by 56 speakers (26 males
and 30 females) from set A in the corpus. For adap-
tation and evaluation, a male (identified as “ECL0001”)
and female (“ECL1003”) speakers that were not included
in the training were used as source and target speakers,
respectively, unless otherwise stated. We also evaluated
the proposed SATBM using the other speaker pairs, which
will be discussed in Section 5.4. The amount of adaptation
data was five sentences for each person. As an acous-
tic feature vector, we used 32-dimensional mel-cepstral
features that were calculated from the 513-dimensional
WORLD [30] spectra without dynamic features. In the
training of the system, we used up to 64 softmax hidden
units, a learning rate of 0.01, a momentum of 0.9, and a
batch-size of R x 100(= 5600) and set the number of iter-
ations as 200. For the evaluation of the proposed method,
we used parallel data (of 10 different sentences from the
training and adaptation data) of the source and the target
speakers, which was created using dynamic programming.
But again, note that all speech data used for the training
and the adaptation was NOT parallel.

Mel-cepstral distortion (MCD) is generally used for
objective evaluation in the VC. However, we used the mel-
cepstral distortion improvement ratio (MDIR) instead in
this paper because it does not make sense to view the dis-
tance between the spectral features in the mel scale of the
source and the target speakers when we want to recognize
the differences in speaker identities and because the scale
of the MCD varies in the evaluation data. For more dis-
cussion about the differences between MDIR and MCD,
see Section 5.4. The MDIR is defined as follows:

10v/2

MDIR [dB] = m(llmo —mlly — lmy — m|5)
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where m;, m,, and m, are mel-cepstral features at a frame
of the source speaker’s speech, target speaker’s speech,
and converted speech, respectively. The higher the value
of MDIR is, the better the performance of the VC is. The
MDIR was calculated for each frame from the parallel data
of 10 sentences and averaged.

5.1.1 Methods to be compared

It is difficult and unfair to evaluate the proposed method
because most of the existing VC approaches use parallel
data in training and our method does not. Nevertheless,
we can still compare the proposed method with our earlier
model, ARBM [25]. In addition, a linear-transform-based
approach, which has not been proposed, is interesting to
compare with. This approach is simple: the vector x,; is
calculated as

Kot £ AoAT (4 — bi) + b, (13)
which was derived from the equation x; = Ai—1 (% —b;) =
A;l(xot — b,) starting with Eq. (1). However, it is under
the assumption that the true feature space of the neutral
speaker was obtained. The parameters A, and b, are esti-
mated in SAT using the gradient decent, the same as our
proposed method. So, the difference between the linear-
transform approach and the proposed model is whether
the latent phonological features are modeled or not.

For reference, we also compared our proposed model
with a popular GMM-based VC with 8, 16, 32, and 64
mixtures using the parallel data of five sentences.

5.1.2 Optimal number of hidden units

From the pre-experiment, we see the effects of chang-
ing the number of softmax hidden units. Figure 2 shows
the performance when changing the number of hidden
units between 8, 16, 32, and 64. From Fig. 2, the opti-
mal number was 16, and the performance degraded as the
number of hidden units increased more than 16. This is

3.10
3.00
=)
=
f:fi 2.90
=
2.80 Y
C
2.70
8 16 32 64
Number of hidden units
Fig. 2 VC performance when changing the number of hidden units
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since the hidden layer becomes speaker-dependent with
a large number of units, and hence, it cannot convert
the voice properly. To verify this, we examined how the
hidden units were speaker-dependent by analyzing the
distribution of the hidden units with the cases of H = 16
(the optimal number of units) and H = 64 (too large
a number of units). Figures 3 and 4 show examples of
the expected values of the hidden units for the cases of
H = 16 and H = 64, respectively, comparing the dis-
tributions obtained from the source and target speakers.
From Figs. 3 and 4, we observed that more hidden units
when H = 64 were speaker-dependent than those when
H = 16. To measure objectively how close the distribu-
tions are to each other, we further calculated the Euclidean
distances and the cosine similarities between the two dis-
tributions obtained from the source and target speakers’
speech, as shown in Table 1. Obviously, Table 1 shows
that the two hidden activations of H = 16 are close
to each other, more than those of H = 64. A similar
discussion can be seen in our previous work using the
ARBM [25].

In speech recognition in Japanese, 43 phonemes are
often used [31], which consists of seven short vowels, five
long vowels, 28 consonants, and three special symbols.
These kinds of Japanese phonemes were defined by the
Acoustical Society of Japan (AS]) committee. Comparing
these artificial numbers with the optimal number of hid-
den units as H = 16, we could state that this is reasonable
because using the static short-term acoustic features does
not represent the consonants and long vowels sufficiently
and because the natural speech should contain some
allophones.

Considering the above, we will use 16 softmax hid-
den units in the following experiments unless otherwise
stated.
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5.2 Objective comparison

The VC performance of the linear-transform-based
approach, the ARBM, and the proposed model (SATBM)
is compared using objective criteria, as shown in Fig. 5.
Each method was evaluated by varying the number of
diagonals of the adaptation matrices used as 1 (that means
diagonal matrices), 3 (tridiagonal), 5 (pentadiagonal), 7
(heptadiagonal), and 9 (nonadiagonal). In this experiment,
we used 16 softmax hidden units for the SATBM and
the ARBM. As shown in Fig. 5, the proposed model per-
formed best with any type of the adaptation matrix. The
performance of the SATBM and the ARBM was improved
when adding the diagonals up to seven. On the other hand,
the linear approach barely improved with the number of
diagonals. Interestingly, the proposed model achieved a
high MDIR even when the diagonal adaptation matrices
were used, unlike the ARBM and linear approaches. In
the linear approach, the diagonal matrix could not capture
the correlations between the dimensions of the mel cep-
strum, which makes it impossible to match the vocal tracts
among the speakers. Meanwhile, the SATBM could make
the source speech resemble the target voice more or less
even when a diagonal adaptation matrix was used, due to
modeling the latent phonological information. The ARBM
models the latent phonological information as well; how-
ever, the speaker-dependent Gaussian parameters of the
ARBM are not sufficient and failed to represent the speech
correctly with the diagonal adaptation matrices.

We also found that the SATBM and the ARBM
degraded with nine diagonals and more. This is due to
the over-fitting caused by the large number of param-
eters. In some literature, such as [32-34], it is known
that warping cepstral-based features between different
speakers is achieved by linear transformation with an
adaptation matrix, and a few diagonal elements (such

| |
|I‘\"I il

<
(a) From source  {

(b) From target

Fig. 3 The expected values of hidden units obtained from a the source speaker’s features and b the target speaker’s features of the same sentence
/ureshi: hazuga yuQkuri netemo irarenai/ when H = 16. The white and black indicate the high and low values, respectively

|
1

Time [sec.]
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=
(a) From source 3

(b) From target

Fig. 4 The expected values of hidden units obtained from a the source speaker’s features and b the target speaker’s features of the same sentence
/ureshi: hazuga yuQkuri netemo irarenai/ when H = 64. The white and black indicate the high and low values, respectively

2 25 3

1.5

Time [sec.]

as tridiagonal, pentadiagonal, and heptadiagonal) of the
adaptation matrix are sufficient for warping the cep-
stral features. Therefore, it does not make sense to use
adaptation matrices with many diagonal elements (more
than seven diagonals) in terms of efficient learning for
this speaker pair. For more discussion using the various
speaker pairs, see Section 5.4.

The average MDIR of the GMM-based approach was
3.93 with 32 mixtures, which was the best in the GMM-
based approach. Unfortunately, it performed better than
our approach. However, again, such an approach benefits
from using parallel data and should not be compared with
the non-parallel approach, just in terms of VC quality.

5.3 Subjective comparison

We also conducted subjective experiments, compar-
ing our method with the ARBM and the linear-based
approaches. We decoded the converted mel cepstra back
to the WORLD spectra using the filter theory [35] and
generated signals using the original FO and aperiodic
features of the target speaker since we wanted to com-
pare each method in the spectra. In this experiment,
seven participants listened to 10 sentences of converted

Table 1 Euclidean distance and cosine similarity between the
hidden distributions obtained from the source and target
speakers’ speech of Figs. 3 (H = 16) and 4 (H = 64)

Euclidean dist. Cosine sim.
H=16 0.660 0.526
H=64 0.869 0.337

speech using the linear-based, the ARBM, and the SATBM
approaches accompanied with the target speech and voted
for the most preferable method for each sentence in terms
of the speaker specificity of the target speaker. The num-
ber of votes for each method are shown in Fig. 6. The
SATBM performed the best of all. It can be said that the
SATBM has the ability to produce sounds auditorily closer
to the target speech than the other methods.

For reference, we also compared the proposed method
with the GMM-based VC in a subjective manner. In this
experiment as well, the seven participants were asked to
rank the converted speech using a 5-scale (1 poor, 2 fair,
3 good, 4 very good, and 5 excellent) in terms of speech
quality (naturalness) and speaker specificity (similarity).

3.20
278 §

=)

=,

ez 235

A O SATBM

= A ARBM
1.93 I linear
1.50

1 3 5 7 9
Number of diagonals

Fig. 5 Comparison of VC performance of non-parallel approaches
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Table 3 MDIR and MCD from various speaker pairs

40 Source — target Type MDIR [dB] MCD [dB]
ECLO00T — ECL1003 M2F 3.12 6.87
é 30 MITO001 — ECL1003 M2F 403 700
ci ECL1003 — CANO001 F2M 277 7.32
S 20 NEC1002 — MIT0002 F2M 348 6.98
—q‘é ECLO00T — MIT0001 M2M 148 6.09
2 10 ECLOO0T — MIT0002 M2M 2.02 6.46
CAN1001 — ECL1003 F2F 1.28 6.85
NEC1001 — ECL1003 F2F 1.55 6.14

SATBM ARBM linear
Fig. 6 Subjective performance of non-parallel VC methods

The results are shown in Table 2. From Table 2, the GMM-
based VC outperformed the proposed method in both
criteria; however, again, the GMM-based VC uses parallel
corpora, while the proposed method does not.

5.4 Evaluation using various speaker pairs

We also investigated the performance of the proposed
SATBM using various speaker pairs that include four gen-
der types: male-to-female (M2F), female-to-male (F2M),
male-to-male (M2M), and female-to-female (F2F). For
this evaluation, we randomly chose eight pairs from the
corpus that were not included in the training, whose iden-
tities and the gender types are listed in the first and the
second columns of Table 3, respectively. Table 3 com-
pares the performance for each speaker pair with different
criteria of the MDIR and MCD, using the SATBM with
heptadiagonal adaptation matrices. When we compare the
VC performance of different speaker pairs using the MCD,
we may conclude that the model performed best when
converting “ECL0001” to “MIT0001” because this con-
version provided the smallest MCD. However, the speech
of “ECL0001” and “MIT0001” was already close to each
other. To see how effective the model is, we should focus
on how much the model improves the original speech.
The MDIR measures the extent of how much the model
improves, and we can say that the VC model was the
most effective when converting “MIT0001” to “ECL1003”
according to the MDIR. The MDIR of the cross-gender
conversion is higher than that of the within-gender con-
version. This is natural because, in general, we can feel the

Table 2 Subjective comparison of parallel VC (GMM) and
non-parallel VC (SATBM) using the 5-scale tests in terms of
speech quality and speaker specificity

Speech quality
GMM 337 3.66
SATBM 2.1 1.91

Speaker specificity

extent of how much the source speech was converted from
the converted speech of the cross-gender more than from
that of the within-gender.

Finally, Fig. 7 shows the VC performance of the pro-
posed method for each gender type when changing the
types of the adaptation matrix. Each MDIR was aver-
aged within the same gender type. As shown in Fig. 7, we
achieved better results as the number of diagonals in the
adaptation matrices increased and the best when using
the heptadiagonal adaptation matrices, except for F2F
conversion. The nonadiagonal adaptation matrices per-
formed the worse for all gender types. This is because too
many parameters are included in the adaptation matrices
even though it is not needed for the linear transformation
across the speakers and caused overfitting, as discussed
in Section 5.2. We also noticed from Fig. 7 that when
comparing the cases with F2F and M2M, the diagonal
matrix was not so bad for the F2F conversion. This is
because the female voice in general varies with the speaker
less than the male voice, and only the diagonal elements
in the adaptation matrix were enough to represent the
differences in the female speakers.

4
_ B diagonal
[] tridiagonal

3 [] pentadiagonal
=) M heptadiagonal
= Il nonadiagonal
% 2
@)
=

| I

O Ll

M2F F2M

Fig. 7 Comparison of VC performance of the proposed model with
changing the type of adaptation matrices for each gender type
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6 Conclusions

In this paper, we presented a VC method that does not
require any parallel data during training and adaptation
according to the basic idea of dividing a speech signal into
phoneme-relevant and speaker-relevant information and
replacing only the speaker-relevant information with the
desired one. To model this, we assumed that the neutral
speaker’s acoustic features are normally distributed, and
its mean is affine-transformed from the latent phonologi-
cal features that are Bernoulli-distributed. As a result, we
showed that the joint probability of the acoustic features
and the phonological features forms a type of Boltzmann
machine. We also showed the method of estimating the
target speaker’s features given the source speaker’s fea-
tures in a probabilistic manner. In our VC experiments,
we obtained better performance with our model than
the other non-parallel VC approaches in both objective
and subjective criteria. However, we still have concerns
that the proposed approach fell short of the GMM-based
approach that uses parallel data in training. In the future,
we will continue to improve the system (hopefully, to the
performance level of the GMM-based approach) in the
non-parallel VC because non-parallel training has sev-
eral merits, e.g., we can freely use most of the existing
speech data.

Endnotes

INote that they still require parallel data among the
reference speakers.

21t means that the method requires neither the parallel
data of a source speaker and target speaker nor the parallel
data of the reference speakers.

3In our experiments, we used mel cepstra as the acous-
tic feature vector.

*http://research.nii.ac.jp/src/ASJ-JIPDEC.html
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