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Abstract

Audio fingerprinting has been an active research field typically used for music identification. Robust audio fingerprinting
technology is used to successfully perform content-based audio identification regardless of the audio signal being
subjected to various types of distortion. These distortions affect the time-frequency correlation relating to pitch and
speed changes. In this paper, experiments are done using the computer vision technique ORB (Oriented FAST and
Rotated BRIEF) for robust audio identification. Investigations are conducted for ORB, relating to its advantage of robustness
against distortions including speed and pitch changes. The ORB prototype compares the features of the spectrogram
image query to a database of spectrogram images of the songs. For the initial experiment, a Brute-Force matcher is used
to compare the ORB descriptors. Results show that the ORB prototype performs robustly to real-world distortions with fast,
reliable performance against distortions such as speed and pitch which justifies the research done.
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1 Introduction
In recent years, there has been an increase in digital
multimedia technology, which made it simpler to share
music files. Music is being compressed for portability for
the ability to be transmitted between computers via the
internet. This proliferation of digital multimedia includ-
ing online streaming services, and online downloading,
has become very popular in the past decade. Now,
almost any song can be purchased or streamed digitally
at the consumer’s fingertips [1]. According to [2], the
cost to manufacture and distribute the physical media
components such as the CD’s, and plastic cases, are no
longer necessary, since digital music can reach a far
greater audience in a shorter space of time. Music can
now be released and distributed digitally [3] as soon as
they are ready, and geographical accessibility has become
limitless for the distribution of music. As a result,
companies and private individuals have also developed
various methods for searching, indexing, and match-
ing unknown music samples to a database. This is
done using audio fingerprinting [4] and can be used
in application areas including broadcast monitoring,
copyright protection, and digital rights management
music identification.

Music identification [5] is typically done using an
audio fingerprinting technique, which is a compact and
unique digital summary of the audio content. The fin-
gerprint is computed from the audio signal, stored in a
database using a hash method (compact representation)
and used for comparing and matching. It also contains
the song’s metadata such as artist, and song title. The
techniques must be robust so that even audio content
that is degraded due to distortion can still be accurately
identified.
There are many algorithms such as the Philips Robust

Hash (PRH) algorithm [5], which was a well-studied and
verified method to be mathematically robust and effi-
cient for searching. The PRH algorithm works by con-
verting the audio signal from the time domain to the
frequency domain and by diving the frequency spectrum
into sub-bands where sub fingerprints are generated for
each sub-band. WavePrint [6] proposed an algorithm
using computer vision techniques for audio fingerprint-
ing involving wavelets. The spectrogram image is deter-
mined and then broken into smaller spectral images
where the top wavelets are computed using the Haar
wavelet. Once completed, the top wavelets are computed
and the sub-fingerprints are determined using the binary
quantization. Also, the Shazam algorithm was success-
fully developed by [7]. This method is based on the use* Correspondence: dominic.williams@my.uwi.edu
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of the spectrogram data where spectrogram peaks are
determined and paired off and hashed to determine the
robust audio fingerprint. In addition, the recently
developed algorithm for music identification using the
scale-invariant feature transform (SIFT) is seen to be
successful in robustly identifying music based on the
computer vision technique [8].
This paper proposes a computationally simple algo-

rithm that will be robust to distortions such as noise.
The system will also account for significant discrimin-
ation over a large number of fingerprints and scalability
for efficient storage and comparing. The algorithm will
be fast and accurate identification with minimal mis-
identifications and false positives. The robustness to dis-
tortions is a main factor to consider as there are various
real-world distortions that affect the audio and therefore
the performance of the algorithm. Some of these include
interference, and environmental noise. Also, not all
speakers and microphones will be high quality and
therefore, this can cause certain frequencies to be lost or
inaccurately recorded for analysis. Another distortion
may come from the audio itself being altered due to
speed and pitch synchronization changes (radio, online
streaming, and etc.). This paper proposes a music
identification algorithm that is highly robust to audio
signal noise as well as time and frequency domain
synchronization changes. Based on research, it is seen
that ORB is a computationally efficient alternative to
SIFT and SURF. See proof in [9].

2 Related work
An audio fingerprint is a compact content-based signa-
ture of the audio signal which the unique acoustic char-
acteristics are stored as the fingerprint [10]. Using audio
fingerprints for identification can be considered as two
main parts. The first part is where the audio content is
fingerprinted and stored into a database along with the
related metadata. The second part is the where “un-
known” audio content is fingerprinted and compared to
the fingerprint database for identification [11]. If the
sampled fingerprint is matched to a fingerprint in the
database, then the corresponding metadata for that
fingerprint is returned.
An audio fingerprint structure comprises of the com-

ponents for fingerprint extraction and fingerprint identi-
fication. Fingerprint extraction entails the determination
of robust features of the audio signal and then building a
fingerprint representation based on those robust features
[12]. Fingerprint identification is where the fingerprint is
to be matched against a database to retrieve similar
fingerprints. Collection of fingerprints of songs must be
scaled for the purpose of efficiently storing and
searching in a database, and etc. The following figure
shows the general system for audio fingerprinting [12].

As shown in Fig. 1, the audio to be fingerprinted and
stored in a database and the unknown audio sample to be
fingerprinted and queried are both analyzed through the
same process. The audio fingerprinting and matching
algorithm must be robust so that the distorted audio sam-
ple can still be recognized as the same audio content
stored in the fingerprint database. The audio signal is
processed where it is sampled and converted from the
time domain to the frequency domain. The audio finger-
prints are then extracted to be compared to the audio
fingerprint database of similarly analyzed music files. Once
there is a match, the corresponding song information
would be returned and displayed to the user.
There are various approaches of audio fingerprinting.

Some discussed are the PRH, MLH, RARE, Shazam,
Wavelet Transform, and SIFT algorithms. This section
summarizes some of their features and limitations. Ac-
cording to Haitsma and Kalker [13], the major objective
of audio fingerprinting is to determine the perceptual
equality between two objects (multimedia) rather than
comparing the actual objects directly. Digital fingerprint-
ing technology can take advantage of this as fingerprints
reduce the storage required in contrast to the size of the
audio file itself. Also, audio fingerprints result in efficient
searching since the dataset is smaller. In addition, per-
ceptual discrepancies would have been removed in the
process of fingerprinting the audio file. The fingerprints
and the corresponding metadata would be stored in a
database for comparison and retrieval. The fingerprint
system can be summarized as two main components,
the extraction method of the fingerprints and an efficient
search and comparison method for the matching finger-
prints between the query and the fingerprint database.
When dealing with audio fingerprinting, the audio

signal is converted to another representation. Some typ-
ical transformations include the fast Fourier transform
(FFT), the discrete cosine transform (DCT), and the
Haar Transform. After the initial analysis is done on the
audio signal, the features are determined. Some feature
extraction methods include the mel-frequency cepstrum
coefficients (MFCC) and the spectral flatness Measure
(SFM), which is based on the power spectrum from the
fast Fourier transform function [12].
Furthermore, Haitsma and Kalker [13] introduced and

described a very robust fingerprint extraction method
and a highly efficient searching strategy which was suit-
able for a large audio fingerprint database with limited
computational resources (Philip’s Robust Hashing Algo-
rithm). The extraction process of the PRH algorithm
was similar to other methods where the audio was seg-
mented into frames with overlap of a specific length and
then shifted a fraction (1/32) of the frame length [14].
The Fourier transform analysis would be computed for
every frame, and the power spectral density is determined.
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Sub-fingerprints would then be determined by dividing
the frequency spectrum into logarithmic frequency bands
for each frame. The bands would be in the human audi-
tory system (HAS) range which was chosen as 300 to
2000 Hz [15]. The audio fingerprints were queried with
the use of a look-up table. However, while dealing with
low signal to noise ratio, the algorithm was not perform-
ing well. Also, the algorithm was susceptible to perform-
ance degradation, since a small change in frequency
misalignment due to speed change [8].
The PRH algorithm was fast, however, the trade-off in-

volved was accuracy. Liu, Yun, and Kim [5] proposed an
algorithm using the multiple hashing method (MLH) in
the DCT (discrete cosine transform) domain. The
method was similar to the PRH algorithm, but with the
application of the DCT to the time-based sequence of
energies in each respective sub-band and a sub-
fingerprint is generated for each DCT coefficient stream
[5]. They claimed that the de-correlation property
increased performance as it generated more sub-
fingerprints, and that the robust property of compaction
of the DCT will aid accuracy as the energy of the signal
tends to be concentrated in certain frequency compo-
nents. From their research, the MLH method performed
better than the PRH method under various added noise
experiments while maintaining accuracy. This improved
the recognition of audio signal even if the quality of the
signal is degraded. The consequence of this method was
that the fingerprint size increased so the songs stored in
the database would be less, and as a result, the search
time would increase as well [8].
Burges et al. [16] proposed the Robust Audio Recognition

Engine algorithm (RARE), which involved the use of the
modulated complex lapped transform (MCLT) to convert
the audio data to its time-frequency representation.
Instead of determining the features based on the

spectral representation, it reduces the dimensionality
of the audio data by using two projections. Dimen-
sionality reduction is where data is mapped to a
lower dimensional space so that certain data variance
is discarded. The projections are determined by train-
ing data using both distorted and undistorted data
and applying the oriented principle component ana-
lysis (OPCA). The data is projected onto directions
that increase the signal-to-noise ratio (SNR) of the
training data [17]. Although this method was robust,
the computation involved was the disadvantage to the
algorithm.
Covell and Baluja [18] proposed a different approach

to the previously stated methods, where computer vision
techniques are incorporated for audio identification
using wavelets. After the FFT is used to obtain the spec-
trogram, the spectrogram is then divided into smaller
subsamples of spectral images to be decomposed using
Haar wavelets. For each spectral image, the wavelet is
computed. Then, the top wavelets are extracted (mea-
sured by magnitude) and the sub-fingerprints are found
using the binary quantization of the major retained
wavelet components using min-hash. The experimental
results showed that the algorithm performed better than
the PRH and MLH algorithms with additive white
Gaussian noise [18]. Although the algorithm was robust,
it was computationally expensive. Also, the fingerprint
required more memory for storage and therefore, the
database size and search time increase. Also, the algo-
rithm was not as robust against time scale modification
(TSM) and speed change [8].
In the early 2000s, Wang et al. founded Shazam

Entertainment which developed a music recognition ser-
vice to be accessible through the use of mobile phones.
The user would be able to capture the audio sample for
query by calling a simple number, and when completed,

Fig. 1 Audio fingerprint system. This figure shows the general audio fingerprinting system done by previous authors. The algorithms generally
followed this approach where the raw audio would be captured (by loading the audio signal or by microphone). The audio signal is then processed
into a digital format where the audio fingerprints are extracted. The audio fingerprints of songs that were similarly processed and stored in a database
are then compared by some algorithm to execute a database lookup. After the resulting audio fingerprint comparison is done, the corresponding song
information for the highest match is returned
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the server would hang up the call and return the corre-
sponding song information in an SMS text message [19].
The Shazam algorithm was developed a fingerprinting
technique which involved the use of the highest ampli-
tude peaks of the spectrogram (robust constellations),
which were robust against noise. This was done by con-
verting the audio signal from the time domain to the fre-
quency domain using the fast Fourier transform (FFT)
in order to obtain the spectrogram data of the audio
(frequency spectrum for each frame) [20]. These peaks
were then paired off and combinatorial hash values were
computed based on time-frequency pairs, which also in-
creased robustness. Wang also proposed an efficient
searching and scoring algorithm. When a query was
compared to the database, each matching hash was
linked to offset time pairs between the offset times of
the beginning of the query song and the song in the
database. A match would be determined since the
matching features would have similar differences of the
relative offsets from the beginning of the song [7]. After
experiments were done, it was seen that the algorithm
was very robust to noise and compression but was sensi-
tive to frequency and time synchronization alteration [8].
Other search techniques include inverted file indexing

proposed by Haitsma and Kalker [13]. Once fingerprints
of part of the sample query are correctly matched, a
number of positions and candidate songs would then be
retrieved, narrowing the search index for the rest of the
query. Another set up involved separating the songs in
the database into two databases. One database would
contain fingerprints of more trendy songs of the mo-
ment (higher query probability), while another database
would have the fingerprints rest of songs. This would
decrease search times where the query would be com-
pared to the smaller and more likely database and if
there is not a match, it would be compared to the sec-
ond database [11].
Further investigations involving the use of image rec-

ognition for audio identification as computer vision
techniques made significant progress in recent years
with the development of local invariant features. Zhang
et al. [8] proposed “a novel feature for robust music
identification” using scale invariant feature transform
(SIFT) local descriptors on the spectrogram image. Gen-
erally, this would make feature descriptors and detectors
robust to scaling, shifting, rotating, and etc. Results
showed that the main advantage of this method was to
deal with distortions such as pitch shifting and speed
changes. These were difficult distortions for other music
identification algorithms to resist, as seen in the results
for algorithms such as Shazam. [8]. From a performance
evaluation, Figat, Kornuta, and Kasprzak [21] stated that
older vector-based descriptors such as SIFT and SURF
(Speeded-Up Robust Features) were being replaced by

binary feature descriptors and detectors. Some of these
binary descriptors and detectors include Binary Robust
Invariant Scalable Keypoints (BRISK), Binary Robust
Independent Elementary Features (BRIEF), and the de-
veloped algorithm, Oriented FAST and Rotated BRIEF
(ORB). From the results, it was seen that both the
binary and vector descriptors had similar robustness
to transformations of images while having great com-
putational efficiency.
According to the paper on “ORB: an efficient alterna-

tive to SIFT and SURF”, Rublee et al. [9] proposed a
feature ORB which built on the well-liked keypoint
detector algorithm, FAST (features from accelerated seg-
ment test), and recently developed BRIEF descriptor.
From the results, it was seen that ORB performed better
than older detectors and descriptors in both computa-
tional cost and speed. The goal was to improve image
recognition on lower power devices with limited compu-
tational resources. Miksik and Mikolajczyk [22] evalu-
ated the performance of ORB to common feature
detectors and descriptors like SIFT and SURF. An opti-
mized computer system was used with a 3.4 Ghz Intel
CPU, and OpenCV libraries were used for the experi-
ments. It was seen from the results that ORB resulted in
a substantially better performance compared to the SIFT
and SURF when determining keypoint detectors and
descriptors. ORB also maintained high accuracy while
being computationally faster making it more suitable. In
general, ORB is also more robust to Gaussian noise
when compared to SIFT [9]. However, there were some
cases where SIFT had a higher accuracy when matching
the features [21]. Also, ORB comprised of a combination
of two successful modified feature detectors; the Oriented
FAST keypoint detector and the Rotated BRIEF descriptor
and was seen to be two orders of magnitude faster and
more computationally efficiency than SIFT [23]. Hence,
ORB was chosen for the proposed algorithm.

3 Proposed method
This proposes the use of the ORB method as discussed
in [9]. The music signal is converted to a two-
dimensional spectrogram image then ORB is used to
compute the image and extract the spectrogram image
features using the ORB descriptors. ORB is chosen since
it is a robust and efficient computer-vision technique.
This makes it a novel approach to music identification
where distortions such as pitch and speed changes occur
which may be difficult for other existing algorithms to
be robust to. For the experimental prototype, a Brute-
Force matcher is used to match the corresponding
descriptors between the music query sample and the
database of spectrogram images. This algorithm will be
compared to the Shazam method which was a developed
industrial-strength audio search algorithm [7]. Also, the
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proposed system was comparable to the SIFT-based al-
gorithm by Zhang et al. for robust music identification
[8]. This can be seen in Fig. 2. The audio signal is proc-
essed where it is sampled and converted from the time
domain to the frequency domain in order to obtain the
spectrogram image. The image features are then ex-
tracted to be compared to the database of similarly ana-
lyzed spectrogram images. Once there is a match, the
corresponding song information would be returned and
displayed to the user.

3.1 Feature extraction
Firstly, pre-processing was done to convert the audio
signal to the correct digital format and sample rate. For
this prototype, the audio format used for testing was un-
compressed (WAV), and the sample rate was 44.1 KHz.
The audio is then divided into frames using the Hanning
window technique of 8192 points and an overlap of 0.75.
The window length was experimentally chosen so that
the spectrogram representation would have a low time
resolution which would increase robustness to time
variations. The overlap was chosen since the signal
maybe misaligned and hence this helps with the
desynchronization problem. The fast Fourier trans-
form is then applied to convert the audio from the
time domain to the frequency domain in order to ob-
tain the spectrogram [24]. The linear spectrogram is
then quantized into 64 logarithmically spaced sub-bands
to cover a large frequency range for more features [8].
After, the logarithmic spectrogram is converted to a gray
image in order to extract the features. The spectrogram is
converted to a log-magnitude representation using (1):

S i; jð Þ ¼ log X i; jð Þj j ð1Þ

where S is the log magnitude spectrogram representa-
tion, X is the original spectrogram, i is the frequency
sub-band, and j is the frame index [8].

Oriented Fast and Rotated BRIEF (ORB) consists of a
fast keypoint detector which is based on the FAST algo-
rithm and binary descriptor which is based on the BRIEF
algorithm [9]. Keypoints can be defined as spatial loca-
tions on the image that may contain a feature that
stands out. A descriptor can be defined as the way the
keypoint is described. In other words, the keypoint is a
detected location, and the descriptor is the details of that
location. These are used as the image features to deter-
mine matches when comparing two image samples. ORB
builds on variations of the FAST keypoint detector and
the recent BRIEF descriptor, which are popular due to
their computational efficiency and good performance
[25]. The variation for the FAST keypoint detector is
oFAST which adds the feature of orientation and
Rotated BRIEF which adds the feature of rotation (it is
rotation invariant).
Due to its good performance, FAST-9 is used (called

oFAST), which is a variation of FAST that uses a circular
radius of 9. A Harris corner measure is used to order
the FAST keypoints, since FAST had high responses
along edges. Also, since FAST does not yield multi-scale
features and is not scale invariant, a scale pyramid of the
imaged is employed and for each pyramid level, the
FAST features are determined [9]. The intensity centroid
is used for the measure of corner orientation. The
following describes the moments of a patch defined
by Rosin [26] as:

Mpq ¼
X

x;y
xpyqI x; yð Þ ð2Þ

where xpyq are the pixel location in corresponding patch
location of the image, and I(x, y) is the image intensity.
Based on the moments, the centroid is determined by:

C ¼ M10

M00
;
M01

M00

� �
ð3Þ

Fig. 2 Proposed system. The figure shows the proposed system where the raw audio would be captured (by loading the audio signal or by microphone).
The audio signal is then processed by converting the audio signal into a spectrogram image. The spectrogram image of the sample is compared to the
database of spectrogram images of the songs in the database. This is done using an image processing techniques to match the features of the spectrogram
image. After the resulting audio fingerprint comparison is done, the corresponding song information for the highest match is returned
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Now, from the corner’s center, O, a vector could be

constructed OC
�!

. The patch orientation can be deter-
mined as:

θ ¼ atan2 m01;m10ð Þ ð4Þ
However, Rublee et al. [9] stated that regardless of the

corner type, the angle is consistent, so it can be ignored.
The rotation invariance was then improved by comput-
ing the moments with x and y staying within the circular
radius r. This is done by choosing r as the patch size so
that x and y run from the range [−r, r].
The BRIEF descriptor is defined as a bit string of an

image patch created from a set of binary intensity tests
[25]. The following shows the binary test τ:

τ p; x; yð Þ ¼ 1 : p xð Þ < p yð Þ
0 : p xð Þ≥p yð Þ

�
ð5Þ

where p is the smoothed image patch, p(x) is the inten-
sity of p at point x.
The feature is defined as a vector of n binary tests:

f n pð Þ ¼
X

1≤i≤n
2i−1τ p; xi; yið Þ ð6Þ

Due to its performance, a Gaussian distribution test is
applied around the center of the patch [9]. Before the
test is performed, the image is smoothened. For BRIEF
to be invariant to rotation, an efficient approach was im-
plemented to steer BRIEF in accordance to the keypoint
orientation. At location (xi, yi), the 2 x n matrix is de-
fined by the following:

S ¼ x1;…; xn
y1;…; yn

� �
ð7Þ

From the rotation matrix Rθ and the patch orientation
θ, the “steered” Sθ:

Sθ ¼ RθS ð8Þ
Therefore, the steered BRIEFis [9]:

gn p; θð Þ ¼ f n pð Þ xi; yið Þ∈Sθj ð9Þ
Now, the angle is discretized to 12° increments and a

lookup table which includes already computed BRIEF
patterns is created. An advantage of BRIEF is that each
bit feature has a high variance. However, from the
results from tests, the steered BRIEF has lower variance.
The variation of BRIEF used by [9], rBRIEF, caused the
variance of the steered BRIEF to improve.
From the experiments done by Rublee et al. [9], ORB

produced high performance and computational effi-
ciency when compared to other similar computer vision
methods such as SIFT and SURF. For this experiment,
the orientation and rotation aspect was not necessary as

the analysis was done on spectrograms which were sta-
tionary images.
Since conditions are not ideal in the real world, it is

common for audio signals to be affected by various types
of audio distortion. Pitch shifting, time stretching and
time scaling are some difficult distortions for music
identification to resist. Pitch shifting causes the spectro-
gram image to remain the same on the time axis, but
the frequency component is just translated vertically (up
or down). Time stretching causes the time axis to
lengthen or shorten while the frequency axis remains
constant on the spectrogram. Time scaling can be
classified as the combination of pitch shifting and
time stretching.
The features are then extracted from the spectrogram

image to represent the unique characteristics of the
music using the ORB descriptors which are based on the
corners detected for patches on the image. Generally,
ORB-based features are robust to changes in image
scale, illumination, and etc. It was also noted that the
spectrogram is a stationary representation the orienta-
tion and rotation features were not needed to be used
for computation.

3.2 Robust matching
For this module, the unknown sample is analyzed in the
same manner as the audio for the database where the
spectrogram image is created for the unknown audio
sample. When the spectrogram image is created for the
query sample, it is stored temporarily. The ORB de-
tector is initiated, and the key-points and descriptors
are detected and computed for the query audio sam-
ple (spectrogram image).
Once completed, the BFMatcher (Brute-Force Matcher

from OpenCV) is used along with a Hamming window-
ing technique to search for matches. The BFMatcher
uses a descriptor in one data set (sample) and compares
it to all the other features in the second data set (in the
database) with a distance calculation (Hamming dis-
tance), and the closest match is returned. This is done
for all the descriptors in the first data set. In the real
world, noise may exist, creating the possibility of some
false positives (although not much). Usually, a threshold
is put in place to the distance between the query feature
and the nearest matching feature returned, rejecting
matches that may have distances greater than the
threshold [8]. When the descriptors are matched, a
threshold was used for the distances of the matches, if
the distance is far apart between descriptor matches of
the query sample and a database song then it may have
been a false positive detected. The amount of matches
below the threshold distance would be the confidence of
the corresponding match for the song. The Brute-Force
matcher was used to achieve exact matches to the
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spectrogram image features and to minimize false posi-
tives from being detected since the spectrogram features
can be considered as fine details on the image. Tests
were done and results were shown in the next section.

4 Experimental results
Testing was done for robustness [9] and other factors.
For this experimental prototype, the database consisted
of the songs being converted to their associated spectro-
gram image representation. These spectrogram images,
along with their related song information would be
stored for searching and retrieval of the query sample
and its corresponding match. For this experiment, a
database library of songs with an even spread of genres
were used, including Pop, Hip-hop, Modern Rock, Soca,
and Jazz. ORB would be used to determine the descrip-
tors of the spectrogram images which would be used for
comparison. These songs comprised of both similar and
dissimilar chords/rhythms and various instruments to
test the difficulty in song identification.
The algorithm was tested by using songs of various

genres (Pop, Hip-hop, Modern Rock, Soca, and Jazz),
and testing was performed on a total of 3200 sample
songs. Various factors were considered in sample selec-
tion. Not only tests for robustness to various distortions,
but other factors such as reliability, system speed, and
granularity were experimented [27]. Robustness involves
the system having the ability to accurately identify the
audio when subjected to real world variations including
compression and various types of distortion such as
radio interference, environmental noise, pitch shifting,
and time scaling. Accuracy deals with the system being
able to determine the correct match instead of missed
identifications and false positives (incorrect identifica-
tions). Due to the amount of songs that may or may not
be in the database, a reliable system must be able to
distinguish the actual match from similar audio content
and be able to assess if the query is not in the database
and hence should not have a match (no false positives).
The granularity of the system is the ability to correctly
identify the matching audio when the query is a short
audio clip. This is where the searching algorithm is im-
portant. The complexity of the system processes such as
the feature extraction, searching and comparison com-
plexity, fingerprint size, and database alterations should
not be computationally demanding. The Shazam algo-
rithm and the ORB prototype were tested and compared
and in addition, research for the SIFT-based music identi-
fication algorithm by Zhang et al. [8] was also considered.

4.1 Robustness
This was a key aspect of testing. The audio samples were
subjected to various types of audio distortions that occur
in the real world. The tests done included speed changes,

pitch changes, tempo changes and the addition of noise to
the audio samples. From research, Rublee et al. [9] pro-
posed that using image processing techniques for audio
identification had an advantage of robustness to distor-
tions such as speed and pitch changes which algorithms
such as Shazam was difficult to resist. This was also inves-
tigated from the results. The tests were done to test the
ability of the two algorithms to accurately identify the
query samples. The Shazam-based algorithm and the ORB
prototype were tested, and the results were compared.

4.1.1 Speed test
The speed test was done to test the ability for the query
audio sample to be accurately identified with different
speed changes applied to the audio samples. A 20-s sam-
ple was taken from each song and queried to the data-
base. The audio samples’ speeds were edited using the
Audacity audio editing software. The audio samples were
tested in each case, and the results showed the number
of queries that matched for each speed change. This can
be seen in Fig. 3.
The speed test was done to apply a synchronization at-

tack on the sample audio for query. This would cause
the query clips to deform as this type of distortion alters
both pitch and the original time scaling of the song. An
increase in speed would increase the pitch and decrease
the length of that clip (tempo) and a decrease in speed
would decrease the pitch and increase the length of the
clip (tempo), as it would be slower. The test was done in
such a way that a random 20-s audio sample was taken
for each song in the database. The distortion was then
applied for various percentage ranges and the clips were
queried for different test case scenarios. For each test,
the resulting match rate percentage would be deter-
mined by the songs that were accurately matched. In the
real world, the distortion range would be from −10 to
+10%, since this is where the distortion is most likely to
occur [8]. However, speed tests were also done out of
this range to test the limits of the experimental
prototypes.
In Fig. 3, the speed test was done for the range from

−20 to +20%. The both algorithms were compared to
show the effects of the speed changes on the ability for
the both systems to correctly identify the distorted
samples.
From the graph, it was seen that the Shazam algorithm

did not perform well in accurately identifying the dis-
torted sample queries for any speed variation. This could
have been due to the pitch and time variation which
would affect the time-frequency peak pairs used for the
hashing aspect. Since the Shazam algorithm is based on
combinatorial hashed time-frequency constellation ana-
lysis, the hashes are based on specific frequencies at its
associated point in time. These are then paired off and a
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hash a created based on the frequency pairs and their
time difference. Therefore, once there is an alteration in
speed, the pitch-changing aspect (frequency change)
would cause mismatch to occur (due to different hashes
generated) and hence the query would not be accurately
identified. Also, it was noted that the few samples that
matched the query had a low confidence.
It was seen that the ORB prototype produced better re-

sults compared to the Shazam algorithm. The ORB proto-
type was able to correctly identify almost all the songs for
the range from −10 to +10% where the match rate fell to
approximately 80% for the range from −10 to +10%.
Higher percentages tested the algorithm past real-world
situations which showed the ORB prototype performance
decreasing but still better than the Shazam method. The
experimental results showed that the ORB implementa-
tion was generally accurate for typical distortion ranges in
the real world and also performed better than the Shazam
method. This would be due to ORB being robust to shift-
ing and scaling of the features of the spectrogram image
query. This would justify the research done previously [8].

4.1.2 Pitch test
The pitch test involved testing a 20-s sample of each song
in the library and applying various pitch changes to the
audio samples. This experiment was done to test the ability
for queries to be accurately identified at various pitches.
The audio samples were tested in each case, and the results
showed the amount of query samples that matched for each
pitch change. Figure 4 shows the comparison of results for
both the Shazam-based algorithm and the ORB prototype.

This experiment showed the audio samples being quer-
ied to be correctly identified when pitch distortions are
applied. Pitch distortion would cause the frequencies in
the audio sample to shift vertically upward on the spectro-
gram if the pitch is increased, and vertically downward if
the pitch is decreased. The time synchronization would
remain the same, and there are no temporal changes in-
volved. The test was done similarly to the speed where a
random 20-s clip was taken for each song in the database,
and the pitch distortion was applied. The typical range
was tested (−10 to +10%), but the limits of the prototypes
were tested outside the real-world conditions (−20 to
+20%) in increments of 5% change.
Similar to the speed test, it was seen in Fig. 4, that

the Shazam algorithm generally did not perform well
as the various pitch changes were applied. Also, the
confidences of the songs that matched were rela-
tively low (approximately 0–10). This would be due
to the similar reason to the speed test where the
pitch is being altered, therefore, the frequencies
would change causing the audio fingerprints to mis-
align since they are based on the time-frequency
pairs for the hashes.
The ORB method performed very well for the real-

world pitch variation conditions and was seen to be ro-
bust for pitch changes up to ranges from −20 to +20%.
The ORB method was generally robust to pitch distor-
tion and outperformed the Shazam method. This would
be due to ORB being robust to shifting of features
(peaks) on the spectrogram images which would confirm
previous research done [8].

Fig. 3 Speed test for robustness (Shazam vs ORB). In this figure, the speed test was done for the range from −20 to +20%. The both algorithms
were compared to show the effects of the speed changes on the ability for the both systems to correctly identify the distorted samples. The speed is
the combination of pitch and tempo distortion. It was seen that the ORB prototype produced better results compared to the Shazam algorithm
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4.1.3 Tempo test
This test involved adjusting the tempo (speed while pre-
serving the pitch) for audio samples taken from each
song in the database. This tested the ability for the query
to be accurately identified when tempo distortions are
applied. The audio samples were tested in each case, and
the results showed the amount of query samples that
matched for each tempo change. The tempo distortions
were tested in increments of 10% changes for a range
from −50 to +50% to test the limits of the algorithms.
Figure 5 shows the results of the tempo test for both the
Shazam-based algorithm and the ORB prototype.
In this experiment, the tempo was changed to different

extents. This type of distortion is known as time stretch-
ing or time scaling. The speed of the audio clip is altered
while the pitch remains constant. On the spectrogram,
this change would be seen on the time axis (temporally),
but no change on the frequency axis (pitch). The experi-
ment was carried out where a random 20-s sample was
taken from each song in the database, and the tempo
change was applied using the Audacity software. The
distorted samples were then queried to the test if they
accurately matched.
In Fig. 5, it was seen that the Shazam algorithm per-

formed well generally for the various tempo changes ap-
plied and outperformed the ORB method. This could be
due to the sample rate, the window size, and the overlap
chosen (44100 Hz, 4096 and 50%, respectively). Due to a
large window size and high overlap for each consecutive

sub-sample determined, as the time stretch distortion
occurs (along the horizontal time axis), the combinator-
ial hashes or audio fingerprints generated would still
match when compared [7]. In addition, this could be
due to the number of audio fingerprints generated be-
cause of the “neighbourhood” size in which the distance
for peaks to be paired off is considered. In this case, this
would cause a lot of audio fingerprints to be generated.
As a result of the tempo change being constant for each
test, the absolute offset difference between the query off-
set and the offset of the song in the database would be
constant. Also, although the confidence may not be as
high as the original sample without distortion, the accur-
ate match would still have a generally high confidence.
For the results obtained in Fig. 5 for the ORB proto-

type, it was seen that the queries matched accurately for
the typical range (−10% to +10%). The results ORB
prototype dropped for higher ranges; however, further
work can be done to improve this, which is suggested
in Section 5. This meant that for the real-world appli-
cations, it would be robust which corresponds to re-
search done.

4.1.4 Noise test
For the noise test, audio samples were taken from the
database. The audio samples were then corrupted with
additive white Gaussian noise. The signal to noise ratio
was tested where the white Gaussian noise was applied
to the signal for percentage amplitude ranges of noise in

Fig. 4 Pitch test for robustness (Shazam vs ORB). This figure involves the pitch test where audio samples were queried to be correctly identified
when pitch distortions are applied. Pitch distortion would cause the frequencies in the audio sample to shift vertically. The time synchronization
would remain the same, and there are no temporal changes involved. The test was done similarly to the speed where a random 20-s clip was taken
from each song in the database, and the pitch distortion was applied. The typical range was tested (−10 to +10%), but the limits of the prototypes
were tested (−20 to +20%). It was seen that the ORB prototype produced better results compared to the Shazam algorithm
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increments of 10% from 0 to 50% to test the limits. This
test examines the ability for the corrupted audio samples
to be identified accurately. The audio samples were
tested in each case, and the results showed the amount
of query samples that matched for each case of added
noise. Figure 6 shows the results for the Shazam-based
algorithm and the ORB prototype.
This experiment involved the testing the ability to ac-

curately identify the audio sample when it is subjected
to the addition of noise. In the real world, this is a com-
mon case. Additive white Gaussian noise was added
which would be used to simulate background noise. The
similar test setup was done where a 20-s clip was taken
from each song in the database, and the various degrees
of noise were added to each sample and then tested for
each system.
From Fig. 6, the Shazam algorithm was very robust to

the noise as seen in the results. This would be due to
the peaks being acquired using the spectrogram data in
the audio fingerprinting extraction process. The peaks
obtained will be more likely to survive the effects of
noise as the song’s frequencies (from the audio sample)
would have a higher amplitude when compared to the
amplitude of frequencies of the noise. It was seen that
the Shazam’s algorithm performed slightly better than
the ORB prototype for higher noise percentages. This
was justified by previous research done by [7].
The ORB method involved the analysis and compari-

son of the query sample to the database based on the

spectrogram images themselves. The performance of the
ORB method with noise was well for real-world circum-
stances and was similarly as robust as the Shazam
method. This could be due to the fact that ORB uses the
spectrogram images. When there is noise present, the
spectrogram image would differ (from a spectrogram
with no noise) as the song’s frequencies can be masked
with the noise (different color seen on the spectrogram
image). Due to the compression of the image, the noise
may be more apparent in the spectrogram image. This
can be a source for the decrease in accuracy of the iden-
tification of the query sample.

4.2 Other factors
In addition to the main experiments testing robustness
to distortions of speed, pitch, tempo, and noise, further
experiments were conducted to determine the perform-
ance of the algorithms on softer metrics such as com-
pression, reliability, granularity, scalability, and system
speed. These tests measured an example of the perform-
ance of a single query under varying conditions.

4.2.1 Compression
An example of a random 20-s clip of a song from the
database was used for this test. It was subjected to MP3
compressions at various bitrates, where lower bitrates
would result in compression loss and therefore, audio
degradation can be heard. This tests the ability to accur-
ately identify the sample query with distortion due to

Fig. 5 Tempo test for robustness (Shazam vs ORB). This figure shows the results for the tempo being changed by a range from −50 to +50% to test
the limits. This type of distortion is known as time stretching or time scaling. The speed of the audio clip is altered while the pitch remains constant.
On the spectrogram, this change would be seen on the time axis (temporally) but no change on the frequency axis (pitch). The experiment was
carried out where a random 20-s sample was taken from each song in the database, and the tempo change was applied. The distorted samples were
then queried to the test if they accurately matched. It was seen that the Shazam algorithm produced better results compared to the ORB prototype
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compression (quantization noise). Tables 1 and 2 show
the results for the Shazam-based algorithm the ORB-
based prototype.
From the results above, the number of matches for the

Shazam method and the ORB method were based on
two different criteria hence their results cannot be com-
pared. The Shazam method uses audio fingerprints
where an entire song will have a great amount of audio
fingerprints depending on the amount of combinatorial
hashes determined [7]. In the Shazam method, the time-
based high amplitude peaks are determined in the fre-
quency domain to then be paired for robust and unique
identification. The ORB prototype uses the keypoints
and descriptors as the features to be matched. This is
dependent on the detail of the image to be captured and
the quality of the image, i.e., a higher quality image with
more determined descriptors would have a higher accur-
acy. For the experiment, an average value of 3000

descriptors were used based on the specifications of the
computer hardware available, hence the number of
matches would be lower.
When audio is compressed to lossy formats such

as MP3 and lower bitrates, audio data can be lost.
The test was used to determine if the prototype
could still accurately identify the unknown sample
with the songs in the database, when the unknown
sample is compressed to various bitrates of the MP3
audio format. From the results in Table 1, the
Shazam-based algorithm was able to accurately iden-
tify the unknown samples at different compression
rates. It was observed that at very low bitrates such
as 64 Kbps, the confidence of the match dropped
significantly as compared to a sample at 320 Kbps,
however, it was still able to identify the song cor-
rectly with a relatively high confidence compared to
other songs in the library.

Table 1 Robustness test using compression (Shazam)

Compressed Sample query Successful match No. of matches

Sample at 320 Kbps Yes 812

Sample at 192 Kbps Yes 767

Sample at 128 Kbps Yes 796

Sample at 96 Kbps Yes 471

Sample at 64 Kbps Yes 288

Table 2 Robustness test using compression (ORB)

Compressed Sample query Successful match No. of matches

Sample at 320 Kbps Yes 169

Sample at 192 Kbps Yes 181

Sample at 128 Kbps Yes 184

Sample at 96 Kbps Yes 170

Sample at 64 Kbps Yes 126

Fig. 6 Noise test for robustness (Shazam vs ORB). In this figure, the experiment involved testing the ability to accurately identify the audio sample
when it is subjected to the addition of noise. In the real world, this is a common case. Additive white Gaussian noise was added which would be
used to simulate background noise. The similar test setup was done where a 20-s clip was taken from each song in the database, and the various
degrees of noise were added to each sample and then tested for each system. It was seen that the Shazam algorithm was very robust to the noise as seen
in the results. This would be due to the peaks being acquired using the spectrogram data in the audio fingerprinting extraction process. The peaks obtained
will be more likely to survive the effects of noise as the song’s frequencies (from the audio sample) would have a higher amplitude when compared to the
amplitude of frequencies of the noise. It was seen that the Shazam’s algorithm performed better in comparison to the ORB prototype although the ORB
prototype performed well to an extent
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The results from both tests were expected from research,
as it was seen that when compression increased, the audio
data lost increases and hence the confidence would de-
crease as a result. However, compression should not result
in significant loss of audio data to cause mismatch to occur.
For the Shazam method, a relatively high accuracy was
maintained for sample rates between 128 and 320 Kbps as
the number of matches were generally high for these com-
pression rates. At 96 and 64 Kbps, the songs matched ac-
curately but the number of matching hashes dropped by
almost half for each of the lower bitrates.
The ORB prototype was then tested, and the results

shown in Table 2. The compressed audio samples were
converted to their respective spectrogram images and
were analyzed. From the results, it was seen that the
confidence was relatively high for most tested samples.
A relatively high accuracy was maintained for sample
rates between 96 and 320 Kbps as the number of
matches were generally high for these compression rates.
The sample compressed at 64 Kbps had the lowest con-
fidence but still had a high amount of matches com-
pared to other songs in the library.

4.2.2 Reliability
Firstly, a test was done where a random 20-s sample was
taken for each song and was queried to determine if they
match correctly. The results were used to determine if
the system accurately returns the correct match for each
sample. All samples matched correctly with the songs in
the database.
Next, an example of a random 20-s sample clip from a

song in the database was used to compute its match
compared to the matches found in other songs in the
database. This was used to show the difference between
the number of matches of the correct song match to
other songs in the database. The similarity for the
Shazam-based algorithm is shown in Fig. 7.
Based on these results the variance and hence the

standard deviation was determined to measure how
spread out the numbers are from the mean. The follow-
ing equation shows the variance for the t-distribution
since N is the number of songs in the library.

s2 ¼
X

X−μð Þ2
N−1

ð10Þ

where,

s2−variance
μ−the average
X−the values from the graph

N−the number of terms in the distribution

Hence, the standard deviation, s is,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

X−μð Þ2
N−1

s
ð11Þ

The variance was determined to be 26500.38, and the
standard deviation is simply the square root of the vari-
ance. Therefore, the standard deviation for the Shazam
method was 162.79. The standard deviation is large
which means that the matches of the other songs in the
database were small.
The same test involving a random 20-s sample being

used to query the database was done to show its similar-
ity of the actual match to other songs in the library. The
similarity is shown in Fig. 8 for the ORB prototype.
Similar to the Shazam method, the variance and there-

fore, the standard deviation were calculated for the ORB
results from Fig. 8. The Eqs.10 and 11 were used to cal-
culate the variance and standard deviation, respectively.
The variance for the ORB method results was calculated
to be 1113.58, and the standard deviation was calculated
as 33.37. The standard deviation is large which means
that the matches of the other songs in the database were
very small.
From experimentation, it was seen that when a ran-

dom 20-s sample clip was taken from each song in the
database and queried using both algorithms, all samples
were accurately identified. In addition, a test was done
to show and compare the number of matches a query
had to each song in the library. This resulted in a signifi-
cant difference in the number of matches of the actual
song match compared to the number of matches for
other songs in the database. In Fig. 7, a random sample
clip was taken and queried using the Shazam algorithm.
Results showed that the number of matches for the cor-
responding song was large compared to the matches of
the query found in other songs in the database. This jus-
tified the reliability of the Shazam algorithm.
The ORB method was tested similarly, where the gen-

erated spectrogram image of the same random 20-s sam-
ple clip was queried to the database and the amount of
matches for each song was shown in Fig. 8. It was also
seen from results that the corresponding song identified
had the most amount of matches when compared to the
matches found in other songs in the database. Based on
the results, both algorithms were reliable in the identifi-
cation of songs correctly.
For the Shazam method, the variance was determined

to be 26500.38, and the standard deviation was 162.79.
Similar to the Shazam method, the variance and there-
fore the standard deviation were calculated for the ORB
results. The variance for the ORB method results was
determined to be 1113.58, and the standard deviation
was calculated as 33.37. The standard deviation for both
methods was large which confirmed that the matches of
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the other songs in the database were very small com-
pared to the actual match.

4.2.3 Scalability
The system was tested for scalability to measure the size
of the songs to the size of the database. The songs for
the database were shown for MP3 and WAV formats.
The Shazam-based audio fingerprint database consisted
of the analyzed audio fingerprints of the songs using the
algorithm developed. The ORB image database comprised

of the spectrogram images of the song database. Table 3
compares the sizes of the songs for the database, the
Shazam-based audio fingerprint database and the ORB
image database.
This experiment involved the comparison of the vari-

ous aspects of storage associated with the database and
the actual audio files themselves. The storage was mea-
sured for the music files in both WAV and MP3 formats.
The Shazam database’s size was also measured which is
based on the MySQL database consisting of two tables:

Fig. 8 Test for similarity of unknown sample to songs in the database (ORB). In this figure, it was seen that a random 20-s sample clip was taken
from a song in the database and queried using the ORB prototype. This test was done to show and compare the number of matches the query
had to each song in the library. Results showed that the number of matches for the corresponding song was large compared to the matches of
the query found in other songs in the database. This justified the reliability of the ORB prototype

Fig. 7 Test for similarity of unknown sample to songs in the database (Shazam). In this figure, it was seen that a random 20-s sample clip was
taken from a song in the database and was queried using the Shazam algorithm. This test was done to show and compare the number of matches
the query had to each song in the library. Results showed that the number of matches for the corresponding song was large compared to the matches
of the query found in other songs in the database. This justified the reliability of the Shazam algorithm
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the fingerprint table and the song table. The size of the
ORB prototype’s database was also measured which in-
volved the storage of the spectrogram images of the
songs in a folder.
From the results in Table 3, it was seen that the

Shazam algorithm and the ORB algorithm both had
similar database storage sizes with the ORB database be-
ing slightly larger. The reason for the size of the Shazam
database being larger than the mp3 songs themselves
would be because of the system design extracting and
creating a large number of audio fingerprints for each
song. The more the audio fingerprints, the higher the ac-
curacy of the matching process. The reason for the ORB
method having a large database is because the resolution
of the spectrogram images in the database has to be high
in order to properly determine the features to compare
to the query for matches. The higher the resolution, the
more details of the image are retained. The lower the
resolution, the more data is lost due to image compres-
sion. The optimum resolution used was 3600 × 2700 pixels
to maintain accuracy due to compression. This resolution
was set experimentally due to the trade-off between pro-
cessing time and accuracy based on the available hardware
used for testing.

4.2.4 System speed
The speed of the system was measured to determine the
time taken for the songs to be fingerprinted. For the
Shazam-based algorithm, it took approximately 1147 s
(approximately 19 min) to fingerprint the songs, while it
took approximately 1489 s (approximately 25 min) to
generate the spectrogram images for the songs for the
image library. These results were based on the available
hardware used for testing at the time. In addition, the
time taken for a query to be searched and matched was
also tested. This was done for libraries of songs. Figure 9
shows these results for the Shazam-based and ORB-
based algorithms.
This experiment involved the time taken for the un-

known sample to be queried and matched to the songs
in the database. The test was done so that database size
would be different sizes. Also, it was noted that the time
taken to fingerprint the library of songs for both
methods were also taken. The Shazam algorithm took

approximately 1147 s while the ORB method took ap-
proximately 1489 s.
From the graph in Fig. 9, the Shazam algorithm results

showed an approximately linear relationship, although
five songs took a shorter time to for the audio sample to
be queried. In Fig. 10, the ORB results were also linear,
but it was seen that it had a larger time difference for
the query process to be executed as the song library
increased. This would be due to the images processing
aspect relating to OpenCV’s ORB library and the Brute-
Force Matcher taking some time to process the image. It
was seen that for smaller libraries, the ORB method
worked better but for very larger libraries, the Shazam’s
audio fingerprinting method may be more efficient.
Hence, the Shazam method may be suitable for very
large databases whereas the ORB method may be better
suited for smaller databases.

4.2.5 Granularity
Analyzing granularity involved testing the minimum
length of the audio sample used to query the database
for a correct match. Audio samples were used for a
range of time intervals for the Shazam-based algorithm.
The spectrogram images were generated for the same
time intervals to test the ORB prototype. Table 4 shows
the results.
This experiment investigated an example of the mini-

mum time for each algorithm to accurately identify the
query for various lengths of the audio sample. From the
results, the Shazam algorithm accurately matched the
sample audio when it was a minimum length of 2 s.
However, the confidence was not as high as the number
of matches the 15- or 20-s clip would typically have.
This was so because the shorter the sample clip, the less
the audio would be available to be fingerprinted, and
therefore fewer fingerprints would be extracted and
matched.
The ORB prototype was able to accurately identify an

audio sample with a minimum of 10 s in length. This
would be due to the shorter audio samples producing
smaller spectrogram images, which would mean that
there are less features to be detected and matched. The
Shazam algorithm generally produced better results for
this experiment and hence fine granularity. The finger-
print extraction method of the Shazam method entails
the use of the raw spectrogram data to compute the
audio fingerprints. The ORB method uses the spectro-
gram images, where the data is limited by the resolution
of the image (compression). This is where the Shazam
method would produce better scores as a result.
The tests were successfully executed and results were

seen to justify the research done. Also, some tests com-
pared the two algorithms performance.

Table 3 Measurement of storage sizes for both algorithms

Audio information
category for database

Total storage
(size in MB)

Average storage for
each song (size in MB)

WAV 1062 42.48

MP3 241 9.64

Shazam-based database 309 12.36

ORB-based database 364 14.56
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Fig. 9 Graph of time taken for query to search and match songs in database (Shazam). In this figure, results were shown for the time taken for a
query to be searched and matched. This was done for libraries of songs. This was done for the Shazam algorithm. The results showed an approximately
linear relationship, although five songs took a shorter time to for the audio sample to be queried

Fig. 10 Graph of time taken for query to search and match songs in database (ORB). In this figure, results were shown for the time taken for a query
to be searched and matched. This was done for libraries of songs. This was done for the ORB prototype. The results showed a linear relationship, but it
was seen that it had a larger time difference for the query process to be executed as the song library increased
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5 Conclusions
In this paper, a robust audio identification technique was
proposed and compared to the Shazam method [7]. As
proven in [9], the ORB method is more computationally
efficient and faster than the SIFT method as proven by
Rublee et al. [9]. As it was extensively proven by Rublee et
al. [9], the computational efficiency for ORB was superior
to that of SIFT with comparable accuracy. The consider-
ation of testing the Shazam method for comparison [7]
was due its current prevalence in the industry. Using a
spectrogram image, the ORB descriptor was used to ex-
tract the audio signal features and a Brute-Force Matcher
was used to match the sample query with the database.
The main focus of this work was to highlight the robust-
ness of this algorithm in terms of speed, pitch, tempo, and
noise and to compare to the Shazam algorithm. Further
experiments were conducted to determine the perform-
ance of the algorithms on softer metrics such as compres-
sion, reliability, granularity, scalability, and system speed.
The results of performance were comparable and bet-

ter than the Shazam algorithm for all robustness tests
including noise distortion, pitch shifting, time stretching,
and time scaling. The match rates were generally high
and maintained exceptional performance compared to
the Shazam algorithm for the tested distortion ranges. It
was also noted that the both algorithms performed simi-
larly using other metrics such as compression, reliability,
granularity, scalability, and system speed.
Further work can be done to improve to the efficiency of

data storage and retrieval using the ORB method. The ORB
implementation in this paper is an experimental prototype
used to achieve audio identification based on the spectrogram
image. Improvement in the overall performance can be inves-
tigated to increase computational efficiency and accuracy of
the algorithm. This method resulted in similar accuracy with
a larger dataset when tested. However, due to limited re-
sources and time, further tests can be done using a larger
database with the inclusion of the various distortions.
Other image processing techniques may be investi-

gated to be implemented such as image thresholding

and filtering to enhance features of the spectrogram
image so that even if the image is further compressed,
the features would still be apparent. The ORB prototype
can also be improved in order to retain the robust
features while recording the sample for query using the
microphone as quality may be lost this way and would
affect the spectrogram image. Since initial experiments
conducted used the Brute-Force matching method, other
more efficient matching methods can be investigated for
the comparison of spectrogram images (e.g., nearest
neighbor, histogram comparison). This would be a novel
and innovative approach to audio fingerprinting.

6 Endnotes
The experimental setup included the available com-

puter hardware which was a 1.7 GHz Intel i5 processor
with 4 GB RAM. The software environment used was
Python 2.7 and OpenCV 3.0 (for ORB) on a Linux sys-
tem. The program and various tests were coded and exe-
cuted using Python script modules.
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Table 4 Test for granularity of Shazam and ORB prototypes

Sample query
length (seconds)

Shazam-based algorithm ORB-based algorithm

Successful match No. of matches Successful match No. of matches

1 s No – No –

2 s Yes 66 No –

3 s Yes 77 No –

4 s Yes 123 No –

5 s Yes 145 No –

10 s Yes 240 Yes 59

15 s Yes 308 Yes 131

20 s Yes 816 Yes 166
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