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Speech intelligibility improvement in noisy
reverberant environments based on speech
enhancement and inverse filtering
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Abstract

The speech intelligibility of indoor public address systems is degraded by reverberation and background noise. This
paper proposes a preprocessing method that combines speech enhancement and inverse filtering to improve the
speech intelligibility in such environments. An energy redistribution speech enhancement method was modified for
use in reverberation conditions, and an auditory-model-based fast inverse filter was designed to achieve better
dereverberation performance. An experiment was performed in various noisy, reverberant environments, and the
test results verified the stability and effectiveness of the proposed method. In addition, a listening test was carried
out to compare the performance of different algorithms subjectively. The objective and subjective evaluation results
reveal that the speech intelligibility is significantly improved by the proposed method.
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1 Introduction
An indoor public address (I-PA) system is a sound amp-
lification system that is widely used in auditoriums,
classrooms, factories, and conference rooms. However,
its speech intelligibility is often degraded due to near-
end [1] reverberation and background noise [2]. There-
fore, it is desirable to find an effective way to improve
the speech intelligibility in such environments.
Reverberation is caused by wall reflections that distort

the sound transmission channel [3], while background
noise degrades the speech intelligibility through noise
masking [4]. Thus, methods for improving speech intelligi-
bility can be broadly classified into two categories. The first
focuses on compensation for transmission channel distor-
tion [3, 5–12], and the other category focuses on noise sup-
pression and speech enhancement. In the first category,
sound transmission in enclosed spaces is regarded as a lin-
ear time invariant (LTI) system [5, 6], so the output re-
sponse of the system can be expressed as the convolution
of the input signal and room impulse response (RIR).

Therefore, the influence of reverberation can be eliminated
by realizing the inverse of an RIR [3]. However, this inverse
will be either unstable or acausal since the RIR is generally
considered a nonminimum phase function [7].
In the first research on this problem [5], Neely realized a

stable and causal inverse filter through decomposition of
the RIR into the minimum phase and all-pass phase. This
inverse filter can basically eliminate the distortion caused
by wall reflections. An adaptive equalization (A-EQ)
method [6] was later proposed to compensate for the dis-
tortion of the room frequency response. The equalizer
could minimize the square errors between the target re-
sponse and input signal adaptively, but the method was
very sensitive to peaks and notches for the room responses.
Based on Neely’s method, a new equalization method was

proposed by combining a vector quantization method with
an all-pole room transfer function (RTF) model to reduce
the effects of the reverberation by using a lower equalizer
order [7]. However, this approach is based on an approxi-
mation of the RTF, so the exact solution of the inverse filter
cannot be obtained. Kirkeby and Nelson proposed a fast in-
verse filtering (FIF) method for designing single or multi-
channel sound reproduction systems [8–10]. This method
uses the principles of least squares optimization to obtain a
stable and causal inverse filter, as well as regularization, to
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realize fast deconvolution. Although this method needs to
use relatively long inverse filters, the algorithm has higher
accuracy and fast deconvolution speed. Therefore, this algo-
rithm has received much attention and is still used in
current equalization methods.
Based on this algorithm, a warped domain equalization

(W-EQ) method was proposed to improve the listening
experience [12]. This method uses the bark scale, which
is related to auditory perception and low-frequency re-
sponse equalization and produces a better listening ex-
perience than other equalization methods [6, 13, 14].
However, the bark scale is not an auditory model and
cannot simulate the frequency response characteristics
of the basilar membrane in the cochlea. Moreover, these
equalization methods do not account for the influence
of background noise on speech intelligibility.
Increasing the playback level is one clear solution to

improve the speech intelligibility in the event of back-
ground noise. However, it is impossible to increase the
output level indefinitely due to the limited power output
of loudspeakers and the pain-threshold pressure limita-
tion of the ear [1]. In addition, in the case of I-PA sys-
tems, the listener is located in a noisy environment, and
the noise reaches the ears without any possibility of
intercepting it beforehand [15]. Therefore, a preprocess-
ing speech enhancement method without increasing the
output power would be more suitable for use with I-PA
systems [16, 17].
An energy redistribution voiced/unvoiced (ERVU)

method was proposed to improve intelligibility without
increasing the output power [16]. The method redistrib-
utes more speech energy to the transient regions to
reinforce speech signals. A perceptual distortion meas-
ure (PDM)-based speech enhancement (PDMSE)
method was proposed [17] based on the ERVU method
and the PDM algorithm [18]. Compared with the ERVU
method, the PDMSE method can further improve
speech quality without decreasing intelligibility. How-
ever, these methods do not consider the influence of re-
verberation on speech intelligibility.
In recent years, only a few studies have considered

the effects of reverberation and background noise
simultaneously [19–22]. Some methods just use the
near-end speech enhancement method to reduce the
influence of both reverberation and background noise
[19, 20]. Other methods pre-compensate the output
speech by obtaining the optimal solution of the estab-
lished mathematical model to improve intelligibility
[21, 22]. Crespo and Hendriks [21] proposed a multi-
zone speech reinforcement method based on a gen-
eral optimization framework. The signal model
considered the influence of RTF on intelligibility in
noisy environments, and the effectiveness of this ap-
proach was verified by simulation.

Hendriks et al. [22] proposed an approximated speech
intelligibility index (ASII) method to improve the speech
intelligibility in a single-zone scenario. Unlike the Multi-
zone method [21], the ASII method uses a speech intelli-
gibility index to establish a mathematical model that
includes late reverberation and noise. The optimal solu-
tion of the mathematical model is used to preprocess
the output speech to improve intelligibility. Although
the Multizone and ASII methods could improve the
speech intelligibility in noisy and reverberant environ-
ments, the distortion of the speech transmission channel
and the auditory features of the human ear were not
considered at the same time during the signal prepro-
cessing. Therefore, the Multizone and ASII methods do
not fundamentally compensate the distortion of the
transmission channel, and the dereverberation perform-
ance is quite limited.
This paper proposes a new preprocessing method for

improving speech intelligibility by a combination of the
PDMSE method and the FIF method. The PDMSE
method was modified for reverberant environments,
and a new Gammatone (GT)-filter-based FIF method
was designed to achieve better equalization and dere-
verberation performance. Compared with the A-EQ,
W-EQ, and FIF equalization methods, the GT-filter-
based FIF method can further decrease the distortion of
the transmission channel. Compared with individual
FIF and PDMSE methods, the improved combination
method has better stability and higher speech quality.
Furthermore, compared with the multizone and ASII
methods, the combination method can significantly
improve the speech intelligibility in different noisy and
reverberant environments.
To validate the method, an experiment was performed

in real environments with various noise and reverber-
ation conditions. The speech transmission index, spec-
trogram, log-spectral distortion measure, short-time
objective intelligibility measure, and modified rhyme test
were used to compare the performance. The objective
and subjective evaluation results illustrate that the
method can effectively improve the speech intelligibility
of I-PA systems in noisy and reverberant environments.
The remainder of the paper is organized as follows.

Section 2 describes the algorithm in detail. Section 3
describes the experimental design and hardware setup.
Section 4 presents the test results of the evaluations, and
Section 5 concludes the paper.

2 Proposed speech intelligibility improvement
algorithm
The overall scheme of the proposed method is shown
in Fig. 1. Initially, the input signal s (n) is captured,
and a time-frequency (TF) decomposition and GT fil-
ter are applied to obtain the short-term clean speech
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frame sm,i. sm,i is then sent to the voice activity detection
(VAD) module and to the preprocessing and synthesis
module. The VAD module is applied to obtain the posi-
tions of the active voice in speech signals and prepare the
detection information for the PDMSE algorithm.
In the block for speech preprocessing and synthe-

sis, a modified PDMSE method is used in the speech
enhancement stage to increase the energy of transi-
ent speech. Next, a GT-filter-based FIF method is
used in the equalization stage to pre-compensate the
distortion of the transmission channel. The final pre-
processing and synthesis signal sout (n) is used as an
input for the loudspeaker to broadcast. The distor-
tion signal ε (n) is then recorded by a microphone,
and TF decomposition and GT filtering are once
again performed to obtain the short-term distortion
frame εm,i.
The power spectral density (PSD) estimation module

is next applied to estimate the energy of background
noise. Finally, the gain function α is calculated by the
PDMSE algorithm, and the inverse sub-filters vi are
obtained by the GT-filter-based FIF algorithm. Both
parameters are used to adjust the preprocessing speech
signal to obtain the best speech intelligibility. Further-
more, based on the method by Meng et al. [23], a sine
sweep signal with a length of 10 s is used as an excita-
tion signal to obtain the RIR in advance to calculate the
inverse filter.
Three modules in the block diagram of Fig. 1 are

mainly discussed in the next sections. Section 2.1 gives
the description of the PDMSE algorithm module.
Section 2.2 discusses the GT-filter-based FIF algorithm
module, and Section 2.3 presents the block for speech
preprocessing and synthesis.

2.1 Improved preprocessing speech enhancement
In the PDMSE algorithm, the PDM model plays an im-
portant role because it is more sensitive to transients
than the spectral-only model. Furthermore, it can detect
tiny differences between the input signal and the mea-
sured signal within a short time frame (20–40 ms). The
PDM is a kind of TF decomposition method based on
the spectro-temporal auditory model. The distortion
measure D(s,ε) can be described simply by summing all
the individual short-term distortion frames εm,i [17]:

D s; εð Þ ¼
X
m;i

d sm;i; εm;i
� �

; ð1Þ

where, sm,i is the clean speech passed through the GT
filter, which can be represented as a convolution of the
impulse response of the ith GT filter gi and the mth short-
term frame of clean speech sm, that is, sm, i = sm ∗ gi. The
GT filter is described in Eq. (8) of Section 2.2. Similar to
the definition of sm, i, the decomposed short-term distor-
tion frames εm, i can also be represented as εm, i = εm ∗ gi.
The target of the PDM model is to minimize D(s, ε) in

Eq. (1) under the constraint of constant energy of the
modified speech. This is accomplished using a gain func-
tion α to adjust the input speech signal s. The Lagrange
multiplier method is then used to establish a cost
function:

J ¼
X
m;if g∈γ

E d αm;ism;i; εm;i
� �� �

þ λ
X
m;if g∈γ

αm;ism;i

�� ��2−r
0
@

1
A; ð2Þ

where γ is the set of speech-active TF units

Fig. 1 Overall scheme of the proposed approach
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obtained from the VAD algorithm, and ‖⋅‖ repre-

sents normalization. λ denotes a Lagrange multi-

plier. r ¼
X

fm;ig∈γ
kαm;ism;ik2 is related to the power

constraint. The power constraint can be used to sat-
isfy the constraints of the loudspeaker output power
or to overcome hearing discomfort due to loud
sounds [22].
By minimizing Eq. (2), the gain function α can be

solved using the following equation:

α2m;i ¼
rβ2m;iX

m0
;i
0f g∈A

β2m0;i0 sm0;i0
�� ��2 ; ð3Þ

where

βm;i ¼
E d sm;i; εm;i

� �� �
sm;i

�� ��2
 !1=4

: ð4Þ

The expected value E[d(sm, i, εm, i)] in Eq. (4) can be
expressed as follows:

E d sm;i; εm;i
� �� � ¼X

n

E εm;i

�� ��2h i
� hs

� 	
nð Þ

sm;i

�� ��2�hs� 	
nð Þ

; ð5Þ

where hs is a smoothing low-pass filter. According to
previous assumptions [17], the noise PSD within the
frequency range of an auditory band is regarded as a “flat”
spectrum, so the noise within an auditory band can be
simply represented as εm, i = (wmNm, i) ∗ gi, where wm and
Nm,i are the window function and zero mean, respectively.
Based on the central limit theorem, the stochastic process

with variance can be represented as E½N2
m;iðnÞ� ¼ σ2m;i , ∀n.

By combining this statistical model and the numerator of
Eq. (5),

E εm;i

�� ��2 nð Þ
h i

¼ g2i � w2
m

� �
nð Þσ2

m;i: ð6Þ

In the PDMSE method, σ2m;i denotes the PSD estima-
tion of noisy speech. The noise PSD estimation by
Hendriks et al. [24] does not consider the influence of
reverberation, resulting in overestimation of the noise
PSD in noisy reverberant environments [25]. Therefore,
in this modified version of the PDMSE method, the PSD
estimation was modified based on Faraji and Hendriks’
work [25] and made to be applicable in such environ-
ments. The average PSD within an auditory filter is then
calculated as the PSD estimation results. As the final
step, an exponential smoother for the gain function αm, i

is described by the following equation:

α_m;i ¼ 1−0:9ð Þαm;i þ 0:9α_m−1;i; ð7Þ

which is used to prevent the generation of “music noise”
during the signal processing.

2.2 Improved fast inverse filtering
The FIF method is used to achieve an “inverse filter” (an
equalizer) of the RIR. Taking into account the sensitivity
of the human ear to different frequencies [26], a FIF
method based on GT filters was designed to achieve
suitable dereverberation and equalization performance
for human auditory characteristics. In contrast to the 1/
3 octave and the bark scale, the GT filter is a kind of
auditory filter that can simulate the characteristics of the
basilar membrane [18]. The central frequencies of the
GT filter banks are distributed in a quasi-logarithmic
form and are evenly distributed in the frequency range
of the speech signal based on the equivalent rectangular
bandwidth (ERB). The ERB is a measure used in psycho-
acoustics and approximates the bandwidths of the filters
in human hearing [27]. The GT filter banks can be rep-
resented as follows in the form of an impulse response
in the time domain [28]:

g tð Þ ¼ ctn−1e−2πbt cos 2π f 0t þ ϕð Þ; t > 0; ð8Þ

where f0 is the central frequency of the GT filter banks
and c is a constant for controlling the gain. n is the filter
order, which is usually set as 4 to simulate the auditory
response of human ears accurately [29]. ϕ is the phase
of the filter, which can usually be ignored, and b is the
decay factor, which can be obtained using the central
frequency f0 as follows:

b f 0ð Þ ¼ 1:019� 24:7þ 0:108 f 0ð Þ: ð9Þ

For the single-input-single-output (SISO) system, the RIR
between the loudspeaker and receiver point contains all the
information of the sound transmission channel. The GT
filter banks were used to decompose the RIR h to obtain
the sub-filters, which are based on the auditory model; that
is, hi = h ∗ gi, where gi denotes the ith GT filters and hi
denotes the decomposed ith sub-filters. In this process, a
total amount of 40 sub-filters are decomposed in the
frequency range of 125 to 8000 Hz. The Fast Fourier trans-
form (FFT) is then performed on the decomposed ith
sub-filters to obtain the ith frequency response Hi(k) of
these sub-filters.
Since each sub-filter contains Nh coefficients, the FFT’s

length is set to be equal to the next power of two from
Nh in this algorithm. Because the human ear is not
sensitive to the phase [30], only the room magnitude
response |Hi(k)| equalization is considered in the process
of equalization. The ith frequency domain inverse filter
Vi(k) is the following:
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V i kð Þ ¼ H�
i kð Þ

Hi kð Þj j2 þ β
; ð10Þ

where H�
i ðkÞ denotes the complex conjugate of Hi(k)

and β is a regularization index that is used to control the
power output of the inverse filter [8].
The time-domain inverse sub-filters vi(k) are deter-

mined by computing the inverse FFT of the ith fre-
quency domain inverse sub-filters Vi(k). A “cyclic shift”
of the inverse FFT is used to implement a modeling
delay [7] to obtain causal and stable time-domain inverse
sub-filters. Since finite impulse response (FIR) filters are
used to replace the length of the “true” inverse sub-
filters during the computation, the window function is
used for vi(k) to suppress aliasing in the time domain.

2.3 Synthesis of preprocessing speech signals
In the speech enhancement stage, the signal is decom-
posed into 40 ERB-spaced filters between 125 and
8000 Hz. For accurate combination of the two preprocess-
ing stages, the same decomposition is also performed in
the equalization stage. The enhanced speech units αm, ism,

i and the inverse sub-filters vi are obtained by speech en-
hancement and the GT-filter-based inverse filtering
method, respectively. A block diagram of the preprocess-
ing speech frame synthesis is illustrated in Fig. 2.
In the process of speech frame synthesis, the 40

decomposed and enhanced speech units and the 40 in-
verse sub-filters are reconstructed by sub-filter synthesis.

These can be simply represented as xm ¼P40
i¼1αm;ism;i

and v ¼P40
i¼1vi , where xm and v are the enhanced

speech frame and the inverse filter, respectively. The
FFT is then performed on xm and v to realize the fre-
quency domain transform. Therefore, the synthesized
preprocessing speech frame of the frequency domain
can be represented as Ym = Xm ×V, and the inverse FFT
is performed on Ym to obtain the time-domain prepro-
cessing speech frame ym. Finally, the output speech
sout(n) can be represented as follows by overlap addition
of the preprocessing speech frames:

sout nð Þ ¼
Xp
m¼1

ym nð Þ: ð11Þ

Hanning analysis and synthesis windowing are used
with 50% overlap.

3 Experiment implementation
A SISO audio system was established to simulate the
I-PA system and applied in real environments to validate
the proposed algorithm. To obtain data in different noisy
reverberant environments, the experiments were per-
formed using different rooms, types of noise, and signal-
to-noise ratios (SNRs).

3.1 Experimental design
Four rooms with different reverberation times (RTs) were
used to examine the influence of reverberation on speech
intelligibility. The detailed parameters of the rooms are
presented in Table 1. To study the influence of back-
ground noise, an additional omnidirectional loudspeaker
was added near the position of the measuring microphone
to simulate background noise. Four different types of
background noise (white noise, factory noise-I, factory
noise-II, and babble noise) were selected from the NOISE-
92 database as the noise signals [31]. Each type of noise
was divided into six different levels of SNR (− 10, − 5, 0, 5,
10, and 20 dB) to investigate the changes in speech intelli-
gibility under different noise levels.
In this experiment, the volume of the loudspeaker was

adjusted to keep the sound pressure level (SPL) of the
listener position at 60 dB. To simplify the experimental
system, it was assumed that the input speech from the
far end is clear speech without any distortion. Further-
more, clear female speech with a sampling frequency of
16,000 Hz was randomly selected from the TIMIT data-
base [32] as the input signal.

3.2 Hardware setup
Professional acoustic equipment was used to ensure the
accuracy of the test results. Figure 3 shows the layout

Fig. 2 A block diagram of preprocessing speech frame synthesis
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and equipment used in the four different rooms. A
BSWA MPA201 free-field microphone was connected to
a SCIEN ADC 3241 professional sound card through a
BNC connector cable. Two INTERM L-2400 power
amplifiers were also connected to two Brüel & Kjær
high-power omnidirectional sound sources through a
Speakon connector cable. The measurement equipment
used in the experiment has a flat response curve for a
frequency range of 100 to 16,000 Hz. A cell phone was
used as a noise generator to control the output of the
noise source, and a laptop was used to manage the other
equipment.

The speech recording and computing were performed
using MATLAB software. For the hardware layout in each
room, the distance between the sound source and measur-
ing microphone was set between 3 and 5 m based on the
different sizes of the rooms. The noise source was set up
on a different side from the measuring microphone at a
distance of 1.5 m. The sound source, noise source, and
microphone were all installed on a tripod with a relative
distance of 1.5 m from the floor. To ensure the
consistency and validity of the listening test samples, 640
speech signals were selected from the MRT database [33].

Table 1 Information about the four test rooms

Room type Room size (m) Volume
(m3)

Temperature
(°C)

T60
(s)Length Width Height

Anechoic chamber 8.4 7.2 6.0 363 22.7 < 0.08

Small classroom 8.5 7.5 3.2 204 23.2 0.65

Large classroom 12.0 9.0 3.2 346 23.4 1.39

Hall 16.5 11.5 9.0 1708 22.8 3.57

Fig. 3 Equipment layout in four different rooms. a anechoic chamber (T60 = 0.08s), b small classroom (T60 = 0.65s), c large classroom (T60 = 1.39s),
d hall (T60 = 3.57s)
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The signals were tested and saved in this experiment and
later used as the test samples in the subjective evaluation.

4 Experimental results and discussion
A total of 576 conditions were tested in the real environ-
ments (4 noise types × 6 SNRs × 6 algorithms × 4
rooms). For conciseness, only the most representative
experimental results are presented.

4.1 Objective results
Four kinds of measurements were performed to evaluate
and compare the performance of the proposed method
objectively. The speech transmission index was used to
evaluate the dereverberation performance of the GT-filter-
based FIF method. The spectrogram was used to visually
display the changes of speech intelligibility before and
after processing. The log-spectral distortion measure was
used to compare the speech distortion of algorithms
under different noise types, and the short-time objective
intelligibility measure was used to predict and compare
the changes of speech intelligibility of different algorithms.

4.1.1 Speech transmission index
The speech transmission index (STI) is a well-
established objective measurement predictor that is used
to evaluate the speech intelligibility of acoustic transmis-
sion channels [34]. It uses a series of complex calcula-
tions of RIR and values between 0 and 1 to represent the
degree of speech intelligibility. Table 2 presents the
subjective impression of the measured STI values [34].
The STI was used for comparison with previous results
obtained with the FIF method [8], W-EQ method [12],
and A-EQ method [6], as shown in Table 3.
The STI values with no equalized RIR decrease as RT

increases. When RT increases to 3.57 s, the STI value
decreases to 0.4, and the transmission channel is seriously
distorted due to reverberation. However, after equalizing
the RIR by the proposed algorithm, the STI values are
significantly improved. Compared with the other methods
in Table 3, it is clear that the STI values for the proposed
method are always higher than those of the other
equalization or dereverberation methods. These results
prove that the auditory-model-based sub-filter equalization

can further improve the speech intelligibility of the trans-
mission channel under different RT conditions.

4.1.2 Spectrogram
A spectrogram is a visual representation of frequencies of
a sound signal as it varies with time [35]. It uses the distri-
bution of different colors on the image to observe the
changes of the sound signal. The spectrogram was used to
visually demonstrate how noise and reverberation degrade
the speech intelligibility and to compare the differences in
speech intelligibility before and after using the method.
The results are shown in Fig. 4. Compared with Fig. 4a,
the noisy speech in Fig. 4b is masked by the white noise at
an SNR of − 5 dB, resulting in lost speech information
over 2000 Hz. In Fig. 4c, it is clear that the speech signal
becomes blurry because of reverberation. Smearing effects
[36] also occurred at the end of each speech frame, result-
ing in a reduction in speech intelligibility.
Figure 4d shows noisy reverberant speech degraded by

white noise and reverberation simultaneously. The de-
graded speech loses the speech information over
2000 Hz, and the speech information of the remaining
part is quite blurry. Figure 4e shows the speech signals
obtained by the proposed method in a noisy reverberant
environment. Compared with the noisy reverberant
speech in Fig. 4d, the speech frames are independent of
each other without smearing effects after applying the
proposed method. Compared with the clean speech in
Fig. 4a, the processed speech has not lost any important
speech information. Therefore, the comparison results
intuitively show that the proposed method can signifi-
cantly improve the speech intelligibility in noisy rever-
berant environments.

4.1.3 Log-spectral distortion measure
The log-spectral distortion (LSD) is an established and
straightforward speech distortion measure. It computes
the difference of the root-mean-square (RMS) values be-
tween the clean speech and the test signal to show the ex-
tent of distortion of the test signal. The LSD can be used to
evaluate the performance of various speech enhancement
algorithms in a noisy environment and is moderately well
suited for the assessment of dereverberation algorithms in

Table 2 Evaluation standards of STI values according to ICE
60268-16

STI value Subjective intelligibility impression

0.75–1.00 Excellent

0.60–0.75 Good

0.45–0.60 Satisfactory

0.30–0.45 Poor

0.00–0.30 Very poor

Table 3 Comparison of STI values of different methods

Methods R1 R2 R3 R4

No equalized RIR 0.99 0.74 0.56 0.40

FIF method 0.99 0.85 0.79 0.71

W-EQ method 1.00 0.88 0.80 0.73

A-EQ method 0.99 0.81 0.74 0.66

Improved FIF method 1.00 0.92 0.84 0.79

R1, R2, R3, and R4 represent the anechoic chamber (T60 < 0.8 s), small
classroom (T60 = 0.65 s), large classroom (T60 = 1.39 s), and hall
(T60 = 3.57 s), respectively
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cases of reverberation [37]. The LSD was used to measure
the distortion of test signals obtained from the experiment
and is defined as [38]:

LSD lð Þ ¼ 2
N

XN2−1
n¼0

L X l; nð Þf g−L S l; nð Þf gj j2
0
@

1
A

1
2

; ð12Þ

where X (l,n) and S (l,n) are the FFT-based short-time
spectra of the test speech signal and clean speech signal,
respectively. l is the time frame, and n is the length of
the FFT. Each of the frames is set to be 35 ms long, and
Hamming analysis and synthesis windowing are used
with 60% overlap. LfXðl; nÞg ¼ maxf20 log10ðjXðl; nÞjÞ;
δg is the log spectrum confined to a dynamic range of
about 50 dB (δ =maxl, n{20log10(|X(l, n)|)} − 50), and LfS
ðl; nÞg has a similar definition to LfXðl; nÞg . The mean
LSD is obtained by averaging over all frames.

In the LSD evaluation, four types of noise were consid-
ered to validate the proposed algorithm. For each type of
noise, a total of 96 LSD test results were used, including
four kinds of algorithms, as illustrated in Fig. 5. It is
clear that the 3D plots for each type of noise have simi-
lar tendencies in that the LSD values of the FIF method
[8], and the PDMSE method [17] have large fluctuations
with changes in RT and SNR. However, the LSD values
of the proposed method maintain a stable downward
tendency. These results show that the individual FIF and
PDMSE methods cannot reduce the speech distortion
steadily in various SNR and RT conditions, in contrast
to the proposed method.

4.1.4 Short-time objective intelligibility measure
A short-time objective intelligibility measure (STOI) is a
method of obtaining intelligibility scores directly by ana-
lyzing the clean and processed signals [39]. It yields high

Fig. 4 Spectrogram comparison. a clean speech, b noisy speech (SNR = − 5 dB), c reverberant speech (T60 = 3.57 s), d noisy and reverberant
speech (SNR = − 5 dB, T60 = 3.57 s), and e reinforcement and dereverberation speech (SNR = − 5 dB, T60 = 3.57 s)
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correlations with subjective listening results and is usu-
ally used to evaluate the intelligibility of denoised speech
[40]. The objective speech intelligibility is more mean-
ingful than the LSD measure for investigating the effect-
iveness of the proposed method. No unified objective
intelligibility evaluation standards have been designed to
predict distortions caused by additive noise and rever-
beration simultaneously. Nevertheless, we still attempted
to use the STOI measure to predict the changes of
speech intelligibility objectively.
The test data under factory noise-II conditions were se-

lected for the intelligibility prediction of this part. Figure 6
shows that the STOI measures were monotonically de-
creased with increasing RT and decreasing SNR. Com-
pared with the unprocessed speech, the other three
methods significantly improved speech intelligibility under
all test conditions. The performance of the Multizone ap-
proach [21] and ASII approach [22] was almost identical,
and the improvement by the ASII approach was slightly

higher than that of the Multizone approach under long
reverberation conditions. However, compared with these
two methods, the speech intelligibility was further im-
proved by the proposed method.
There is no literature to support that the STOI mea-

sures can be used for the intelligibility evaluation of
reverberant speech [21]. Therefore, the STOI measure
was merely used to predict the intelligibility trends of
different algorithms. However, compared with the results
of the subjective listening test in Section 4.2, it is clear
that the STOI prediction results have highly consistent
trends with the subjective evaluation results. Therefore,
the STOI prediction can be regarded as a meaningful
reference result among the various objective evaluations.

4.2 Subjective results
The modified rhyme test (MRT) [33] was used for
subjective and realistic evaluation of the speech intel-
ligibility in a noise and reverberation environment.

Fig. 5 Log-spectral distortion comparison of algorithms under the different noise types. a speech degraded by white noise, b speech degraded
by factory noise-I, c speech degraded by factory noise-II, d speech degraded by babble noise
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Fig. 6 Comparison results of STOI prediction under different test conditions. a anechoic chamber (T60 = 0.08s), b small classroom (T60 = 0.65s),
c large classroom (T60 = 1.39s), d hall T60 = 3.57s)

Fig. 7 Results of listening test under different RT and SNRconditions. a anechoic chamber (T60 = 0.08s), b small classroom (T60 = 0.65s), c large
classroom (T60 = 1.39s), d hall T60 = 3.57s)
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The MRT database contains a total of 2700 audio
source files, including five males and four females
reading 300 words. The 300 words read by each per-
son are divided into 50 six-word groups of rhyming
or similar-sounding English words, such as “same,”
“name,” “game,” “tame,” “came,” and “fame.” Each
word is a monosyllable of the form consonant-vowel-
consonant (CVC), and the six words in each list differ
in only the leading or trailing consonant. In this
listening test, a total of 640 audio source files (4 RTs
× 4 SNRs × 4 algorithms × 10 groups) were randomly
selected from the database, modified using the four
different of methods, and degraded by factory noise-II
at SNRs of − 10, − 5, 0, and 5 dB in different rever-
beration conditions. This procedure was performed in
the experiment described in Section 3, and the proc-
essed audio files were recorded by a laptop as test
speech for the subjective evaluation.

Eighteen non-native English speakers (including 13
males and 5 females age 23 to 32) were invited to the
listening test. All the listeners were knowledgeable of
the English pronunciation and had no hearing impair-
ments. Importantly, all of the listeners were Master’s
or Ph.D. students with a technical background in
acoustics, and they were familiar with the basic con-
cepts of reverberation and noise. The subjective tests
were carried out in an anechoic chamber to prevent
the effects of background noise and reverberation on
the test speech. The same loudspeaker used in the
experiment was also used in the listening test, and
the volume of the loudspeaker was adjusted to keep
the output SPL within the normal hearing range.
Before the listening test, some training samples

were presented to the listeners to familiarize them
with the test procedure. The audio files were played
randomly for the different algorithms, RTs, and SNRs.

Fig. 8 Comparison results of objective prediction and subjective evaluation. a anechoic chamber (T60 = 0.08s), b small classroom (T60 = 0.65s),
c large classroom (T60 = 1.39s), d hall T60 = 3.57s)

Dong and Lee EURASIP Journal on Audio, Speech, and Music Processing  (2018) 2018:3 Page 11 of 13



Each sentence was played only once, and the listener
had 5 s to choose the right answer from a set of six
alternative words on the response sheet. The intelligi-
bility score of different algorithms under various SNR
and RT conditions was obtained as the mean percent-
age of correct words.
To determine the statistical significance, the confi-

dence intervals were calculated with a significance level
of 0.05. Figure 7 shows the mean scores of the algo-
rithms under the different test conditions and the corre-
sponding confidence intervals as vertical colored blocks
and vertical black lines, respectively. The intelligibility
score of the proposed method has a significant improve-
ment over the unprocessed speech under all test condi-
tions compared with that of the Multizone approach
[21] and ASII approach [22]. It is clear that the proposed
method always has higher intelligibility scores than the
other two approaches. However, the tendency of the
intelligibility score of these two comparison approaches
is not stable, so it is difficult to say which approach is
better. In contrast, the proposed method can steadily
and effectively improve the speech intelligibility in differ-
ent noisy reverberant environments.
To observe the difference between the objective and

subjective evaluation results, the STOI prediction results
and the listening test results were compared at SNRs of
− 10, − 5, 0, and 5 dB conditions, as illustrated in Fig. 8.
The results of the two evaluations had slightly different
numerical values under the same test conditions. How-
ever, it is important that the objective and subjective
evaluation results of different algorithms showed quite
similar trends under all test conditions.

5 Conclusions
A speech preprocessing method that combines the
modified PDMSE and the improved FIF was proposed to
improve the speech intelligibility of I-PA systems in
noisy reverberant environments. The combination
method reduces noise masking by means of speech en-
hancement and eliminates the influence of reverberation
by means of transmission channel equalization. The ex-
perimental results showed that the speech intelligibility
is significantly improved in noisy reverberant environ-
ments by the proposed method.
Compared with individual PDMSE and FIF methods, the

combination method can stably reduce speech distortion
under various noisy reverberant conditions. Furthermore,
the subjective listening tests confirmed the validity and sta-
bility of the proposed method, and its mean intelligibility
score was higher than those of state-of-the-art reference
algorithms. Future work will focus on a method to obtain
RIR in real time under noisy reverberant environments to
realize real-time and steady improvement of speech intelli-
gibility in variable room boundary conditions.
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