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Abstract

Filter banks on short-time Fourier transform (STFT) spectrogram have long been studied to analyze and process
audios. The frameshift in STFT procedure determines the temporal resolution. However, in many discriminative audio
applications, long-term time and frequency correlations are needed. The authors in this work use Toeplitz matrix
motivated filter banks to extract long-term time and frequency information. This paper investigates the mechanism of
long-term filter banks and the corresponding spectrogram reconstruction method. The time duration and shape of
the filter banks are well designed and learned using neural networks. We test our approach on different tasks. The
spectrogram reconstruction error in audio source separation task is reduced by relatively 6.7% and the classification
error in audio scene classification task is reduced by relatively 6.5%, when compared with the traditional frequency
filter banks. The experiments also show that the time duration of long-term filter banks in classification task is much
larger than in reconstruction task.
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1 Introduction
Audios in a realistic environment are typically composed
of different sound sources. Yet humans have no problem
in organizing the elements into their sources to recognize
the acoustic environment. This process is called auditory
scene analysis [1]. Studies in the central auditory sys-
tem [2–4] have inspired numerous hypotheses andmodels
concerning the separation of audio elements. One promi-
nent hypothesis that underlies most investigations is that
audio elements are segregated whenever they activate
well-separated populations of auditory neurons that are
selective to frequency [5, 6], which emphasizes the audio
distinction on the frequency dimension. At the same time,
other studies [7, 8] also suggest that auditory scenes are
essentially dynamic, containing many fast-changing, rela-
tively brief acoustic events. Therefore an essential aspect
of auditory scene analysis is the linking over time [9].
Problems inherent to auditory scene analysis are sim-

ilar to those found in visual scene analysis. However,
the time and frequency characteristic of a spectrogram
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makes it very different from natural images. For example
in Fig. 1, (a) and (b) are two audio fragments randomly
selected from an audio of “cafe” scene. We first calculate
the average energy distribution of the two examples in
the frequency direction, which is shown in (c). And then
the temporal coherence of salient audio elements in each
frequency bin is measured as (d). It is obvious that the
energy distribution and temporal coherence vary tremen-
dously in different frequency bins, but are similar in the
same frequency bin of different spectrograms. Thus for
audio signals, the spectrogram structure is not equivalent
in time and frequency direction. In this paper, we propose
a novel network structure to learn the energy distribution
and temporal coherence in different frequency bins.

1.1 Related work
For audio separation [10, 11] and recognition [12, 13]
tasks, the time and frequency analysis is usually imple-
mented using well designed filter banks.
Filter banks are traditionally composed of finite or infi-

nite response filters in principle [14], but the stability
of the filters is usually difficult to be guaranteed. For
simplicity, filter banks on STFT spectrogram have been
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Fig. 1 Spectrogram examples of “cafe” scene. a, b Two audio fragments randomly selected from “cafe” scene. c The average energy distribution of
the two examples in frequency direction. d The temporal coherence of the two examples in different frequency bins

investigated for a long time [15]. In this case, the time
resolution is determined by the frameshift in the STFT
procedure and the frequency resolution is modelled by
the frequency response of the filter banks. Frequency fil-
ter banks can be parameterized in the frequency domain
with filter centre, bandwidth, gain and shapes [16]. If these
parameters are learnable, deep neural networks (DNNs)
can be utilized to learn them discriminatively [17–19].
These frequency filter banks are usually used to model the
frequency selectivity of the auditory system, but cannot
represent the temporal coherence of audio elements.
DNNs are often used as classifiers when the inputs

are dynamic acoustic features such as filter bank-based
cepstral features and Mel-frequency cepstral coefficients
[20, 21]. When the input to DNNs is a magnitude spec-
trogram, time-frequency structure of the spectrogram
can be learned. Neural networks organized into a two-
dimensional space have been proposed to model the time
and frequency organization of audio elements by Wang
and Chang [22]. They utilized two-dimensional Gaussian
lateral connectivity and global inhibition to parameter-
ize the network, where the two dimensions correspond
to frequency and time respectively. In this model, time is
converted into a spatial dimension, temporal coherence
can take place in auditory organization much like in visual
organization where an object is naturally represented in
spatial dimensions. However, these two dimensions are
not equivalent in a spectrogram according to our analysis.
And what is more, the parameters of the network are set
empirically and not learnable, which is still significantly
dependent on domain knowledge and modelling skill.
In recent years, neural networks with special structures

such as convolutional neural network (CNN) [23, 24] and
long short-term memory (LSTM) [25, 26] have been used
to extract the long-term information of audios. But in both
network structures, the temporal coherence is considered
to be the same in different frequency bins, which is in
contradiction with Fig. 1.

1.2 Contribution of this paper
As shown in Fig. 1, when perceptual frequency scale
is utilized to map the linear frequency domain to the
nonlinear perceptual frequency domain [27], the major
concern comes to be how to model the energy distri-
bution and temporal coherence in different frequency
bins.
To obtain better time and frequency analysis results,

we divide the audio processing procedure into two stages.
In the first stage, traditional frequency filter banks are
implemented on STFT spectrogram to extract frequency
features. Without loss of generality, the parameters of the
frequency filter banks are set experimentally. In the sec-
ond stage, a novel long-term filter bank spanning several
frames is constructed in each frequency bin. The long-
term filter banks proposed here can be implemented by
neural networks and trained jointly with the target of the
specific task.
The major contributions are summarized as follows:

- Toeplitz matrix motivated long-term filter banks:
Unlike filter banks in frequency domain, our proposal
of long-term filter banks spreads over the time
dimension. They can be parameterized with the time
duration and shape constraints. For each frequency
bin, the time duration is different, but for each frame,
the filter shape is constant. This mechanism can be
implemented using a Toeplitz matrix motivated
network.

- Spectrogram reconstruction from filter bank
coefficients: Consistent with the audio processing
procedure, we also divide the reconstruction
procedure into two stages. The first stage is a dual
inverse process of the long-term filter banks and the
second stage is a dual inverse process of the
frequency filter banks. This paper investigates the
spectrogram reconstruction problem using an
elaborate neural network.
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This paper is organized as follows. The next section
describes the detailed mechanism of the long-term fil-
ter banks and the spectrogram reconstruction method.
Then network structures used in our proposed method
are introduced in Section 3. Section 4 conducts several
experiments to show the performance of long-term filter
banks regarding source separation and audio scene classi-
fication. Finally, we conclude our paper and give directions
for future work in Section 5.

2 Long-term filter banks
For generality, we consider in this section a long-term fil-
ter bank learning framework based on neural networks as
Fig. 2.
The input audio signal is first transformed to a sequence

of vectors using STFT [28]; the STFT result can be repre-
sented as X1...T = {x1, x2, ..., xT }. T is determined by the
frame shift in STFT, the dimension of each vector x can be
labelled as N, which is determined by the frame length.
The frequency filter banks can be simplified as a lin-

ear transformation yt =
{
f T1 xt , f T2 xt , ..., f Tmxt

}
, where f k

is the weights of the k-th frequency filter. In the his-
tory of auditory frequency filter banks [29], the rounded
exponential family [30] and the gammatone family [31]
are the most widely used families. We use the sim-
plest form of these two families, triangular shape for the
rounded exponential family and Gaussian shape for the
gammatone family. For triangular filter banks, the band-
width is 50% overlapped between neighbouring filters. For
Gaussian filter banks, the bandwidth is 4σ , where σ rep-
resents the standard deviation in the Gaussian function.
These two types of frequency filter banks are the base-
lines in this paper, respectively named TriFB andGaussFB.
The triangular and gaussian examples distributed uni-
formly in the Mel-frequency scale [32] can be seen
in Fig. 3.

When the number of frequency filters is equal tom, the
long-term filter banks can be parameterized by m linear
transformations. The parameters will be labelled as θ and
discussed in the following part of this section in detail.
The back-end processing modules vary from different

applications. For audio scene classification task, they will
be deep convolutional neural networks followed by a
softmax layer to convert the feature maps to the corre-
sponding categories. However, for audio source separation
task, the modules will be composed by a binary gating
layer and some spectrogram reconstruction layers. We
define them as nonlinear functions fγ . The long-term filter
bank parameters θ can be trained jointly with the back-
end parameters γ using back propagation method [33] in
neural networks.

2.1 Toeplitz motivation
The long-term filter banks in our proposed method are
used to extract the energy distribution and temporal
coherence in different frequency bins which have been
discussed in Section 1. As shown in Fig. 4, the long-term
filter banks can be implemented by a series of filters with
different time durations. If the output of the frequency
filter banks is yt , and the long-term filter banks are param-
eterized as W = {w1,w2, ...,wm}, the operation of the
long-term filter banks can be mathematically represented
as Eq. 1. T is the length of the STFT output, m is the
dimension of yt , which also represents the number of fre-
quency bins, wk is a set of T positive weights to represent
the time duration and shape of the k-th filter. In Fig. 4
for example, wk is a rectangular window with individual
width, each row of the spectrogram is convolved by the
corresponding filter.

zt,k =
T∑
i=1

yi,k ∗ wk,i−t , 1 ≤ k ≤ m (1)

Fig. 2 Long-term filter banks learning framework. The left part of the framework is the feature analysis procedure including STFT, frequency filter
banks and long-term filter banks. The right part is the application examples of the extracted feature map, such as audio scene classification and
audio source separation. Long-term filter banks in the feature analysis procedure and the back-end application modules are stacked into a deep
neural network
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Fig. 3 Shape of frequency filter banks. a The triangular filter banks. b The gaussian filter banks

As a matter of fact, the operation in Eq. 1 is a series of
one-dimensional convolutions along time axis.We rewrite
it using the Toeplitz matrix [34] for simplicity. In Eq. 2, the
tensor �S = {S1, S2, ..., Sm} represents the linear transfor-
mation form of long-term filter banks in each frequency
bin. zk in Eq. 2 is equivalent to {z1,k , z2,k , ..., zT ,k} in Eq. 1.
In this case, long-term filter banks can be represented
as a simple form of tensor operation, which can be eas-
ily implemented by a Toeplitz motivated network layer.
According to [35], Toeplitz networks are mathematically
tractable and can be easily computed.

zk = ŷkSk , 1 ≤ k ≤ m
ŷk = {

y1,k , y2,k , ..., yT ,k
}

Sk =

⎡
⎢⎢⎢⎣

wk,0 wk,−1 · · · wk,1−T
wk,1 wk,0 · · · wk,2−T
...

...
. . .

...
wk,T−1 wk,T−2 · · · wk,0

⎤
⎥⎥⎥⎦ (2)

2.2 Shape constraint
IfW is totally independent, Sk is a dense Toeplitz matrix,
which means that the time duration of the filter in each

frequency bin is T. This assumption is unreasonable espe-
cially when T is extremely large. The long-term correla-
tion should be limited to a certain range according to our
intuition. Inspired by traditional frequency filter banks,
we attempt to use the parameterized window shape to
limit the time duration of long-term filter banks.
In Fig. 4, rectangular shapes with time durations of 3,

2, 1 and 2 frames are utilized as an interpretation. From
the theory of frequency filter banks, triangular and gaus-
sian shapes are also commonly used options. However,
rectangular and triangular shapes are not differentiable
and unable to be incorporated into a scheme of a back-
propagation algorithm. Thus in this paper, the shape of
long-term filter banks is constrained using the Gaussian
function as Eq. 3. The time duration of long-term filter
banks is limited by σk , the strength of each frequency bin
is reconstructed by αk , the total number of parameters
reduces from 2mT in Eq. 2 to 2m in Eq. 3.

wk,t = αk · exp
(

− t2

σ 2
k

)
, 1 ≤ k ≤ m (3)

When we initialize the parameters αk and σk randomly,
we believe that the learning will be well behaved, which

Fig. 4Model architecture of long-term filter banks. Each row of the spectrogram is convolved by a filter bank with individual width. In this sketch
map, time durations of the filter banks in the highest four frequency bins are 3, 2, 1 and 2 frames
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is the so-called “no bad local minim” hypothesis [36].
However, a different view presented in [37] is that the
underlying easiness of optimizing deep networks is rather
tightly connected to the intrinsic characteristics of the
data these models are run on. Thus for us, the initializa-
tion of parameters is a tricky problem, especially when αk
and σk have clear physical meanings.
If σk in Eq. 3 is initialized with a value larger than

1.0, the corresponding Sk is approximately equal to a k-
tridiagonal Toeplitz matrix [38], where k is less than 3.
Thus, if the totally independent W is initialized with an
identity matrix, similar results with limited time dura-
tions should be obtained. Whether it is the Gaussian
shape-constrained algorithm as Eq. 3 or is the totally
independent W in Eq. 2, the initialization of parameters
is important and intractable when adapting to differ-
ent tasks. More details will be discussed and tested in
Section 4.

2.3 Spectrogram reconstruction
In our proposal of learning framework as Fig. 2, STFT
spectrogram is transformed into subband coefficients
after frequency filter banks and long-term filter banks.
The dimension of subband coefficients zt is usually much
less than xt to reduce computational cost and extract sig-
nificant features. In this case, the subband coefficients
are incomplete, perfect spectrogram reconstruction from
subband coefficients is impossible.
The spectrogram vector xt is firstly transformed using

frequency filter banks described at the beginning of this
section. Then long-term filter banks work as Eq. 2 to get
the subband coefficients. Thus the process of the con-
version from spectrogram vector to filter subband coef-
ficients and the dual reconversion can be represented as
Eq. 4. The operation of frequency filter banks f1 can be
simplified as a singular matrix F where the number of
rows is much less than columns. The reconversion process
f −1
1 is approximately the Moore-Penrose pseudoinverse
[39] of F ; this module can be easily implemented using a
fully connected network layer. However, the tensor opera-
tion of long-term filter banks f2 is much more intractable.

zt = f2(f1(xt))

xt = f −1
1

(
f −1
2 (zt)

)
(4)

Without regard to the special structure of Toeplitz
matrix, f −1

2 can be mathematically represented as Eq. 5.
Sk is a nonsingular matrix which has been defined in
Eq. 2. In general, S−1

k is another nonsingular matrix Rk
which can be learned using a fully connected network
layer independently. There are m frequency bins in total,
so m parallel fully connected network layers are needed
and the number of parameters ismT2.

yk = zkS−1
k , 1 ≤ k ≤ m (5)

However, considering that Sk is a Toeplitz matrix, Rk
can be represented in a simple way [40]. Rk is given by
Eq. 6, where Ak , Bk , Âk and B̂k all are lower triangular
Toeplitz matrices given by Eq. 7.

Rk = 1
a1

(
AkBT

k − B̂kÂ
T
k

)
(6)

Ak =

⎛
⎜⎜⎝

a1 0 · · · 0
a2 a1 · · · 0
...

...
. . .

...
an an−1 · · · a1

⎞
⎟⎟⎠ , Âk =

⎛
⎜⎜⎜⎝

0 · · · 0 0
an · · · 0 0
...

. . .
...

...
a2 · · · an 0

⎞
⎟⎟⎟⎠

Bk =

⎛
⎜⎜⎝

bn 0 · · · 0
bn−1 bn · · · 0
...

...
. . .

...
b1 b2 · · · bn

⎞
⎟⎟⎠ , B̂k =

⎛
⎜⎜⎜⎝

0 · · · 0 0
b1 · · · 0 0
...

. . .
...

...
bn−1 · · · b1 0

⎞
⎟⎟⎟⎠

(7)

Note that a and b can also be regarded as the solutions
of two linear systems, which can be learned using a fully
connected neural work layer. In this case, the number of
parameters reduces frommT2 to 2mT .
In conclusion, the spectrogram reconstruction proce-

dure can be implemented using a two-layer neural net-
work. When the first layer is implemented as Eq. 5, the
total number of parameters is mN + mT2. While when
the first layer is represented as Eq. 6, the total number
is mN + 2mT . Experiments in Section 4.1 will show the
difference between these two methods.

3 Training themodels
As described in Section 2, the long-term filter banks we
proposed here can be integrated into a neural network
(NN) structure. The parameters of the models are learned
jointly with the target of the specific task. In this section,
we introduce two NN-based structures respectively for
audio source separation and audio scene classification
tasks.

3.1 Audio source separation
In Fig. 5a, the procedures of STFT and frequency fil-
ter banks in Fig. 2 are excluded from the NN structure
because they are implemented empirically and have no
parameters. The NN structure for audio source separation
task is divided into four steps, in which three steps have
been discussed in Section 2. The layers of long-term filter
banks and inverse of long-term filter banks are imple-
mented respectively as Eqs. 2 and 5, which can be denoted
as h1 and h2. The reconstruction layer is constructed using
a fully connected layer and can be denoted as h4.
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Fig. 5 NN-based structures with proposed method. a The NN structure for audio source separation task. b The NN structure for audio scene
classification task

We attempt the audio separation from an audio mixture
using a simple masking method [41], which can be repre-
sented as the binary gating layer in Eq. 8 and denoted as
h3. The output of this layer is a linear projection modu-
lated by the gates gt . These gates multiply each element of
the matrix Z and control the information passed on in the
hierarchy. Stacking these four layers on the top of input Y
gives a representation of the separated clean spectrogram
X̂ = h4 ◦ h3 ◦ h2 ◦ h1(Y ).

gti = sigmoid
(∑N

j=1 ztjvji
)

oti = ztigti
(8)

Neural networks are trained on a frame error (FE) min-
imization criterion and the corresponding weights are
adjusted to minimize the error squares over the whole
training data set. The error of the mapping is given
by Eq. 9, where xt is the targeted clean spectrogram
and x̂t is the corresponding separated representation.
As commonly used, L2-regularization is typically chosen
to impose a penalty on the complexity of the mapping,
which is the λ term in Eq. 9. However, when the layer
of long-term filter banks is implemented by Eq. 3, the
elements of w1 have definitude physical meanings. Thus,
L2-regularization is operated only on the upper three lay-
ers in this model. In this case, the network in Fig. 5a can
be optimized by the back-propagation method.

ε =
T∑
t=1

‖ xt − x̂t ‖2 +λ

4∑
l=2

‖ wl ‖2 (9)

3.2 Audio scene classification
In early pattern recognition studies [42], the input is first
converted into some features, which are usually defined
empirically by experts and believed to be identified with
the recognition targets. In Fig. 5b, a feature extraction
structure including the long-term filter banks is proposed
to systematically train the overall recognizer in a manner
consistent with the minimization of recognition errors.
The NN structure for audio scene classification task can

also be divided into four steps, where the first layer of
long-term filter banks is implemented using Eq. 2. The
convolutional layer and the pooling layer are conducted
using the network structure described in [43]. In general,
let zi:i+j refer to the concatenation of frames after long-
term filter banks zi, zi+1, ...zi+j. The convolution operation
involves a filter w ∈ Rhm, which is applied to a window of
h frames to produce a new feature. For example, a feature
ci is generated from a window of frames zi:i+h−1 by Eq. 10,
where b ∈ R is a bias term and f is a non-linear function.
This filter is applied to each possible window of frames to
produce a feature map c =[ c1, c2, ...cT−h+1]. Then a max-
overtime pooling operation [44] over the feature map is
applied and the maximum value ĉ = max(c) is taken as
the feature corresponding to this filter. Thus one feature is
extracted using one filter. This model uses multiple filters
with varying window sizes to obtain multiple features.

ci = f (w · zi:i+h−1 + b) (10)

The features extracted from the convolutional and pool-
ing layers are then passed to a fully connected soft-
max layer to output the probability distribution over



Zhang and Wu EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:4 Page 7 of 13

categories. The classification loss of this model is given by
Eq. 11, where n is the number of audios, k is the num-
ber of categories, y is the category labels and p is the
probability distribution produced by the NN structure. In
this case, the network in Fig. 5b can be optimized by the
back-propagation method.

ε =
n∑

i=1

k∑
j=1

yi,j · log(pi,j) + λ

4∑
l=2

‖ wl ‖2 (11)

4 Experiments
To illustrate the properties and performance of long-term
filter banks proposed in this paper, we conduct two groups
of experiments respectively on audio source separation
and audio scene classification. To achieve a fair compar-
ison with traditional frequency filter banks, all experi-
ments conducted in this section utilize the same settings
and structures except for the items listed below.

- Models: The models tested in this section are
different from each other in two aspects. The variants
of frequency filter banks include TriFB and GaussFB,
as described in Section 2. For long-term filter banks,
Gaussian shape-constrained filters introduced in
Section 2.2 are named GaussLTFB and totally
independent filters are named FullLTFB. The
baseline of our experiments has no long-term filter
banks, which is labelled as Null. The initials of the
names are used to differentiate models. For example,
when TriFB and FullLTFB are used in the model, the
model is named TriFB-FullLTFB.

- Initialization: When we use totally independent
filters as the long-term filter banks, two initialization
methods discussed in Section 2.2 are tested in this
section. When the parameters are initialized
randomly, the method is named Random, while when
the parameters are initialized using an identity
matrix, the method is named Identity.

- Reconstruction: When the spectrogram
reconstruction is implemented as Eq. 5, the method
is named Re_inv, while when the reconstruction is
implemented as Eq. 6, the method is named Re_toep.

In all experiments, the audio signal is first transformed
using short-time Fourier transform with a frame length of
1024 and a frameshift of 220. The number of frequency
filters is set to be 64; the detailed settings of NN structures
are shown in Fig. 5. All parameters in the neural network
are trained jointly using Adam [45] optimizer; the learning
rate is initialized with 0.001.

4.1 Audio source separation
In this experiment, we investigate the application of long-
term filter banks in audio source separation task using

the MIR-1K dataset [46]. The dataset consists of 1000
song clips recorded at a sample rate of 16kHz, with
durations ranging from 4 to 13 s. The dataset is then
utilized with 4 training/testing splits. In each split, 700
of the examples are randomly selected for training and
the others for testing. We use the mean average accu-
racy over the 4 splits as the evaluation criterion. In order
to achieve a fair comparison, we use this dataset to cre-
ate 3 sets of mixtures. For each clip, we mix the vocal
and music track under various conditions, where the
energy ratio between music and voice takes 0.1, 1 and 10
respectively.
We first test our methods on the outputs of frequency

filter banks. In this case, the combination of classical
frequency filter banks and our proposed temporal filter
banks work as two-dimensional filter banks on mag-
nitude spectrograms. Classical CNN models can learn
two-dimensional filters on spectrograms directly. Thus we
introduce a 1-layer CNN model as a comparison. The
CNNmodel is implemented as [22], but the convolutional
layer here is composed of learnable parameters, instead of
constant Gaussian lateral connectivity in [22]. This con-
volution layer works as a two-dimensional filter whose
size is set to be 5 × 5, the outputs of this layer is then
processed as Fig. 5a. We use the NN model in [47] and
the one-layer CNN model as our baseline models. For
our proposed long-term filter banks, we test two vari-
ant modules: GaussLTFB and FullLTFB which have been
defined at the beginning of Section 4. For FullLTFB situ-
ation, two initialization methods discussed in Section 2.2
are tested respectively. The three variant modules Gaus-
sLTFB, FullLTFB-Random and FullLTFB-Identity can be
utilized on two types of frequency filter banks TriFB and
GaussFB respectively, thus a total of six long-term filter
banks related experiments are conducted in this part.
Table 1 shows the results of these experiments. From

the results, we can get conclusions as follows. First, the
best results in the table are obtained using long-term filter
banks, which demonstrates the effectiveness of our pro-
posal, especially when the energy of interference is larger
than music. As an example, when we use gaussian fre-
quency filter banks and the energy ratio between music
and voice is 1, the reconstruction error is reduced by
relatively 6.7% by using Gaussian shape-constrained long-
term filter banks. Second, totally independent filters are
severely influenced by the initialization.When the param-
eters are initialized using an identity matrix, the perfor-
mance is close to the Gaussian shape-constrained filters
in this task. However, when the parameters are initialized
randomly, the reconstruction error seems to be unable to
converge effectively. This result has to do with the task
itself, which will be further tested in Section 4.3. Then,
the one-layer CNNmodel improves the performance only
when the energy ratio between music and voice is 0.1,
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Table 1 Reconstruction error of audio source separation using frequency filter banks as input

Init Method
Re_toep Re_inv

M/V = 0.1 M/V = 1 M/V = 10 M/V = 0.1 M/V = 1 M/V = 10

– TriFB-Null 3.49 1.51 0.55 3.49 1.51 0.55

– GaussFB-Null 3.28 1.47 0.58 3.28 1.47 0.58

– TriFB-CNN-1layer 2.85 1.51 0.61 2.85 1.51 0.61

– GaussFB-CNN-1layer 2.91 1.50 0.64 2.91 1.50 0.64

– TriFB-GaussLTFB 2.66 1.38 0.50 3.65 1.80 0.74

– GaussFB-GaussLTFB 2.60 1.39 0.56 3.91 1.67 0.67

Random TriFB-FullLTFB 3.90 41.37 2.28 3.84 1.83 0.78

Random GaussFB-FullLTFB 3.55 1.99 0.86 3.85 1.64 0.66

Identity TriFB-FullLTFB 2.69 1.39 0.52 3.92 1.63 0.62

Identity GaussFB-FullLTFB 2.62 1.39 0.56 3.85 1.51 0.59

M/V represents the energy ratio between music and voice

this can be attributed to the local sensitivity of recon-
struction task. As a matter of fact, the time durations of
long-term filter banks in most frequency bins we learned
here are 1. Thus, the convolution size 5 × 5 is too large.
Finally, Toeplitz inversion motivated reconstruction algo-
rithm performsmuch better than the direct inversematrix
algorithm. When the direct inverse matrix algorithm is
utilized, the performance of our proposal of long-term fil-
ter banks becomes even worse than the frequency filter
banks.
We now test our methods on magnitude spectrograms

as described in [47]. In this situation, long-term filter
banks are used as one-dimensional filter banks to extract
temporal information. The size of magnitude spectro-
grams is 513 × 128. The settings of NN structures in
Fig. 5a are modified correspondingly to adapt to this size.
We also use the NN model in [47] and the 1-layer CNN
model as our baseline models. The three variant modules
GaussLTFB, FullLTFB-Random and FullLTFB-Identity are
utilized on magnitude spectrograms directly in this part.
The results of these experiments are shown in Table 2.

Compared with the results in Table 1, all the conclusions
above remain unchanged. When the energy ratio between
music and voice is 1, the reconstruction error is reduced

by relatively 5.0% by using Gaussian shape-constrained
long-term filter banks, this effect is less obvious than the
result in Table 1. This is because that the information of
magnitude spectrograms is too rich, so the performance of
the simplest NN model is also good. But when the energy
of interference is larger than music, the effectiveness of
our long-term filter banks is obvious.
A direct perspective of the separation results can be

seen in Fig. 6. The figure shows the clean music spec-
trogram (a), mixed spectrogram (b) and the separated
spectrogram (c–e) when the energy ratio is 1. For this
example, (c) is the separated spectrogram from GaussFB-
Null which has been defined at the beginning of this
section, (d) is the separated spectrogram from GaussFB-
GaussLTFB and (e) is the separated spectrogram from
GaussFB-FullLTFB. When compared with (c), the results
of our proposal of long-term filter banks (d) and (e) show
significant temporal coherence in each frequency bin,
which is more approximate to the clean music spectro-
gram in (a).

4.2 Audio scene classification
In this section, we apply the long-term filter banks to the
audio scene classification task. We employ LITIS ROUEN

Table 2 Reconstruction error of audio source separation using magnitude spectrograms as input

Init Method
Re_toep Re_inv

M/V = 0.1 M/V = 1 M/V = 10 M/V = 0.1 M/V = 1 M/V = 10

– Null [47] 2.58 0.99 0.033 2.58 0.99 0.033

– CNN-1layer [22] 2.83 0.96 0.047 2.83 0.96 0.047

– GaussLTFB 2.49 0.94 0.037 2.60 0.95 0.034

Random FullLTFB 2.77 1.12 0.080 2.85 1.03 0.043

Identity FullLTFB 2.50 0.94 0.037 2.82 0.95 0.034

M/V represents the energy ratio between music and voice
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Fig. 6 Reconstructed spectrogram of audio source separation task. The clean music spectrogram in a is randomly selected from the dataset. b The
corresponding music and vocal mixture. c–e The reconstructed music spectrograms from the mixture spectrogram using different configurations

dataset [48] and DCASE2016 dataset [49] to conduct
acoustic scene classification experiments.
Details of these datasets are listed as follows.

- LITIS ROUEN dataset : This is the largest publicly
available dataset for ASC to the best of our
knowledge. The dataset contains about 1500 min of
acoustic scene recordings belonging to 19 classes.
Each audio recording is divided into 30-s examples
without overlapping, thus obtain 3026 examples in
total. The sampling frequency of the audio is
22,050 Hz. The dataset is provided with 20
training/testing splits. In each split, 80% of the
examples are kept for training and the other 20% for
testing. We use the mean average accuracy over the
20 splits as the evaluation criterion.

- DCASE2016 dataset : The dataset is released as Task
1 of the DCASE2016 challenge. We use the
development data in this paper. The development
data contains about 585 min of acoustic scene
recordings belonging to 15 classes. Each audio
recording is divided into 30-s examples without
overlapping, thus obtain 1170 examples in total. The
sampling frequency of the audio is 44,100 Hz. The

dataset is divided into fourfold. Our experiments
obey this setting, and the average performance will be
reported.

For both datasets, the examples are 30 s long. In the
data preprocessing step, we first divide the 30-s exam-
ples into 1-s clips with 50% overlap. Then each clip is
processed using neural networks as Fig. 5b. The classifi-
cation results of all these clips will be averaged to get an
ensemble result for the 30-s examples. The size of audio
spectrograms is 64 × 128. For CNN structure in Fig. 5b,
the window sizes of convolutional layers are 64 × 2 × 64,
64 × 3 × 64 and 64 × 4 × 64, the fully connected lay-
ers are 196 × 128 × 19(15). For DCASE2016 dataset, we
use dropout rate of 0.5. For all these methods, the learn-
ing rate is 0.001, l2 weight is 1e−4, training is done using
the Adam [45] update method and is stopped after 100
training epochs. In order to compute the results for each
training-test split, we use the classification error over all
classes. The final classification error is its average value
over all splits.
We begin with experiments where we train different

neural network models without long-term filter banks on
both datasets. As described at the beginning of Section 4,
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Table 3 Average performance comparison with related works on LITIS Rouen dataset and DCASE2016 dataset

Method
DCASE2016 (%) LITIS Rouen (%)

Error F-measure Error F-measure

TriFB-Null 23.12 76.08 3.76 96.19

GaussFB-Null 22.69 76.56 3.48 96.44

CNN-multilayer [50] 26.45 72.44 4.00 95.80

CNN-1layer [22] 23.29 75.82 2.97 96.91

RNN-Gam [26] – – 3.4 –

CNN-Gam [24] – – 4.2 –

MFCC-GMM [49] 27.5 – – –

DNN-CQT [51] – 78.1 – 96.6

DNN-Mel [53] 23.6 – – –

CNN-Mel [54] 24.0 – – –

our baseline systems take the outputs of frequency filter
banks as input. TriFB and GaussFB are placed in the fre-
quency domain to integrate the frequency information.
Classical CNN models have the ability to learn two-
dimensional filters on the spectrum directly.We introduce
two CNN structures as a comparison. The first CNN
model is implemented as [50], which has multiple convo-
lutional layers, pooling layers, and fully connected layers.
The window size of convolutional kernels are 5 × 5, the
pooling size is 3, the output channels are [8, 16, 23], the
fully connected layers are 196 × 128 × 19(15). Another
CNN structure is the same as the one-layer CNN model
described in Section 4.1, the outputs of this model is then
processed as Fig. 5b.
The results of these experiments are shown in Table 3.

Comparing with other CNN related works, our baseline
models on both datasets achieve gains in accuracy. On
LITIS Rouen dataset, recurrent neural network (RNN)
[26] performs better than our baseline models, because
of the powerful sequence modelling capabilities of RNN.
DNN model in [51] is the best-performing single model
on both datasets, this can be attributed to the lack of train-
ing data and the stability of Constant Q-transform (CQT)

[52] feature representations. On DCASE2016 dataset,
only DNN model using CQT features performs better
than our baseline models. Classical CNN model with
three layers performs almost the same as [24] on LITIS
Rouen dataset, but gets a rapid deterioration of perfor-
mance onDCASE2016 dataset. This can also be attributed
to the lack of training data, especially on DCASE2016
dataset. CNN model with one convolutional layer per-
forms a little better, but still worse than our baseline
models. These results show that the time-frequency struc-
ture of the spectrum is difficult to be learned using
two-dimensional convolution kernels in classical CNN
models. For the two baseline models, GaussFB per-
forms better than TriFB on both datasets, because of
that Gaussian frequency filter banks can extract more
global information. In conclusion, the results of our
baseline models are in line with expectations on both
datasets.
We now test our long-term filter banks on both datasets.

We also test three variant modules in this part: Gaus-
sLTFB, FullLTFB-Random and FullLTFB-Identity. These
three variant modules can be injected into neural net-
works directly as Fig. 5b.

Table 4 Average performance comparison using different configurations on LITIS Rouen dataset and DCASE2016 dataset

Init Method
DCASE2016 (%) LITIS Rouen (%)

Error F-measure Error F-measure

– TriFB-Null 23.12 76.08 3.76 96.19

– GaussFB-Null 22.69 76.56 3.48 96.44

– TriFB-GaussLTFB 22.40 76.79 2.82 97.05

– GaussFB-GaussLTFB 22.15 77.11 2.97 96.91

Random TriFB-FullLTFB 22.67 76.49 3.47 96.35

Random GaussFB-FullLTFB 21.21 78.05 2.96 96.92

Identity TriFB-FullLTFB 23.35 75.69 3.67 96.18

Identity GaussFB-FullLTFB 23.13 75.83 3.21 96.61
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Fig. 7 Validation curves on LITIS ROUEN dataset and DCASE2016 dataset. a, b The proposed methods on LITIS ROUEN dataset. d, e The proposed
methods on DCASE2016 dataset. c The classical CNN nodels on LITIS ROUEN dataset. f The classical CNN nodels on DCASE2016 dataset

Table 4 is the performance comparison on both
datasets. Models with GaussLTFB module perform con-
sistently better than the corresponding baseline models.
Although the performance fluctuates for different vari-
ants, the performance gain is obvious. For FullLTFB situ-
ation, random initialization obtains performance gain on
both datasets, but identity initialization degrades the per-
formance on DCASE2016 dataset. This can be attributed
that in classification tasks, we need to extract a global rep-
resentation of all frames, more details will be discussed in
Section 4.3. On LITIS Rouen dataset, TriFB-GaussLTFB
model performs significantly better than the state-of-
the-art result in [51] and obtains 2.82% on classification
error. On DCASE2016 dataset, GaussFB-FullLTFB model
with random initialization reduces the classification error
by relatively 6.5% and reaches the performance of DNN
model using CQT features in [51], meaning that the
long-term filter banks make up for the lack of feature
extractions.
Validation curves on both datasets are shown in Fig. 7.

After 100 training epochs, experiments on DCASE2016
dataset encounter overfitting problem; experiments on
LITIS ROUEN dataset have almost converged. Figure 7c, e
shows that the performance of classical CNN model
is significantly worse than models with only the fre-
quency filter banks, which is consistent with the
results in Table 3. The performance of one-layer CNN
model is between TriFB and GaussFB models on both

datasets. Figure 7a–e shows consistent results with
Table 4.

4.3 Reconstruction vs classification
In the experiment of audio source separation task, when
the parameters of totally independent long-term filter
banks are initialized randomly, the result seems to be
unable to converge effectively. However, it is completely
the opposite in audio scene classification task.
Figure 8 is an explanation of the unconformity between

the above two tasks. Figure 8a, b is the filters learned on
MIR-1K dataset. At low frequencies, the time duration of
filters are almost equal to 1, only at very high frequen-
cies, the time durations become large. But for Fig. 8c, d
which is learned on DCASE2016 dataset, the time dura-
tion is much larger. It is intuitive that in audio source
separation task, the time duration of the filters is much
smaller than in audio scene classification task, especially
at low frequencies. When the parameters of totally inde-
pendent long-term filter banks are initialized randomly,
the implicit assumption is that the time durations of the
filters is as large as the number of all frames, which is not
applicable. In reconstruction related tasks, for example,
the long-term correlation is much more limited because
our goal is to reconstruct the spectrogram frame by frame.
However, in classification tasks, we need to extract a
global representation of all frames, which is exactly in line
with our hypothesis.
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Fig. 8 Time durations of long-term filter banks in different tasks. a, b The long-term filters learned on MIR-1K dataset. c, d The long-term filters
learned on DCASE2016 dataset

5 Conclusions
A novel framework of filter banks that can extract long-
term time and frequency correlation is proposed in this
paper. The new filters are constructed after traditional
frequency filters and can be implemented using Toeplitz
matrix motivated neural networks. Gaussian shape con-
straint is introduced to limit the time duration of the
filters, especially in reconstruction-related tasks. Then a
spectrogram reconstruction method using the Toeplitz
matrix inversion is implemented using neural networks.
The spectrogram reconstruction error in audio source
separation task is reduced by relatively 6.7% and the classi-
fication error in audio scene classification task is reduced
by relatively 6.5%. This paper provides a practical and
complete framework to learn long-term filter banks for
different tasks.
The former frequency filter banks are somehow interre-

lated with the long-term filter banks. Combining the idea
of these two types of filter banks, future work will be an
investigation on two-dimensional filter banks.
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