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Abstract

In this paper, a novel parametric prosody coding approach for Mandarin speech is proposed. It employs a
hierarchical prosodic model (HPM) as a prosody-generating model in the encoder to analyze the speech prosody of
the input utterance to obtain a parametric representation of four prosodic-acoustic features of syllable pitch
contour, syllable duration, syllable energy level, and syllable-juncture pause duration for encoding. In the decoder,
the four prosodic-acoustic features are reconstructed by a synthesis operation using the decoded HPM parameters.
The reconstructed prosodic features are lastly used in an HMM-based speech synthesizer to generate the
reconstructed speech. Objective and subjective evaluations showed that the proposed prosody coding approach
encoded speech with better quality and lower data rate than the conventional segment-based coding scheme
with vector or scalar quantization approach did. The reconstructed speech encoded by the proposed approach has
good quality at low data rates of 81.4 and 72.7 bps for speaker-dependent and speaker-independent tasks,
respectively. An application of the proposed prosody coding approach to speaking rate conversion by directly
changing the HPM parameters to those of a different speaking rate is also illustrated. An informal listening test
confirmed that both converted speeches of high and low speaking rate sounded very smooth.

Keywords: Parametric prosody coding, Hierarchical prosodic model, Speaking rate conversion

1 Introduction
Speech coding is a process to transform a digitized
speech signal into a bit-efficient representation that
keeps reasonable speech quality so as to facilitate speech
transmission over a band-limited channel or speech stor-
age in a memory-limited media. In general, speech cod-
ing techniques can be classified into three categories,
including waveform coding, parametric coding, and hy-
brid coding. The waveform coding technique attempts
to maintain the waveform shape of the original speech
signal in sample level without any knowledge about the
speech generation process. Famous standard speech
coders of this category are G.711 A-law and μ-law Pulse
Code Modulation (PCM) coders [1], and G.726 and
G.727 Adaptive Differential PCM coders [2]. Generally,
a waveform coder works well at a high bit rate of 32 kbps
or above. The parametric coding technique represents a

speech signal by parameters of a speech-generating
model. Among various speech-generating models, the
most successful one is the linear predictive coding (LPC)
model that assumes speech signal is the output of an
all-pole model (autoregressive model) fed with an excita-
tion input signal. The parameters of the all-pole filter
conceptually represent the vocal tract shape that is
highly correlated with the spectral envelope of the
speech, while the excitation signal uses a quasiperiodic
impulse train to represent information of fundamental
frequency (or F0) for voiced speech, pseudorandom
noise for unvoiced speech, or a combination of the two
(i.e., mixed excitation). Coders of this type encode
speech signal in a frame-based processing manner and
could operate at low bit rates ranging from 2 to 5 kbps.
Differing from waveform coders, parametric coders
make no attempt to preserve the original waveform
shape but to keep the perceptual quality of the recon-
structed speech. Famous standard LPC-based speech
coders are FS 1015 LPC of LPC-10e algorithm [3, 4] and
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MELP (mixed excitation linear prediction) [5]. The hy-
brid coding technique tries to combine the advantages
of both waveform coding and parametric coding. Coders
of this type are similar to parametric coders in utilizing
speech-generating models, but also similar to waveform
coders in keeping encoded speech waveforms close to
the original ones by more detailed modeling of the excita-
tion signal. They generally adopt the code-excited linear
prediction (CELP) algorithm [6] to minimize perceptually
weighted error. Representative standard hybrid coders are
FS1016 CELP [7, 8], ITU-T G.728 LD-CELP [9], ETSI
AMR-ACELP [10], etc. A hybrid coder generally operates
at a medium bit rate of 5 to 15 kbps.
To further encode speech at a very low bit rate of less

than 2 kbps, the abovementioned existing sampled-based
or frame-based speech coders are unable to obtain recon-
structed speech with good intelligibility and naturalness
due to the loss of modeling accuracy at such a low data
rate. Therefore, segment-based speech coders, such as
segment vocoders [11–23], phonetic vocoders [24–33],
and text-to-speech (TTS)-based speech coders [34–36],
were proposed to overcome this limitation. Those coders
generally process speech at segment level instead of sam-
ple or frame level. Generally, a segment vocoder [11–23]
firstly divides the speech signal into a sequence of fixed-
or variable-length segments by a speech segmenter or a
speech recognizer and then quantizes each segment by a
codebook of pre-stored speech segments. A segment vo-
coder of fixed length simply quantizes a sequence of
speech segments of l frames (l > 1) by matrix
quantization (MQ) [14, 22]. In a variable-length seg-
ment vocoder [11–13, 15–23], segmental unit is usually
pre-determined in the design of speech segmenter or
speech recognizer. General segmental units can be phones,
di-phones, syllables, or automatically derived acoustic units.
Most segment vocoders reported in literatures operated at
very low bit rates for speaker-dependent speech coding.
However, to apply segment vocoders to speaker-independent
speech coding, higher bit rate may be required due to the
use of a larger codebook to capture the speaker variability. A
phonetic vocoder [24–33] adopts a recognition-synthesis
scheme in which speech is delimited into a sequence of
phonetic segments (usually phone or phone-like units) by a
speech recognizer, and reconstructed by a TTS synthesizer
given with the recognized phone identities and their corre-
sponding quantized prosodic features. Generally, the speech
quality of this type coder is subject to the performance of the
speech recognizer and the TTS synthesizer used. Due to the
fact that phonetic vocoders do not encode the information
of speaker, the speaker identity is missing in the recon-
structed speech. Therefore, phonetic vocoders are suitable
for speaker-dependent speech coding. A TTS-based speech
coder [34–36] adopts a TTS synthesizer to generate speech
from a given text by concatenating speech units properly

selected from a large speech inventory and modifying the
prosody of the selected speech units to the quantized pros-
odic parameters. A speech coder of this type can be viewed
as a phonetic vocoder which operates in an oracle status that
the correct text is given, and all speech segments are well
segmented with correct phonetic transcriptions, i.e., speech
is segmented by forced alignment. Although segment-based
speech coders generally operate with longer coding delay
and higher computational complexity than the conventional
sample- and frame-based coders, they are potentially very
useful in some applications that require a large amount of
pre-recorded speech with limited memory space, such as the
speech coding of story readings in an electronic book,
computer-assisted language learning systems and electronic
dictionaries, and saving speech in a matrix bar code, i.e.,
quick response (QR) code.
Concluding from above discussions, we find that those

previous studies mainly focused on the modeling or en-
coding of spectral information. For frame-based speech
coding, one milestone was the use of vector quantization
(VQ) in encoding LPCs [37] or line spectral frequencies
(LSFs) [38, 39] to greatly reduce the bit amount for spec-
tral information via taking advantage of high intra-frame
correlation among LPC/LSF coefficients. Predictive VQ
[40] was proposed to further reduce the bit-rate by using
the property of inter-frame spectral redundancy or cor-
relation. For segment vocoders [11–23], the main study
issues focused on the choice of segmental units, the
realization of segmentation and segment quantization,
and the design of segment codebook. For phonetic vo-
coders [24–33], the studies mainly focused on the choice
of acoustic unit for speech recognition/synthesis [24–27]
and speaker adaptation of spectral information [28, 30,
32, 33]. For TTS-based vocoders [34–36], the main con-
cern lay in the methods of unit selection for speech syn-
thesis. On the other hand, encoding of the prosodic
information of speech signal was rarely addressed. Pros-
ody refers to certain inherent suprasegmental properties
of speech signal that carry melodic, timing, rhythmic,
and pragmatic information of continuous speech. Pros-
odic features are physically represented by any domain’s
(generally phone, syllable, word, phrase, sentence, etc.)
variations on pitch contour, energy level, duration, and
silence of spoken utterances. In conventional speech
coding methods, prosodic features are generally ignored,
or simply scalar- or vector-quantized. For sample-based
waveform coding [1, 2], no prosodic features are needed
to be encoded owing to the fact that a waveform coder
attempts to maintain the waveform shape of the original
signal. For frame-based coders [3–10], information of
pitch contour and gain is embedded in the framed excita-
tion signal which can be efficiently represented by posi-
tions and amplitudes of important residual samples [3, 4],
encoded by an excitation codebook [6–10], or represented
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by a mixed excitation model in terms of pitch period, band-
pass voicing strengths and Fourier magnitudes [5]. For
segment-based speech coding, the prosodic information as-
sociated with each segmental unit is usually encoded dir-
ectly after quantization without considering underlying
prosodic models. Methods proposed for encoding segmen-
tal pitch contour include scalar-quantization of segmental
mean value [11, 13] or values at segmental end points [17],
vector-quantization [25, 31], scalar-quantization after being
parameterized by piecewise linear approximation (PLA)
[12, 18, 19, 24, 32, 33, 36], the frame-by-frame scheme as
used in the frame-based coder [14, 15, 21, 23, 27, 28], and
quantization by using stored pitch contour patterns [34].
For segment duration, it is usually directly encoded/sca-
lar-quantized [11, 12, 15, 17–19, 23, 24, 26–28], or
vector-quantized [29–33]. Aside from properly encoding
prosodic information for bit saving, post-modification or
manipulation on the prosody of the encoded speech is also
an interesting topic for a segment-based speech coder to
realize some attractive and fancy functions such as chan-
ging speaking rate, changing speaker identity, and chan-
ging speaking style or emotion. Therefore, a parametric
prosody coding approach basing on a prosody-generating
model, which well describes the suprasegmental variations
of the prosodic features, is highly desirable to have more
potential than the conventional prosody coding ap-
proaches to not only save bit amount for efficiently encod-
ing prosodic features but also be easier to realize a useful
function of post-modification on the encoded prosody.
In this paper, a novel parametric prosody coding ap-

proach to efficiently encoding prosodic-acoustic features
for segment-based Mandarin speech coding is proposed.
It differs from the conventional prosody coding ap-
proaches using simple scalar- or vector-quantization
mainly on adopting an analysis-synthesis scheme to ob-
tain a parametric representation of the prosodic features
of the input speech for encoding by an analysis oper-
ation in the encoder, and to reconstruct the prosodic
features from the decoded parameters by a synthesis op-
eration in the decoder. A hierarchical prosodic model
(HPM) proposed previously [41] is employed to serve as
the prosody-generating model in the analysis-synthesis
scheme. The HPM is a sophisticated speech prosody
model to well describe the various relations among
prosodic-acoustic features, prosodic structure, and lin-
guistic features so that it can be used to produce a com-
pact and accurate representation of the prosodic features
of the input speech for high-performance prosody cod-
ing. Besides, the HPM also provides us a platform to
easily realize some post-modifications on the decoded
prosody via manipulating its parameters. An example of
modifying the speaking rate of the reconstructed speech
via directly replacing the HPM parameters will be dem-
onstrated in this study.

The paper is organized as follows. Section 2 presents
the proposed Mandarin-speech prosody coding approach
in detail. Section 3 discusses the experimental results of
evaluating the proposed prosody coding approach on two
continuous-speech databases. In Section 4, an application
of the parametric prosody coding to speaking rate conver-
sion is demonstrated. Some conclusions are given in the
last section.

2 The proposed method
Figure 1 shows a schematic diagram of the proposed
parametric prosody coding approach. In the encoder, the
input utterance is firstly segmented into syllable seg-
ments interleaving with pauses by a forced aligner using
the linguistic information of the associated text. The
prosodic-acoustic features associated with each syllable
segment are then extracted. Then, a parametric repre-
sentation of the prosodic-acoustic features of a syllable
segment is estimated by a prosody analysis operation
based on the HPM. Lastly, the HPM parameters and some
low-level linguistic features are encoded and transmitted
to the decoder. In the decoder, the prosodic-acoustic fea-
tures of each syllable segment are firstly reconstructed by
a prosody synthesis operation which feeds the decoded
low-level linguistic features and HPM parameters into the
prosody-generating model, i.e., the HPM. The output
speech is finally generated by an HMM-based speech
synthesizer using the reconstructed prosodic-acoustic fea-
tures and the decoded low-level linguistic features. Some
primary parts of the proposed approach are discussed in
detail in the following subsections. The HPM serving as
the prosody-generating model is firstly introduced in 2.1.
Then, the analysis-synthesis operations and
prosody-parameter coding are described in Section 2.2.
Lastly, the reconstruction of speech signal is discussed in
Section 2.3.

2.1 The prosody-generating model HPM
The HPM used in this study is the statistical prosodic
model proposed previously [41, 42]. Although the detail
of the HPM has been included in [41], we briefly reintro-
duce it here to make the presentation of the proposed
parametric prosody coding approach more complete and
easier to understand. The HPM is a model designed to de-
scribe the various relationships of prosodic-acoustic fea-
tures, prosodic structure, and linguistic features. Three
types of prosodic-acoustic features are modeled in the
HPM: syllable prosodic-acoustic features, syllable-juncture
prosodic-acoustic features, and inter-syllable differential
prosodic-acoustic features. The syllable prosodic-acoustic
features include syllable pitch contour spn, syllable dur-
ation sdn, and syllable energy level sen of the n-th syllable.
Here, the pitch contour of each syllable is represented by
a 3-rd order orthogonal polynomial expansion [43]. The
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basis polynomials used are normalized, in length, to [0,1]
and can be expressed as:
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for 0 ≤ i ≤M, where M + 1 is the length of the current
syllable log-pitch contour and M ≥ 3 in frame. They are,
in fact, discrete Legendre polynomials. The pitch con-
tour Fn(i) of syllable n can then be approximated by:

Fn ið Þ ≈
X3
j¼0

α j;n � ϕ j
i

Mn

� �
i ¼ 0∼Mn; ð2Þ

where

α j;n ¼ 1
Mn þ 1

XMn

i¼0

Fn ið Þ � ϕ j
i

Mn

� �
j ¼ 0∼3 ð3Þ

Then, the four coefficients of syllable n form a vector
spn = [α0, n, α1, n, α2, n, α3, n]

T to represent its pitch con-
tour. The syllable-juncture prosodic-acoustic features in-
clude pause duration pdn and energy-dip level edn of the
syllable juncture between the n-th and (n + 1)-th sylla-
bles (referred to as syllable juncture n thereafter). The
inter-syllable differential prosodic-acoustic features in-
clude the normalized pitch-level jump pjn, and the two
normalized duration lengthening factors dln and dfn of

syllable juncture n. Note that these differential features
are obtained after eliminating the effects of low-level lin-
guistic features, i.e., tone and base-syllable type. Specific-
ally, the normalized pitch-level jump is defined by:

pjn ¼ spnþ1 1ð Þ−χtnþ1

� �
− spn 1ð Þ−χtn
� �

ð4Þ

where spn(1) is the first dimension of syllable pitch con-
tour spn (i.e., syllable pitch level); tn ∈ {1, 2, 3, 4, 5} is the
tone of syllable n; and χt is the average pitch-level of
tone t. The two normalized duration lengthening factors
are defined by:

dln ¼ sdn−πtn−πsnð Þ− sdn−1−πtn−1−πsn−1ð Þ ð5Þ
df n ¼ sdn−πtn−πsnð Þ− sdnþ1−πtnþ1−πsnþ1

� 	 ð6Þ
where πt and πs represent respectively the average
syllable durations of tone t and of base-syllable type s.
So, the complete prosodic-acoustic feature sequence is
A = {X, Y, Z} = {sp, sd, se, pd, ed, pj, dl, df}, where X = {sp,
sd, se}, Y = {pd, ed}, and Z = {pj, dl, df} represent se-
quences of the syllable prosodic-acoustic features, the
syllable-juncture prosodic-acoustic features, and the inter-
syllable differential prosodic-acoustic features, respectively.
The prosodic structure considered in the HPM is a

four-layer prosody hierarchy shown in Fig. 2. It is a
modified version of the hierarchical prosodic phrase
grouping (HPG) model proposed by Tseng [44]. It is
composed of four types of layered prosodic constituents,
from bottom to top, syllable (SYL), prosodic word (PW),
prosodic phrase (PPh), and breathe/prosodic phrase
group (BG/PG). In the HPM, the prosody hierarchy is
represented in terms of two types of prosody tags T= {B,P}:
the break type B of syllable juncture and the prosodic state
P of syllable. The break type B is used to specify the bound-
aries of the prosodic constituents while the prosodic state P
is used to specify the patterns of the higher-level prosodic

Fig. 1 A schematic diagram of the proposed method
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constituents. As shown in Fig. 2, the four prosodic constitu-
ents are delimited by seven break types denoted as B0, B1,
B2–1, B2–2, B2–3, B3, and B4 [41, 42]. First, B0 and B1 rep-
resent respectively non-breaks of reduced syllable boundary
(or tightly-coupling syllable juncture) and normal syllable
boundary, within a PW, which have no identifiable pauses
between SYLs. Second, PW boundary B2 = {B2–1, B2–2,
B2–3} is perceived as a minor-break boundary where a slight
tone of voice change usually follows. Here, B2–1, B2–2, and
B2–3 represent PW boundaries with F0 reset, short pause,
and pre-boundary syllable duration lengthening, respect-
ively. Third, PPh boundary B3 is perceived as a clear pause.
Fourth, B4 is defined for a breathing pause or a complete
speech paragraph end characterized by final lengthening
coupled with weakening of speech sounds. The prosodic
state P of syllable is conceptually defined as the state in a
prosodic phrase to account for the prosodic-acoustic feature
variations imposed on higher-level prosodic constituents
(i.e., PW, PPh, and BG/PG). In the HPM, three types of
prosodic states are used, i.e., pitch prosodic state p, duration
prosodic state q, and energy prosodic state r. So, the
complete prosodic tag sequence is T= {B,P}, where B= {Bn}
is a break type sequence with Bn∈{B0, B1, B2–1, B2–2,
B2–3, B3, B4} being the break type of syllable juncture n,
and P = {p, q, r} is the prosodic-state tag sequence
with p = {pn}, q = {qn} and r = {rn}.
The linguistic features involved in the HPM can be clas-

sified into two classes: the low-level linguistic features and
the high-level linguistic features. The low-level linguistic
features are those accounting for the prosodic-acoustic
feature variation resulting from the prosodic constituent
of the lowest level, i.e., SYL, while the high-level linguistic
features account for the syllable prosodic-acoustic feature
variations imposed on higher-level prosodic constituents
(i.e., PW, PPh, and BG/PG) through the prosodic state.
The low-level linguistic features are syllable-level features
including lexical tone sequence t, base-syllable sequence s,
and final type sequence f. The high-level linguistic features
are word-level features or above. For simplicity, only the
word-level linguistic features are used in the HPM. They
include word length sequence WL, part-of-speech se-
quence POS, and punctuation mark sequence PM. In
summary, the linguistic feature sequence used is L = {t, s,
f, WL, POS, PM}.

To give a clearer picture of notations for the features
and prosodic tags used in this study, we summarize
them in Table 1.
The HPM is a model P(T,A| L) designed to describe

the various relationships of prosodic-acoustic features,
prosodic structure, and linguistic features. The model is
formulated as

P T;AjLð Þ ¼ P AjT;Lð ÞP TjLð Þ ¼ P X;Y;ZjB;P;Lð ÞP B;PjLð Þ
≈ P XjB;P;Lð ÞP Y;ZjB;Lð ÞP PjBð ÞP BjLð Þ

ð7Þ
where P(X| B, P, L) is the syllable prosodic-acoustic
model which describes the influences of the two types of
prosodic tags and the contextual linguistic features on
the variations of syllable F0 contour, duration, and energy
level; P(Y,Z|B, L) is the syllable-juncture prosodic-acoustic
model describing the inter-syllable acoustic characteristics
specified for different break type and surrounding linguistic
features; P(P|B) is the prosodic state model describing the
variation of prosodic state conditioned on the neighboring
break type; and P(B| L) is a break-syntax model describing
the dependence of break occurrence on the surrounding
linguistic features. The four models are further elaborated
as follows.
The syllable prosodic-acoustic model P(X| B, P, L) is

further divided into three sub-models by:

P XjB;P;Lð Þ ≈ P spjB;p; tð ÞP sdjB;q; t; sð ÞP sejB; r; t; fð Þ
≈
YN
n¼1

P spnjBn
n−1; pn; t

nþ1
n−1

� 	
P sdnjqn; sn; tnð ÞP senjrn; f n; tnð Þ

ð8Þ
where PðspnjBn

n−1; pn; t
nþ1
n−1 Þ , P(sdn| qn, sn, tn), and P(sen|

rn, fn, tn) are sub-models for the pitch contour, duration
and energy level of syllable n, respectively; tn, sn and fn
denote the tone, base-syllable type and final type of
syllable n; Bn

n−1 ¼ ðBn−1;BnÞ; and tnþ1
n−1 ¼ ðtn−1; tn; tnþ1Þ. P

ðspnjBn
n−1; pn; t

nþ1
n−1 Þ is further elaborated to consider four

major affecting factors. With an assumption that all af-
fecting factors are combined additively, we have

spn ¼ sprn þ βtn þ βpn þ β f
Bn−1;tpn−1

þ βbBn;tpn
þ μsp ð9Þ

where spn is the 4-dimensional vector representing the

Fig. 2 The prosody hierarchical structure of Mandarin speech used in this study [42]
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observed log-F0 contour of syllable n; sprn is the model-
ing residue; βtn and βpn are the affecting patterns (APs)

for tn and pn, respectively; the subscript tpn represents

the tone pair tnþ1
n ; β f

Bn−1;tpn−1
and βbBn;tpn

are the forward

and backward coarticulation APs contributed from syl-
lable n − 1 and syllable n + 1, respectively; and μsp is the
global mean of pitch vector. In this study, βpn is set to

have nonzero value only in its first dimension in order
to restrict the influence of prosodic state merely on the
log-F0 level of the current syllable. Besides, μsp is also
assumed to have nonzero value only in its first dimen-
sion for simplicity. By assuming that sprn is zero-mean
and normally distributed, i.e., Nðsprn; 0;RspÞ, we have

P spnjBn
n−1; pn; t

nþ1
n−1

� 	 ¼ N spn; βtn þ βpn þ β f
Bn−1;tpn−1

þ βbBn ;tpn
þ μsp;Rsp

� �
ð10Þ

It is noted that sprn is a noise-like residual signal of
very small deviation so that we model it by a normal
distribution.
Similar to the design of the syllable pitch contour

model, the syllable duration model P(sdn| qn, sn, tn)
and the syllable energy level model P(sen| rn, fn, tn) are
formulated by

P sdnjqn; sn; tnð Þ ¼ N sdn; γtn þ γsn þ γqn þ μsd;Rsd

� �
ð11Þ

P senjrn; f n; tnð Þ ¼ N sen;ωtn þ ω f n þ ωrn þ μse;Rse
� 	

ð12Þ
where sdn and sen are the observed duration and energy
level of syllable n, respectively; γ's and ω's represent APs
for syllable duration and syllable energy level; μsd and μse
are their global means; and Rsd and Rse are variances of
modeling residues.
The syllable-juncture prosodic-acoustic model, P(Y, Z|

B, L), is further divided into five sub-models by

P Y;ZjB;Lð Þ ≈ P pd; ed; pj;dl;df jB;Lð Þ
≈
YN−1

n¼1

P pdn; edn; pjn; dln; df njB;L
� 	

≈
YN−1

n¼1

g pdn; αBn ;Ln ; ηBn ;Ln

� �
N edn; μed;Bn;Ln ; σ

2
ed;Bn;Ln

� �n

ð13Þ
where gðpdn; αBn;Ln ; ηBn;LnÞ is a Gamma distribution for
pause duration pdn of syllable juncture n; and the other
four features, edn, pjn, dln, and dfn, are all modeled as
normal distributions. Since the space of Ln is large, the
CART algorithm [45] with the node splitting criterion of
maximum likelihood (ML) gain is adopted to concur-
rently classify the five features of pdn, edn, pjn, dln, and
dfn for each break type according to a question set. The
question set consists of 216 questions considering the
following linguistic features around the current juncture:
(1) the initial type of the following syllable; (2) inter-
word/intraword indicator; (3) lengths; and (4) POSs of
the words before and after the juncture if it is an

Table 1 Notations of prosodic tags, prosodic-acoustic features and linguistic features

T: prosodic tags B: break types

P: prosodic states p: pitch prosodic states

q: duration prosodic states

r: energy prosodic states

A: prosodic-acoustic
Features

X: syllable prosodic-acoustic features sp: syllable pitch contours

sd: syllable durations

se: syllable energy levels

Y: syllable-juncture prosodic-acoustic features pd: pause durations

ed: energy-dip levels

Z: inter-syllable differential
prosodic-acoustic features

pj: normalized pitch-level jumps

dl: normalized duration lengthening factor 1

df: normalized duration lengthening factor 2

L: linguistic features POS: part-of-speeches
PM: punctuation marks
WL: word lengths

t: tones

s: base-syllable types

f: final types
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interword; and (5) PM type for an interword juncture.
Each leaf node represents the product of the five sub-
models. So, seven decision trees are constructed for the
syllable-juncture prosodic-acoustic model.
The prosodic state model P(P| B) is further divided

into three sub-models:

P PjBð Þ ≈ P pjBð ÞP qjBð ÞP rjBð Þ
≈ P p1ð ÞP q1ð ÞP r1ð Þ
YN
n¼2

P pnjpn−1;Bn−1ð ÞP qnjqn−1;Bn−1ð ÞP rnjrn−1;Bn−1ð Þ
" #

ð14Þ
where P(pn| pn − 1, Bn − 1),P(qn| qn − 1, Bn − 1), and P(rn| rn − 1,
Bn − 1) are prosodic state transition models for syllable
pitch level, duration and energy level, respectively. Notice
that, in above formulation, the dependency on the break
type of the preceding syllable juncture makes these
models be able to properly model significant pitch/energy
resets and the pre-boundary lengthening effect across
major breaks. We also note that the three prosodic states
are independently modeled for simplicity.
Lastly, the break-syntax model P(B| L) is approximated

by

P BjLð Þ ≈
YN−1

n¼1

P BnjLnð Þ ð15Þ

where P(Bn| Ln) is the break type model for juncture n,
and Ln is the contextual linguistic features surrounding
juncture n. Since the space of linguistic features Ln is
large, we partition it into several classes C(Ln) by the
CART decision tree algorithm [45] using the maximum
likelihood gain criterion and the same question set used
in the training of the syllable-juncture prosodic-acoustic
model.
The HPM can be trained automatically from a

prosody-unlabeled speech database by a joint prosody la-
beling and modeling (PLM) algorithm [41]. The PLM al-
gorithm is a sequential optimization procedure based on
the ML criterion to jointly label the prosodic tags for all
utterances of the training corpus and estimate the pa-
rameters of all 12 prosodic sub-models.

2.2 The parametric prosody coding approach
The proposed parametric prosody coding approach con-
siders the coding of four prosodic-acoustic features in-
cluding syllable pitch contour, syllable duration, syllable
energy level, and syllable-juncture pause duration. It
takes four sub-models of the HPM as the generating
models for these four prosodic features. The four sub-
models are the syllable pitch contour sub-model PðspnjBn

n−1

; pn; t
nþ1
n−1 Þ, the syllable duration sub-model P(sdn| qn, sn, tn),

the syllable energy level sub-model P(sen| rn, fn, tn), and the

syllable-juncture pause duration sub-model gðpdn; αBn;Ln ;

ηBn;LnÞ . The first three sub-models are controlled directly
by low-level linguistic features and prosodic tags through
their APs, while the last one is controlled implicitly by
high-level linguistic features and prosodic tags through the
break type-dependent decision trees. The low-level and
high-level linguistic features can be simply obtained from a
linguistic processor while the prosodic tags, pn, qn, rn, and
Bn, are obtained by the prosody analysis operation to be
discussed below. We discuss the prosody analysis operation
and the parameter coding for these four prosodic-acoustic
features in detail as follows.

2.2.1 Prosody analysis operation
The task of the prosody analysis operation is to find the
best prosodic state and break type sequences for the en-
coding utterance with given prosodic-acoustic features
and linguistic features. Based on the HPM, the task is
formulated by

T� ¼ B�;P�f g ¼ arg max
B;P

Q ð16Þ

where

Q ¼ P BjLð ÞP PjBð ÞP XjB;P;Lð ÞP Y;ZjB;Lð Þ
¼

YN−1

n¼1

P BnjLnð Þ
 !

P p1ð ÞP q1ð ÞP r1ð Þ
YN
n¼2

P pnjpn−1;Bn−1ð ÞP qnjqn−1;Bn−1ð ÞP rnjrn−1;Bn−1ð Þ
" # !

YN
n¼1

P spnjBn
n−1; pn; t

nþ1
n−1

� 	
P sdnjqn; sn; tnð ÞP senjrn; f n; tnð Þ

 !

YN−1

n¼1

g

 
pdn; αBn;Ln ; ηBn;Ln

� �

� N edn; μed;Bn;Ln ; σ
2
ed;Bn;Ln

� �
N pjn; μpj;Bn;Ln ; σ

2
pj;Bn;Ln

� �
N dln; μdl;Bn;Ln ; σ

2
dl;Bn;Ln

� �
N df n; μdf ;Bn ;Ln ; σ

2
df ;Bn;Ln

� �!

ð17Þ

The task is realized by the following iterative
procedure:

1) Initialization
For i = 0, find the initial break type sequence by

Bi ¼ arg max
B

P Y;ZjB;Lð ÞP BjLð Þ ð18Þ

2) Iteration
Starting from i = 1, estimate the prosodic state
sequence and the break type sequence iteratively by
the following three steps:
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Step 1: Given Bi − 1, re-label the prosodic state se-
quence of each utterance by the Viterbi algorithm
so as to maximize Q defined in (17), i.e.,

Pi ¼ arg max
P

P XjBi−1;P;L
� 	

P Y;ZjBi−1;L
� 	

P PjBi−1
� 	

P Bi−1jL� 	
ð19Þ

Step 2: Given with Pi, re-label the break type se-
quence of each utterance by the Viterbi algorithm
so as to maximize Q, i.e.,

Bi ¼ arg max
B

P XjB;Pi;L
� 	

P Y;ZjB;Lð ÞP PijB� 	
P BjLð Þ

ð20Þ
Step 3: If a convergence of the value Q is reached,
exit the iteration; otherwise, increase i by 1 and go
to step 1.

3) Termination

B� ¼ Bi and P� ¼ Pi ð21Þ

2.2.2 Coding of prosody parameters
In the HPM, the syllable pitch contour spn, the syllable
duration sdn, and the syllable energy level sen are linearly
modeled in Eqs. (10), (11), and (12) to consider several
major affecting factors that influence their variations.
The affecting factors involved in these three sub-models
are some low-level linguistic features and prosodic tags,
including tone tn, base-syllable type sn, final type fn,
break-type tag Bn, and the three prosodic-sate tags of pn,
qn, and rn. These affecting factors are the only parameters
required to represent the three syllable prosodic-acoustic
features by the HPM. So, in the encoder, we only need to
consider the encoding of these seven affecting factors. In
the decoder, the decoded versions of these seven affecting
factors can be used to reconstruct the three syllable
prosodic-acoustic features. Specifically, the syllable pitch
contour, the syllable duration, and the syllable energy level
are simply reconstructed by superimposing the APs asso-
ciated with these affecting factors, i.e.,

sp0n ¼ βtn þ βpn þ β f
Bn−1;tpn−1

þ βbBn;tpn
þ μsp ð22Þ

sd0
n ¼ γtn þ γsn þ γqn þ μsd ð23Þ

se0n ¼ ωtn þ ω f n þ ωrn þ μse ð24Þ

We note that the three means, μsp, μsd, and μse, are
sent in advance to the decoder as side information. We
also note that the three modeling residuals, sprn , sd

r
n , and

sern , are neglected in the above three equations because
their variances are all small.
In the HPM, the pause duration is modeled by the

syllable-juncture pause duration sub-model, gðpdn; αBn;Ln ;

ηBn;LnÞ . The sub-model describes the variation of
syllable-juncture pause duration influenced by some context-
ual linguistic features and break type and is organized into 7
break type-dependent decision trees (BDTs). For each break
type, a decision tree is used to determine the probability
density function (pdf) of syllable-juncture pause duration
according to the contextual linguistic features. Here, all pdfs
are assumed to be Gamma distributed. By an analysis on
these 7 decision trees, it is found that the means of pdfs in
the leaf nodes for the break types with very short pause
duration (< 0.03 s), i.e., B0, B1, B2–1, and B2–3, are very
close to the pdfs of the root nodes. For the break types with
pause durations, i.e., B2–2, B3, and B4, the pdfs of leaf nodes
have more sophisticated pause duration distributions. How-
ever, by an informal listening test, we found that the synthe-
sized speeches with pause durations encoded by the pdfs of
the root nodes sound almost the same as the ones encoded
by the pdfs of the leaf nodes. The pause duration informa-
tion, therefore, can be encoded solely by the pdfs of the root
nodes. In other words, only the symbols of the break types
need to be encoded and sent to the decoder. The means of
the pdfs for the 7 break types are sent to the decoder
as the side information. The decoder reconstructs the
syllable-juncture pause duration as the means of the
pdfs of the root nodes of the 7 break types.
In summary, the symbols needed to be encoded for

each syllable segment and its following pause duration
in the proposed parametric prosody coding approach
include tone, base-syllable type, prosodic-state tag,
and break-type tag. Table 2 lists the bit assignments
for these symbols based on two experimental settings
conducted in this study. The two experiments are
prosody coding for a speaker-independent (SI) case
and a speaker-dependent (SD) case. The numbers of
prosodic states for pn, qn, and rn are all empirically
set to be 16, while the number of break types is 7 de-
termined based on the hierarchical prosody structure
used in designing the HPM. There are five lexical
tones and 411 base-syllable types in Mandarin Chinese.
As shown in Table 2, the total number of bits per syllable
is 27 for the SI and SD cases.

Table 2 Bit assignment for symbols used in the parametric
prosody coding

Symbol No. of symbol No. of bit

Lexical tone tn 5 3

Base-syllable type sn 411 9

Pitch prosodic state pn 16 4

Duration prosodic state qn 16 4

Energy prosodic state rn 16 4

Break type Bn 7 3

Total bit number per syllable 27
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Aside from the above regular bitstream, some HPM
parameters are also needed in the decoder to help to re-
construct the prosodic-acoustic features. They are sent to
the decoder in advance as side information. They include

the affecting patterns (APs) fβt ; βp; β f
B;tp; β

b
B;tp; μspg of the

syllable pitch-contour sub-model, the APs {γt, γs, γq, μsd} of
the syllable duration sub-model, the APs {ωt,ωf,ωr, μse} of

the syllable energy level sub-model, and the means fμpdT g
of the root-node pdfs of the syllable-juncture pause
duration sub-model. It is noted that the subscript n which
represents syllable index is eliminated from the APs listed
above, i.e., β’s, γ’s, ω’s, to simplify the representation of the
types of the APs associated with the affecting factors. Spe-
cifically, the tone of syllable n, i.e., tn, could be one of the
set of tone t ∈ {1, 2, 3, 4, 5} and each of the APs {βt, γt, ωt},
therefore, has five patterns. Similarly, the base syllable type
of syllable n, i.e., sn, could be one of the set of base syllable
type s ∈ {411 base syllable types}, and hence, γs has 411
patterns. Therefore, the total number of parameters in the
syllable pitch-contour sub-model is 1477, including 20
(=5 × 4) for βt, 16 (=16 × 1) for βp, 720 (=(7 × 5 × 5 + 5)× 4)

for β f
B;tp, 720 (=(7 × 5 × 5 + 5)× 4) for βbB;tp, and one for μsp;

433 parameters for the syllable duration sub-model, in-
cluding 5 for γt, 16 for γq, 411 for γs, and 1 for μsd; 62 pa-
rameters for the syllable energy level sub-model, including
5 for ωt, 40 for ωf, 16 for ωr, and 1 for μs; and the means of
the pdfs for the syllable-juncture pause duration corre-
sponding to 7 break types, i.e., 7 BDT root node means

μpdT . Table 3 summarizes the side information of the
coding system.

2.3 Speech synthesis
In this study, an HMM-based speech synthesizer [46–49] is
used to generate the synthetic voice. The standard context-
dependent HMM training for speech synthesis [46–48] is
adopted here to simultaneously construct spectral, voiced/
unvoiced and state duration models using the labels contain-
ing the information of contextual influential factors.
Five-state left-to-right HMMs are used to model syn-

thesis units of 21 syllable Initials and 39 syllable Finals.

The observations in each HMM state consist of two
streams. One is a 75-dimensional spectral feature vector
composed of 24-dimensional mel-generalized cepstral coef-
ficients (MGC) [50], delta MGCs, delta-delta MGCs,
energy, delta energy, and delta-delta energy. Another is a
discrete symbol to indicate the voiced/unvoiced status of a
frame. The spectral features in each HMM state are
modeled by a multi-variate single Gaussian, while voiced/
unvoiced symbols are modeled by a discrete probability dis-
tribution of the two events. The state durations of each
HMM form a 5-dimentional vector which is modeled by a
multi-variate single Gaussian. Since spectrum, voiced/un-
voiced status and state duration have their own contextual
influential factors, the distributions for MGC, voiced/un-
voiced indicator and state duration are clustered independ-
ently. The question set used for the decision tree-based
context clustering of HMMs is formed by using the context
labels. To achieve a better tree clustering result, we merge
some individual linguistic features to form several complex
questions according to their effects on producing spectrum,
state duration and voiced/unvoiced status. For examples,
the initial/final types are classified by the manner or place
of articulation; the prosodic states of duration are tied ac-
cording to their values of APs; the break types are merged
into broader classes according to their corresponding
prosodic-acoustic features, etc. There are in total 399
questions formed for the decision tree-based context clus-
tering of HMMs in this study. It is noted that these
context-dependent HMMs (CD-HMMs) are embedded-
trained [48] with feature vectors consisting of the MGCs
along with the voiced/unvoiced indicators so as to avoid
the discrepancy between spectrum and voiced/unvoiced
status in each HMM state. In this study, the training data
for the SD case is large enough to conduct speaker-
dependent HMM training. The trained HMM can be
directly used to generate synthesized speeches given the
encoded symbols illustrated in Section 2.2. On the other
hand, for the SI case, the speakers in the training set do not
overlap the speakers in the test set and the number of the
utterances for each speaker of the test set is very small. The
HMM model of each speaker in the test set is therefore
adapted from the HMM of the SD case by the CMAPLR
approach [51] given solely the test utterances.
Figure 3 shows the schematic diagram of the HMM-based

speech synthesizer used in this study. To synthesize speech
by the HMM-based synthesizer, we first generate the state
durations for each syllable segment. The state duration is as-
sumed to be normally distributed and affected by the con-
textual information of Initial, Final, and prosodic tags, i.e.,

P dn;cjI snþ1
n−1

� 	
; F snþ1

n−1

� 	
; pn; qn; rn;B

n
n−1

� 	
¼ N dn;c; μn;c; σ

2
n;c

� �
for c ¼ 1∼C ð25Þ

where dn, c denotes the duration of the c-th state of

Table 3 Side information of the proposed coding system

Type Parameter no.

Lexical tone APs:βt/γt/ωt 20/5/5

Coarticulation APs: β f
B;tp/β

b
B;tp 720/720

Prosodic state APs: βp/γq/ωr 16/16/16

Global mean APs: μsp/μsd/μse 1/1/1

Base-syllable type and final type APs: γs/ωf 411/40

BDT root node mean: μpdT 7

Total 1979
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syllable n; C is the total number of state; I(x) and F(x)
denote respectively the Initials and Finals of the base-
syllable sequence x; μn, c and σn. c are respectively the
mean and standard deviation of the state duration model
obtained by finding the leaf node on the decision tree
using the contextual information, i.e., Iðsnþ1

n−1 Þ; Fðsnþ1
n−1 Þ; pn;

qn; rn; and Bn
n−1 . Given the reconstructed syllable duration

sd0
n, the state durations of the syllable segment can be esti-

mated based on maximizing the summed log likelihood
[48], i.e.,

d�
n;1⋯d�

n;C ¼ arg max
dn;1⋯dn;C

XC
c¼1

logN dn;c; μn;c; σ
2
n;c

� �
ð26Þ

under the constraint

sd0
n ¼

XC
c¼1

dn;c ð27Þ

The resulting state durations are expressed by

dn;c ¼ μn;c þ ρ � σ2n;c for c ¼ 1∼C ð28Þ

where

ρ ¼ sd0
n−
XC
c¼1

μn;c

 !
=
XC
c¼1

σ2
n;c

 !
ð29Þ

An HMM state is set to be voiced if the probability of
being the voiced status is larger than that of being the un-
voiced status. Therefore, the length and place of syllable
pitch contour can be simply determined using the infor-
mation of the estimated state durations and the voiced/
unvoiced indicators of the HMM states. Using the recon-
structed syllable pitch contour parameter sp0n ¼ ½α00;n; α01;n;

α02;n; α
0
3;n�, we can reconstruct the pitch contour of syllable

n by orthogonal expansion [43], i.e.,

F 0
n ið Þ ¼

X3
j¼0

α0j;n � ϕ j
i

M0
n

� �
for i ¼ 0∼M0

n ð30Þ

where M0
n þ 1 is the estimated length of the pitch con-

tour of syllable n. Then, the excitation signal can be gen-
erated using the reconstructed syllable pitch contours.
On the other hands, the frame spectral feature (i.e.,
MGC) vector sequence is generated by an HMM param-
eter generation algorithm [52] given with the CD-
HMMs, the estimated state durations, and the context-
ual information (i.e., Iðsnþ1

n−1 Þ; Fðsnþ1
n−1 Þ; pn; qn; rn; and Bn

n−1).
It is noted that the energy level of each syllable CD-
HMM (i.e., an Initial CD-HMM connecting with a Final
CD-HMM) is scaled to se0n before executing the param-
eter generation algorithm so as to make the generated
energy contour smooth and approximate the desired syl-
lable energy levels. Lastly, the output speech is synthe-
sized directly from the generated MGC coefficients and
the excitation signal by the MLSA filter [53].

3 Experimental results
3.1 Database & Experiment Setting
The proposed parametric prosody coding approach was
evaluated on two large Mandarin read speech databases,
the Treebank speech corpus and the TCC300 [54]. The
Treebank speech corpus was designed for constructing a
TTS and consisted of 420 utterances with 55,766 sylla-
bles uttered by a female professional announcer in a
quiet room. Its associated texts were all short paragraphs
composed of several sentences selected from the Sinica
Treebank Version 3.0 [55] text corpus. The TCC300
database was collected for Mandarin automatic speech
recognition (ASR). It consisted of two sets: 103-speaker

Fig. 3 A schematic diagram of the HMM-based speech synthesizer used in this study
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short sentential utterances (set A) designed for consider-
ing phonetic balance and 200-speaker paragraphic utter-
ances (set B) designed for the use of prosody in ASR
study. The texts of set B were selected from the Aca-
demia Sinica Balanced Corpus of Modern Chinese
(ASBC) [56]. Each database was further divided into
training and testing subsets. Table 4 displays the usages
of the subsets for each speech corpus and their statistics.
The Treebank speech corpus and the TCC300 were

digitally recorded in forms of 20 kHz sampling rate/
16-bit resolution and 16 kHz sampling rate/16-bit reso-
lution, respectively. The associated texts were automatically
word-segmented and POS-tagged and then manually
checked. The tone and base-syllable type of each syllable
were transcribed by a linguistic processor with a
130,000-word lexicon and then manually error-corrected.
Syllable segmentations of the two test sets, TestTB and
TestTC, were accomplished via performing forced align-
ment by the Hidden Markov Model Toolkit (HTK) [57]
using respectively a speaker-dependent (SD) acoustic model
(AM) trained from TrainTB and a speaker-independent (SI)
AM trained from TrainTC1. F0 detection was firstly done
by WaveSurfer [58], then error corrected automatically by
the method proposed in [59], and lastly corrected manually.

3.2 Training of the HPMs
Two HPMs were trained for the SD and SI prosody coding
tasks from the subsets of TrainTB and TrainTC2, respect-
ively. For the HPM training, the eight prosodic-acoustic
features, including syllable pitch contour vector, syllable
duration, syllable energy level, syllable-juncture pause
duration and energy-dip level, inter-syllable normalized
pitch-level jump, and two inter-syllable normalized dur-
ation lengthening factors, were extracted after obtaining the
time-alignment information of syllable segments. It is noted
that to compensate the speaker variability in the case of the
SI prosody coding, syllable pitch contour vectors were
extracted from the frame-based F0 values normalized by
speaker-level mean and variance, while both syllable dur-
ation and syllable energy level were normalized by their
corresponding speaker-level means and variances. In the
case of the SD prosody coding, only syllable duration and

syllable energy level were normalized by their correspond-
ing utterance-level means and variances to compensate
utterances’ variability. The associated texts were processed
by the linguistic processor mentioned previously to extract
all linguistic features needed in the HPM training. The
PLM algorithm [41] was then applied to automatically gen-
erate two sets of 12 prosodic sub-models from the two
training subsets of TrainTB and TrainTC2, respectively. In
realizing the PLM algorithm, the numbers of pitch, dur-
ation, and energy prosodic states were all set to be 16. For
avoiding over-fitting the decision trees of the break-syntax
model and the syllable-juncture prosodic-acoustic model,
the following two stop criteria were empirically set: (1) The
size of a leaf node must be larger than 700/250 syllables for
the SI/SD case, and (2) the relative improvement of likeli-
hood must be larger than 0.0065 in a node splitting for both
SI and SD cases. Table 5 shows the total numbers of nodes
and leaf nodes for the break-syntax model and the
syllable-juncture prosodic-acoustic model in the SI and SD
HPMs. As shown in the table, the SD HPM uses much larger
decision trees for the two models. This mainly results from
the better quality of prosody pronunciation for the Treebank
speech corpus uttered by a professional announcer.

3.3 Performance evaluations
The performance of the proposed approach is evaluated
by the objective and subjective measures. The objective
measures are the root-mean-square errors (RMSEs) of
the four reconstructed prosodic-acoustic features and bit
rates. The subjective tests are MUSHRA-style [60] lis-
tening tests which ask listeners to rate synthesized
speeches from different systems on a scale from 0 to 100
using the sliders on the screen. To give a meaningful
reference of the performance, a baseline prosody coding
system (without using knowledge of prosodic character-
istics and prosodic structures for Mandarin Chinese)
that uses generic approaches, i.e. vector or scalar
quantization techniques, is constructed for comparison
with the proposed approach. The syllable pitch contour
spn which is represented in a four-dimensional vector is
vector-quantized by the k-Means clustering algorithm
with the squared Euclidean distance metric. The syllable

Table 4 The usages of the subsets for each speech corpus and their statistics

Corpus Subsets Usages Spk# Utt# Syl# Hours Remark

Treebank TrainTB Training of the HPM, the AM for forced-alignment and the models
for HMM-based speech synthesizer

1 376 51,868 3.9

TestTB Evaluation of prosody coding 1 44 3898 0.3

TCC300 TrainTC1 Training of the AM for forced-alignment 274 8036 300,728 23.9 Include all set A and
90% of set B

TrainTC2 Training of the HPM 164 962 106,955 8.3 Subset of TrainTC1

TestTC Evaluation of prosody coding and adaptation of HMM model for
speech sythesis

19 226 26,357 2.4 Selected from Set B
of TCC300
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duration sdn, the syllable energy level sen, and the
syllable-juncture pause duration pdn are independently
scalar-quantized by the k-Means clustering algorithm
with the squared Euclidean distance metric. Therefore,
each of the prosodic-acoustic features, i.e. spn, sdn, sen,
and pdn, has its own codebook and corresponding
codewords. The speech synthesizer for the baseline sys-
tem is also implemented by the HMM-based speech
synthesizer. Initial or final is taken as modeling the
HMM unit with 5 state (the same as the proposed
approach). Each modeling HMM unit is described by
the features of initial/final type and the codewords for
spn, sdn, sen, and pdn. The question set used for the deci-
sion tree-based context clustering of HMMs is formed
by contextual initial or final type and prosodic properties
of the codewords for spn, sdn, sen, and pdn.

3.3.1 Comparison between the equal-RMSE baselines and
the proposed approach
Because the coding of spn, sdn, sen, and pdn by the pro-
posed coding approach share the symbols of tone,

base-syllable type and break types, rate-distortion com-
parison between the baseline and the proposed prosody
coding approach for each of the prosodic-acoustic fea-
ture is not feasible. The root-mean-square errors
(RMSEs) of the four reconstructed prosodic-acoustic
features by the proposed approach are hence taken as
references for comparison. Table 6 shows the RMSEs of
the four reconstructed prosodic-acoustic features for the
inside and outside datum. For the SD task (SD-HPM),
the RMSE was 0.070/0.064 logHz (inside/outside) in F0
coding, 4.8/4.7 ms in syllable duration coding, 0.68/
0.70 dB in syllable energy-level coding, and 41.4/34.3 ms
in syllable-juncture pause duration coding. The corre-
sponding performances were 0.065/0.056 logHz, 9.3/
7.5 ms, 0.80/0.66 dB, and 44.8/44.9 ms for the SI task
(SI-HPM). Except the RMSEs of the pause-duration
coding, all other values are quite low. Table 7 shows the
RMSEs of the reconstructed pause duration for different
break types. It can be seen from the table that they
were high only for B2–2, B3 and B4. Since these
three break types are minor and major breaks and are
more tolerant to large coding errors, the performance
was reasonably good.
Figures 4 and 5 show the numbers of the codewords

versus RMSEs of the four prosodic-acoustic features re-
spectively for the SD and SI prosody codings of the
training sets. The baseline prosody coder yields the simi-
lar RMSEs to the proposed coder at around 24, 19, 16,
and 3 codewords for spn, sdn, sen, and pdn, respectively,

Table 5 Numbers of nodes (leaf nodes) for the break-syntax
model and the syllable-juncture prosodic-acoustic models in SI
and SD HPMs

Task Subsets Break-syntax
model

Syllable-juncture
prosodic-acoustic model

SD TrainTB 139(70) 91(49)

SI TrainTC2 63(31) 43(25)

Table 6 RMSE of syllable logF0 contour (spn), syllable duration (sdn), syllable energy level (sen), and syllable-juncture pause duration
(pdn) for the proposed approach and the baseline systems with various logF0 codebook

(a) SD case

Inside (TrainTB) Outside (TestTB)

spn(logHz) sdn(ms) sen(dB) pdn(ms) spn(logHz) sdn(ms) sen(dB) pdn(ms)

SD-HPM .070 4.8 .68 41.4 .064 4.7 .70 34.3

SD-BSL-24 .069 5.0 .64 33.5 .066 4.7 .59 32.9

SD-BSL-32 .065 5.0 .64 33.5 .061 4.7 .59 32.9

SD-BSL-64 .053 5.0 .64 33.5 .050 4.7 .59 32.9

SD-BSL-128 .044 5.0 .64 33.5 .042 4.7 .59 32.9

SD-BSL-256 .037 5.0 .64 33.5 .042 4.7 .59 32.9

(b) SI case

Inside (TrainTC2) Outside (TestTC)

spn(logHz) sdn(ms) sen(dB) pdn(ms) spn(logHz) sdn(ms) sen(dB) pdn(ms)

SI-HPM .065 9.3 .80 44.8 .056 7.5 .66 44.9

SI-BSL-10 .063 9.1 .78 42.0 .060 10.9 .88 39.4

SI-BSL-16 .056 9.1 .78 42.0 .054 10.9 .88 39.4

SI-BSL-32 .047 9.1 .78 42.0 .046 10.9 .88 39.4

SI-BSL-64 .040 9.1 .78 42.0 .039 10.9 .88 39.4

SI-BSL-128 .034 9.1 .78 42.0 .033 10.9 .88 39.4

SI-BSL-256 .029 9.1 .78 42.0 .029 10.9 .88 39.4
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in the SD case, and at around 10, 11, 10, and 3
codewords for spn, sdn, sen, and pdn, respectively, in the
SI case. Besides of the encoding of the four
prosodic-acoustic features, the base-syllable type infor-
mation must be encoded for speech synthesis. Table 8
lists the bit assignments of each type of the codewords
for the SD and SI cases. The total number of bits per
syllable, as a result, are 25 and 23 for the SD and SI
cases. This result shows that the baseline approach can
achieve the same RMSE performance as the proposed
approach with fewer bits.
It should be noted that a lower or equal RMSE does not

necessarily always indicate a higher subjective quality. We
therefore conduct two independent MUSHRA-style
listening tests for the SD and SI cases. Each of the
MUSHRA-style listening test (SD or SI case) present a
sequence of pages to listeners. Listeners were asked to rate
qualities of speech prosody produced from the following
four systems or methods: the proposed approach (HPM),
the baseline system (BSL), vocoded natural speech (NAT),
and the proposed approach with correct prosodic-acoustic
features (CPRO). The vocoded natural speeches were
made by MLSA filter [53] with 25-dimensional MGC pa-
rameters [50] and are provided to listeners to serve as a
reference (100 point) for their assessment. The speeches
synthesized by the proposed approach with correct
prosodic-acoustic feature are taken as oracle performance

of the proposed prosody coding which is bounded by the
speech quality of the HMM-based speech synthesizer.
For the SD case, we randomly select 10 utterances from

the test set (TestTB) for the MUSHRA test. For the SI
case, we randomly select three female and three male
speakers in the test set (TestTC). Two utterances from
each of the selected speakers were then randomly chosen
as utterance samples for the MUSHRA test. Therefore,
there are 10 and 12 (2 genders * 3 speakers * 2 utterances)
pages for the SD and SI cases and each of the pages has
four parallel synthesized speech instances generated for
each of the four systems or methods. We recruited 15
native Mandarin Chinese speakers for the SD and SI
MUSHRA tests.
Table 9 shows the means and standard deviations of the

scores rated in the two MUSHRA tests for the SD and SI
cases. It can be seen from the table that the proposed ap-
proach (HPM) gets the higher scores than the baseline
(BSL) gets for the SD and SI cases. The HPM in the SD
case gets very close score to the CPRO, indicating the pro-
posed approach can almost reach the performance of the
oracle performance (correct prosodic-acoustic feature)
bounded by the speech quality of the HMM-based speech
synthesizer. Interestingly, we found that the HPM in the
SI case even gets slightly higher scores than the CPRO.
This unexpected result is due to the poor F0 extraction
for the SI case, and this poor F0 extraction is less harmful
for the F0 reconstruction by the HPM parameter with the
information of tone and the prosodic structure. The scores
for NAT are not 100 are due to the glitch caused by hu-
man error. Figure 6 shows the boxplots for the scores in
the SD and SI cases. On each box, the central mark indi-
cates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually

Table 7 The RMSE (ms) performance of the reconstructed
pause duration with respect to different break types

B0 B1 B2–1 B2–2 B2–3 B3 B4

Treebank Inside (TrainTB) 1.2 13.7 20.7 54.1 21.5 68.1 127.7

Outside (TestTB) 1.5 14.9 19.1 41.2 21.4 60.0 103.4

TCC300 Inside(TrainTC2) 0.9 11.1 10.9 24.6 9.1 112.7 199.8

Outside (TestTC) 1.2 22.4 20.7 39.5 7.5 164.5 249.8

Fig. 4 The numbers of the codewords versus RMSEs of the four prosodic-acoustic features for the SD prosody coding of the inside data (TrainTB)
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using the “+” symbol. It is found that the score distributions
of BSL are different from the ones of HPM and CPRO. We
then examine the rank order of the different approach in
terms of their MUSHRA scores and check if differences in
the rank order were significant by the Kruskal-Wallis test at
a p value of 0.01. It is found that in both of the SD and SI
cases HPM, CPRO and NAT have mean ranks significantly
different from BSL, and HPM has mean ranks not signifi-
cantly different from CPRO.

3.3.2 Comparison between the baselines with various
numbers of logF0 Codewords and the proposed approach
The results of the MUSHRA tests show that the baseline
coder cannot generate as natural as the proposed coder
does. By a detail analysis, we find that many syllables
generated by the baseline approach sound incorrect in
tone perception. This indicates that the baseline ap-
proach does not have enough codewords to represent
crucial logF0 contours for Mandarin Chinese. We there-
fore increases number of the codewords for the logF0
contour and keep the numbers of codewords for syllable
duration, syllable energy level and pause duration the
same when implementing the baseline system. For the
SD case, we conduct a MUSHRA test in which each pre-
sented page contains synthesized speeches from the

baseline system with 24, 32, 64, 128, and 256 logF0
codewords, the proposed approach (SD-HPM), and the
proposed approach with correct prosodic-acoustic fea-
tures. The baseline systems with 24, 32, 64, 128, and 256
codewords are denoted as SD-BSL-24, SD-BSL-32,
SD-BSL-64, SD-BSL-128, and SD-BSL-256, respectively.
Because this MUSHRA experiment focused on the logF0
contour feature, the speech from the proposed approach
with correct prosodic-acoustic features (denoted by
SD-CPRO) instead of the vocoded natural speech is
taken as a reference (100 point) for the assessment. The
utterances chosen for this MUSHRA test were the same
as the ones used in the previous SD MUSHRA test. This
SD MUSHRA test therefore has ten pages, and each of
the pages has 7 speech instances from the different sys-
tems. For the SI case, we also conduct a MUSHRA test
with the same utterances chosen in the previous SI
MUSHRA test. In this SI MUSHRA test, each presented
page contains synthesized speeches from the baseline
system with 10, 16, 32, 64, 128, and 256 codewords, the
proposed approach, and the proposed approach with
correct prosodic-acoustic features. The speech from the
proposed approach with correct prosodic-acoustic fea-
tures (SI-CPRO) is also taken as a reference (100 point)
for the assessment. Accordingly, this SI MUSHRA test

Fig. 5 The numbers of the codewords versus RMSEs of the four prosodic-acoustic features for the SI prosody coding of the training sets (TrainTC2)

Table 8 Bit assignment for Codewords used in the baseline
prosody coding

Symbol No. of symbol (SD/SI) No. of bit (SD/SI)

Base-syllable type sn 411/411 9/9

Syllable pitch contourspn 24/10 5/4

Syllable duration sdn 19/11 5/4

Syllable energy level sen 16/10 4/4

Pause duration pdn 3/3 2/2

Total number per syllable 473/445 25/23

Table 9 The statistics of the scores (mean ± 1 standard
deviation) rated in the SI and SD MUSHRA tests with the
vocode natural speech (NAT), the proposed approach with
correct prosodic-acoustic features (CPRO), the proposed
approach (HPM), and the baseline system (BSL) with similar
RMSE to the proposed approach

BSL HPM CPRO NAT

SD 50.1 ± 22.0 74.5 ± 18.8 78.7 ± 16.5 94.9 ± 9.9

SI 48.3 ± 21.5 74.1 ± 17.4 72.2 ± 18.3 95.8 ± 10.4
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has 8 speech instances for each of the test pages. The
baseline system with 10, 16, 32, 64, 128, and 256 code-
words are denoted as SI-BSL-10, SI-BSL-16, SI-BSL-32,
SI-BSL-64, SI-BSL-128, and SI-BSL-256, respectively.
Table 6 also shows the RMSEs of logF0 encoding with
various codeword sizes for the SD and SI cases. The de-
creasing trends of RMSRs for logF0 can be observed for
the both cases when the numbers of the codewords in-
crease. Table 10 shows the means and standard devia-
tions of the rated scores in the MUSHRA tests with
various codeword sizes for encoding logF0. Figure 7
shows the results of the MUSHRA tests. It can be found
from the tables and figures that the subjective scores in-
crease as the numbers of codewords increase. The sub-
jective scores of the 256 codewords (SD-BSL-256 and
SI-BSL-256) are close to but still lower than the scores
of the proposed coding approach (SD-HPM and
SI-HPM). We also examine the rank order of the differ-
ent approach in terms of their MUSHRA scores and
check if differences in the rank order were significant by
the Kruskal-Wallis test at a p value of 0.01. In the SD
case, besides of the pairs of {SD-BSL-24, SD-BSL-32}
and {SD-BSL-128, SD-BSL-64}, all the other pairs are
significantly different in the rank orders. The result
proved that the proposed coding scheme outperforms
the baseline in the subjective tests for the SD case. In

the SI case, SI-BSL-16 is not significantly different from
SI-BSL-10 and SI-BSL-32; SI-BSL-64 is not significantly
different from SI-BSL-32, SI-BSL-128, and SI-BSL-256;
and SI-HPM is not significant different from SI-CPRO
and SI-BSL-256. The result indicated that the perform-
ance of the proposed approach is close to the ones of
the baseline system with 256 codewords for logF0
(SI-BSL-256) and the oracle prosody encoder with cor-
rect prosodic-acoustic features (SI-CPRO).
To find the reason why the best baseline systems with

256 codewords for the SD and SI case still cannot reach
the performance of the proposed approach (HPM), we
did a very careful check for the synthesized utterances
by the baseline systems. It was found that some tone-2
and tone-4 syllables in the first half of a sentence or a
PPh are spoken with high pitch but encoded by some
improper logF0 contours, and therefore sounded un-
natural or incorrect in tone perception. This result
indicated that the baseline approach that works with-
out knowledge of tone and prosodic structure of
Mandarin cannot learn meaningful logF0 contours as
the proposed approach can. The proposed approach,
however, can encode perceptually meaningful logF0
contours with the additive APs of tone, coarticulation,
and pitch prosodic state, where the tone APs repre-
sent typical local patterns for tone; the coarticulation

Fig. 6 Boxplots for the approaches of BSL, HPM, CPRO, and NAT in the SD case (left) and the SI case (right)

Table 10 The statistics of the scores (mean ± 1 standard deviation) rated the MUSHRA tests

(a) the SD case

SD-CPRO SD-HPM SD-BSL-24 SD-BSL-32 SD-BSL-64 SD-BSL-128 SD-BSL-256

93.7±13.2 91.1 ± 9.6 64.9 ± 19.8 67.2 ± 18.1 77.0 ± 16.6 80.3 ± 15.7 86.5 ± 12.1

(b) The SI case

SI-CPRO SI-HPM SI-BSL-10 SI-BSL-16 SI-BSL-32 SI-BSL-64 SI-BSL-128 SI-BSL-256

90.3±12.1 91.0 ± 12.6 64.3 ± 23.4 67.6 ± 23.5 75.2 ± 20.6 78.8 ± 19.1 81.1 ± 19.1 84.8 ± 16.3
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APs describe the logF0 patterns of neighboring tones’
interaction; and the prosodic state APs represent glo-
bal logF0 patterns of intonation.
Figure 8 shows four examples of the reconstructed

speech waveform segments and their corresponding syllable
boundaries and logF0 contours by the prosody coding
approach of SD-CPRO, SD-BSL-24, SD-BSL-256, and
SD-HPM. Taking SD-CPRO (Fig. 8a) as an reference, some
of the logF0 contours generated by SD-BLS-24 (Fig. 8b) are
stylized and discontinuous at syllable junctures. Although
the approaches of SD-BSL-24 and SD-HPM have the simi-
lar RMSE performances, the speech of SD-BLS-24 sounds
unnatural, especially for the second syllable “qian2” and the
fourth syllable “you2” which are tone 2 syllables. In this
case, they sounds like tone 3 syllables. The logF0 contours
of SD-HPM (Fig. 8d) are not as vivid or dynamic as the
ones of SD-CPRO. The tones of all the syllables of
SD-CPRO, however, sound correct in tone perception and
natural because the logF0 contours are continuous at the
syllable junctures (e.g., the junctures between the third and
fourth syllables “zhong1-you2” and the last two syllables
“gou4-you2”) and have similar logF0 slopes and curvatures

to the ones of SD-CPRO (e.g., the second and fourth sylla-
bles “qian2” and “you2”). Although the logF0 contours of
SD-BSL-256 (Fig. 8c) are very close to the ones of
SD-CPRO (Fig. 8a), the fourth syllable “you2” sounds like a
tone 3 syllable. It is found that the RMSE for the fourth syl-
lable “you2” of SD-BSL-256 is smaller than the ones of
SD-HPM. The downward concave logF0 in the first half of
the fourth syllable “you2” of SD-BSL-256, nevertheless,
makes the syllable sound like tone 3. On the other hand,
the logF0 contour of the fourth syllable “you2” of SD-HPM
concaves upward, matches well with the logF0 trend of
SD-CPRO and sounds natural. These examples can par-
tially illustrate the reason why the proposed prosody coding
scheme can perform better than the conventional k-Mean
coding scheme.

3.3.3 Analysis of bit rates
Tables 11 and 12 show the data rates of the proposed sys-
tem and the baseline systems in the SD speech coding task
in the units of bits/syllable and bits/second, respectively. In
the non-compression case (denoted as NC), the baseline
system reaches the same numbers of bits per syllable and

Fig. 7 Boxplots for the approaches of BSL with various codeword sizes, HPM, and CPRO in the SD case (up) and the SI case (down)
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per second when logF0 is encoded with 128 codewords.
This means that the propose system can perform better
than the baseline system at the same bit rate (27 bits/syl-
lable or 102.6 bits/second) in terms of subjective tests. We
then apply entropy coding scheme to compress the source
symbols, i.e., the syllable type for both of the baseline and
the proposed systems, the codewords of {spn, sdn, sen, and
pdn} solely for the baseline system, and tone, pitch/dur-
ation/energy prosodic state tags, and break type tags, for
the proposed system. We first assume each of these symbol
types is the Markov information source of zero order. Spe-
cifically, the symbols are encoded by the Huffman coding
method with the information of the unigram probability for
each type of the symbols obtained in the training set, i.e.,
TrainTB set. The bit rates are listed in the columns denoted
by M0 (zero-order Markov) in Tables 11 and 12. In

compared with the non-compressed case (NC), this entropy
coding can reduce average bits/syllable and bits/second,
standard deviations, and the minimum of bits/second. In
the test set, the bit rate of the proposed scheme with Huff-
man coding with zero-order Markov source assumption
(23.04 bits/syllable or 87.5 bits/second) is slightly lower
than the one of the baseline system SD-BSL-256 (24.64
bits/syllable or 93.6 bits/second) whose subjective perform-
ance is most close to the proposed approach.
To further reduce bit rates, the symbols are encoded

by the Huffman coding scheme with the information of
the bigram probabilities (the Markov information source
of first order.). For the proposed approach, the symbols
related to base syllable types, tones, and break types are
encoded by their bigram probabilities. The prosodic
states are encoded by the probabilities provided by the

(a) 

(b)

(c)

(d)

SD-CPRO

SD-BSL-24

SD-BSL-256

SD-HPM
Fig. 8 Four examples of the reconstructed prosodic-acoustic features by the prosody coding approach of (a) SD-CPRO, (b) SD-BSL-24, (c) SD-BSL-256,
and (d) SD-HPM. The texts are “mu4-qian2 zhong1-you2 zi4 guo2-ji4 shi4-chang3 shang4 gou4 you2 (目前中油自國際市場上購油).”
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three prosodic state transition models (illustrated in Eq.
(14)), i.e., P(pn| pn − 1, Bn − 1),P(qn| qn − 1, Bn − 1), and P(rn|
rn − 1, Bn − 1), which directly well describe the first order
Markov property of the prosodic states conditioned on
the break types. For the baseline approach, the symbols
related to base syllable types and the codewords of the
pause duration are encoded by their bigram probabil-
ities. The codewords of pitch contour, syllable duration,

and syllable energy level are encoded by the probabilities
of P(c(spn)| c(spn− 1), c(pdn− 1)), P(c(sdn)| c(sdn− 1), c(pdn− 1)),
and P(c(sen)| c(sen− 1), c(pdn− 1)), where c(x) is the codeword
of the feature x. It is noted that the roles of c(spn), c(sdn),
and c(sen) are analogous to the ones of pn, qn, and rn, and
the role of c(pdn− 1) is analogous to the one of Bn− 1. The
design of the bigram probabilities for the Huffman coding of
the baseline approach is therefore fair for comparing with

Table 11 Statistics of bits per syllable of the proposed approach and the baselines with various logF0 codebooks for the SD speech
coding case

Bits per syllable

Average Standard deviation Maximum/Minimum

NC M0 M1 M0 M1 M0 M1

(a) Inside

SD-HPM 27 23.23 20.65 0.30 0.38 24.23/22.57 22.09/19.59

SD-BSL-24 25 20.95 20.12 0.20 0.32 21.84/20.44 21.21/19.16

SD-BSL-32 25 21.29 20.45 0.20 0.32 22.14/20.73 21.52/19.35

SD-BSL-64 26 22.31 21.20 0.20 0.31 23.20/21.81 22.14/20.24

SD-BSL-128 27 23.09 21.83 0.20 0.32 23.96/22.54 22.71/20.78

SD-BSL-256 28 24.10 22.12 0.20 0.32 24.95/23.55 22.93/21.14

(b) outside

SD-HPM 27 23.04 21.42 0.29 0.39 23.72/22.45 22.31/20.48

SD-BSL-24 25 21.31 21.01 0.19 0.34 21.96/21.02 21.62/20.19

SD-BSL-32 25 21.59 21.38 0.20 0.37 22.25/21.26 22.05/20.35

SD-BSL-64 26 22.65 22.72 0.21 0.56 23.37/22.34 23.82/21.48

SD-BSL-128 27 23.59 27.70 0.19 1.61 24.29/23.28 31.69/24.63

SD-BSL-256 28 24.64 54.37 0.21 6.60 25.37/24.31 67.40/41.36

Table 12 Statistics of bits per second of the proposed approach and the baselines with various logF0 codebooks for the SD speech
coding case

Bits per second

Average Standard deviation Maximum/Minimum

NC M0 M1 NC M0 M1 NC M0 M1

(a) Inside

SD-HPM 104.1 89.5 79.6 4.8 4.0 3.6 103.9/81.2 118.1/71.7 91.5/62.9

SD-BSL-24 96.4 80.7 77.3 4.4 3.6 3.3 93.1/75.1 109.3/64.2 88.1/61.0

SD-BSL-32 96.4 81.8 78.6 4.4 3.6 3.3 94.4/75.1 109.3/65.2 89.2/62.2

SD-BSL-64 100.3 85.4 81.7 4.6 3.8 3.5 98.6/78.2 113.7/67.9 92.7/63.8

SD-BSL-128 104.1 88.8 83.8 4.8 4.0 3.6 102.4/81.2 118.1/70.2 94.9/65.3

SD-BSL-256 108.0 92.7 84.7 5.0 4.1 3.7 106.5/84.2 122.4/73.6 95.8/66.1

(b) Outside

SD-HPM 102.6 87.5 81.4 4.3 3.5 3.3 95.0/88.1 110.6/76.1 88.7/71.8

SD-BSL-24 95.0 80.8 79.4 4.0 3.4 3.0 87.3/81.5 102.4/69.5 84.7/69.7

SD-BSL-32 95.0 82.1 81.1 4.0 3.5 3.0 88.6/81.5 102.4/70.6 87.1/71.7

SD-BSL-64 98.8 85.7 86.3 4.2 3.6 3.5 92.4/84.8 106.5/73.7 94.5/76.1

SD-BSL-128 102.6 89.3 105.2 4.3 3.8 6.7 96.3/88.1 110.6/76.8 116.3/91.0

SD-BSL-256 106.4 93.6 206.1 4.5 4.0 23.7 101.0/91.3 114.7/80.5 257.1/147.0
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Table 13 Statistics of bit rates per syllable of the proposed approach and the baselines with various logF0 codebooks for the SI
speech coding case

Bits per syllable

Average Standard deviation Maximum/Minimum

NC M0 M1 M0 M1 M0 M1

(a) Inside

SI-HPM 27 22.62 18.08 0.37 0.46 24.33/21.69 20.07/16.84

SI-BSL-10 23 18.40 17.61 0.21 0.32 19.15/17.63 19.00/16.64

SI-BSL-16 23 18.97 18.16 0.21 0.34 19.74/18.20 19.67/17.03

SI-BSL-32 24 19.67 19.00 0.21 0.37 20.43/18.91 20.44/17.99

SI-BSL-64 25 20.55 19.84 0.21 0.39 21.30/19.77 21.50/18.68

SI-BSL-128 26 21.51 20.61 0.21 0.38 22.22/20.71 22.67/19.53

SI-BSL-256 27 22.50 21.15 0.21 0.35 23.20/21.68 23.00/20.10

(b) Outside

SI-HPM 27 22.87 18.94 0.35 0.44 23.98/22.04 20.32/17.82

SI-BSL-10 23 18.58 18.11 0.18 0.33 19.13/18.07 19.09/17.31

SI-BSL-16 23 19.13 18.67 0.18 0.34 19.66/18.60 19.95/17.94

SI-BSL-32 24 20.07 19.54 0.19 0.40 20.65/19.57 20.73/18.45

SI-BSL-64 25 20.85 20.60 0.18 0.60 21.40/20.34 23.40/19.26

SI-BSL-128 26 21.95 23.17 0.19 1.70 22.51/21.40 29.80/20.46

SI-BSL-256 27 22.80 35.23 0.18 6.64 23.33/22.26 61.12/23.55

Table 14 Statistics of bit rates per second of the proposed approach and the baselines with various logF0 codebooks for the SI
speech coding case

Bits per second

Average Standard deviation Maximum/Minimum

NC M0 M1 NC M0 M1 NC M0 M1

(a) Inside

SI-HPM 103.1 86.4 69.0 13.3 11.0 8.6 137.7/52.7 163.6/45.4 108.6/37.1

SI-BSL-10 87.9 70.3 67.2 11.3 9.0 8.3 111.5/44.9 139.4/35.6 105.5/35.0

SI-BSL-16 87.9 72.4 69.1 11.3 9.3 8.5 114.8/44.9 139.4/36.7 108.6/36.4

SI-BSL-32 91.7 75.0 72.5 11.8 9.6 8.9 119.1/46.8 145.4/37.9 113.7/38.0

SI-BSL-64 95.5 78.6 75.7 12.3 10.1 9.4 124.8/48.8 151.5/39.9 118.7/39.8

SI-BSL-128 99.3 82.3 78.7 12.8 10.6 9.8 130.6/50.8 157.5/41.6 124.3/40.9

SI-BSL-256 103.1 86.0 80.8 13.3 11.0 10.2 136.6/52.7 163.6/43.7 127.4/41.5

(b) Outside

SI-HPM 103.6 87.7 72.7 13.3 11.2 9.4 121.2/77.6 142.6/64.6 102.4/52.4

SI-BSL-10 88.3 71.2 69.5 11.4 9.0 8.7 99.2/66.1 121.5/53.1 96.5/51.2

SI-BSL-16 88.3 73.3 71.2 11.4 9.3 8.9 102.1/66.1 121.5/54.7 98.2/52.2

SI-BSL-32 92.1 76.9 74.9 11.9 9.7 9.2 106.8/69.0 126.7/57.4 103.8/54.6

SI-BSL-64 95.9 80.2 79.2 12.4 10.2 9.4 111.3/71.9 132.0/60.0 109.3/56.8

SI-BSL-128 99.8 84.1 88.8 12.9 10.7 9.9 116.5/74.8 137.3/62.9 120.0/66.7

SI-BSL-256 103.6 87.5 136.7 13.3 11.1 22.2 121.3/77.6 142.6/65.4 204.0/93.9
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the proposed approach. The bit rates for the bigram as-
sumption are listed in the columns denoted by M1 (first
order Markov) in Tables 11 and 12. It can be seen from the
tables that the bit rates can be further reduced from the
ones of the unigram assumption (M0) in the training set.
The bit rates of M1 for the SD-BSL-64, SD-BSL-128, and
SD-BSL-256 in the test set, however, are greater than the
ones of M0, indicating that the bigram probabilities from
the training set are overfitted although we have already apply
standard probability smoothing technique to the estimations
of these bigram probabilities. Concluding the bit rates
shown in Tables 11 and 12, the lowest bit rates for the best
proposed approach and the baseline in terms of the subject-
ive tests are respectively 21.42 bits/syllable (or 81.4 bits/sec-
ond) in the M1 encoding case and 24.64 bits/syllable (or

93.6 bits/second) in the M0 encoding case, showing the
compactness of the proposed prosody coding scheme.
Tables 13 and 14 show the data rates of the proposed

system and the baseline systems in the SI speech coding
task in the units of bits/syllable and bits/second, respect-
ively. The Huffman coding scheme with the the Markov
information source of zero order (M0) and first order
(M1) are also applied to reduce the data rates. The pro-
posed approach can achieve the lowest data rate of 18.94
bits/syllable (or 72.7 bits/second) in the M1 encoding
case, which is lower than the data rate of the best base-
line, i.e., 22.80 bits/syllable (or 87.5 bits/second) in the
M0 encoding case.
The data compression ratios (uncompressed/compressed)

for the SD-HPM and SI-HPM by the M1 encoding case are

Fig. 9 Two examples of the reconstructed prosodic features for (a) an utterance in Treebank and (b) an utterance in TCC300. From top to
bottom: syllable pitch mean, syllable duration, syllable energy level, and pause duration. (open circle: reference, star: reconstructed) The texts are
(a) qin-yi gong-si xian-jin zeng-zi yi-dian liu-yi yuan,shen-gou ri-qi jie-zhi shi-yi-yue wu-ri wei-zhi。gai gong-si jin-nian-du xian-jin zeng-zi-gu jiang yu
yuan-you gu-fen fen-kai gua-pai,er zeng-zi-gu yu yuan-you gu-fen quan-li yi-wu jian bu-tong de shi,dui ben nian-du ying-yu fen-pei de quan-li,(勤益

公司 現金 增資 一點 六億 元,申購 日期 截至 十一月 五日 為止。該 公司 今年度 現金 增資股 將 與 原有 股份 分開 掛牌,而 增資股 與 原

有 股份 權利 義務 間 不同 的 是,對 本年度 盈餘 分配 的 權利,); and (b) lian-ri lai gai qiao zhi yin-dao yin zhi pu yi-ceng bo-bo de bo-you
lu-mian jing zhong-xing sha-shi-che zhi zhan ya lu-mian yi sun-huai qian-tian wan-jian ceng fa-sheng qi-che yin lu-kuang bu. shou
zhuang-che shi-jian suo-xing wei fan-fu shu-lin zhen-gong-suo ri-zuo pai-yuan kan-cha fa-xian … (連日 來 該 橋 之 引道 因 只 鋪 一層

薄薄 的 柏油 路面,經 重型 砂石車 之 輾 壓 路面 已 損壞,前天 晚間 曾 發生 汽車 因 路況 不 熟 撞車 事件,所幸 未 翻覆。樹林 鎮

公所 日昨 派員 勘查,發現…)
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1.26 and 1.43, respectively. The data compression ratios for
the SD-BSL-256 and SI-BSL-256 by the M0 encoding case
are 1.14 and 1.18, respectively. The higher data compres-
sion ratio achieved by the proposed coding scheme is
mainly because of the high autocorrelation of the prosodic
state sequence. The prosodic state sequence encompass the
information of syllable prosodic-acoustic features being
subtracted by the local frustration resulted from tone, base
syllable type, and coarticulation effect. The patterns of the
prosodic states are therefore smoother than the ones of the
directly encoded observed prosodic-acoustic features, i.e.,
c(spn), c(sdn), and c(sen). Besides, the M1 encoding for the
HPM symbols just matches the properties of model param-
eters of the HPM in Eq. (14), i.e., P(pn| pn − 1, Bn − 1),P(qn|
qn − 1, Bn − 1), and P(rn| rn − 1, Bn − 1). Evidently, these above-
mentioned properties make the proposed coding scheme
encode speech more efficiently than the baseline system
does when the proposed approach has better subjective
test results than the baseline in the SD case, and equal
subjective results to the baseline in the SI case.
It is interesting to find that the proposed approach in

the SD case needs a higher bit rate (81.4 bps) than the
SI case does (72.7 bps) to achieve the subjective qualities
which are closed to the ones by the oracle prosody en-
coder with correct prosodic-acoustic features (SD-CPRO
and SI-CPRO). This finding is quite counter-intuitive be-
cause speech coding for the SI cases usually needs more
codewords (or bit rates) than the SD cases to model
speakers’ variabilities in spectrum and prosody. Since the
proposed coding method generates spectral information
by the HPM parameters with the side information of the
CD-HMM for modeling state duration and MGC, we
disregarded the bit rates related to the spectrum coding
part that usually contributes the majority of the bit-
stream in conventional speech coding cases. When con-
sidering prosody coding solely in this study, the higher
bit rate for prosody indicates that the richer prosodic vari-
ation made by a speaker to convey more information. Re-
call that the SD and SI cases in this study encoded the
prosodies of the TTS speech corpus (Treebank speech
corpus) and the ASR speech corpus (TCC300), respect-
ively. The professional announcer tended to utter the TTS
corpus with rich prosodic variation for a better conveying
of linguistic, paralinguistic, and non-linguistic information
while the amateur speakers tended to utter the ASR cor-
pus with flat prosody for just conveying linguistic informa-
tion. So, the counter-intuitive result that the SD case
needs a higher bit rate than the SI case is reasonable in
this study. Figure 9 shows two typical examples of the re-
constructed prosodic-acoustic features of two utterances
of the outside test. As shown in the figure, most recon-
structed prosodic features were close to their reference
values. This shows that the proposed prosody coding ap-
proach is very promising.

4 Application to speaking rate conversion
An example of modifying the speaking rate of a re-
constructed speech via directly replacing the HPM
parameters with those of two different speaking rates
is illustrated. The task is to convert the source pros-
ody of a reconstructed speech in the SD prosody cod-
ing task into the target prosody of a slower or faster
speaking rate. This is realized by replacing the side
information of the HPM used in the synthesis oper-
ation of the decoder with that of the HPM trained in
the target speaking rate. Here, we simply assume that the
source and target speeches have the same prosodic phrase
structure so as to let the converted utterance share the
same decoded break and prosodic-state tags of the source
utterance. Since the source Treebank database was re-
corded in the most comfortable speed for the announcer,
it is therefore regarded as the normal speaking-rate speech
corpus. By taking the normal speech as a reference, two
other parallel corpora, FastTB of the fast rate and SlowTB
of the slow rate, were then recorded. Table 15 displays the
statistics of these speech corpora. Notice that the speech
rate (SR) is defined as the average number of syllable
uttered per second, while the articulation rate (AR) is
defined as the average number of syllable uttered per
second excluding all pauses. Figure 10 displays the ori-
ginal waveform, the synthetic waveforms of normal,
slow, and fast speaking rates, and their corresponding
pitch contours. It can be seen from the figure that both
syllable durations and pause durations were changed
largely to match the given speaking rate, while wave-
forms and pitch contour shapes were mostly kept un-
changed. An informal listening test confirmed that both
converted speech of high and low speaking rate
sounded very fluently and naturally.

5 Conclusions
A novel parametric prosody coding approach for Mandarin
speech has been discussed in this paper. Its novelty lies in
employing a sophisticated hierarchical prosodic model as the
prosody-generating model to analyze the prosodic-acoustic
features and extract the representing parameters for encod-
ing in the encoder, and to synthesize the prosodic-acoustic
features from the decoded representing parameters with the
help of the hierarchical prosodic model in the decoder. Low

Table 15 The Statistics of Speech Corpora FastTB and SlowTB

Corpus Utt# Syl# Hours AR
(syllables/seconds)

SR
(syllables/seconds)

FastTB 368 50,691 3.4 5.52 4.40

TrainTB 376 51,868 3.9 5.05 3.82

TestTB 44 3895 0.3 4.89 3.78

SlowTB 372 51,231 6.0 3.78 2.46

Chiang EURASIP Journal on Audio, Speech, and Music Processing  (2018) 2018:5 Page 21 of 24



average data rates of 81.4 and 72.7 bps have been reached
respectively for the SD and SI cases at the condition of low
RMSEs of the reconstructed prosodic-acoustic features with
good synthesized speech quality. These data rates are lower
than the ones encoded by the conventional segment-based
prosody coding with scalar or vector quantization scheme. It
is interesting to find this counter-intuitive result that the SD
case needs a higher bit rate than the SI case does. The reason
for the result may be that the SD speech corpus uttered by
the professional announcer (for constructing a TTS) is richer
in prosodic variation than the SI speech corpus uttered by
the amateur speakers (for constructing ASR systems). The
higher bit rate may indicate the more information to be
conveyed in a speech with the richer prosodic variation.
The use of the hierarchical prosodic model also provided
the proposed approach an additional advantage of easily
manipulating the prosody of the synthetic speech. An ex-
ample to convert the speaking rate of the synthetic speech
via changing the parameters of the hierarchical prosodic
model in the decoding stage has been illustrated. This
makes the proposed approach useful in some applications
such as e-book reader.

A drawback of the proposed approach lies in the need
of the text associated with the encoding speech. This
can be cured by using a front-end automatic speech
recognizer (ASR) to extract the linguistic information as
well as to segment the speech signal. A prosody-assisted
ASR [61, 62] can be used to help to solve the problem.

Abbreviations
AP: Affecting pattern; AR: Articulation rate; ASBC: Academia Sinica Balanced
Corpus of Modern Chinese; ASR: Automatic speech recognition; BG/
PG: Breathe/prosodic phrase group; BSL: Baseline; CD-HMM: Context-
dependent hidden Markov model; CELP: Code-excited linear prediction;
CMAPLR: Constrained maximum a posteriori estimation linear regression;
CPRO: Encoding prosody by the proposed HPM with Correct PROsodic-
acoustic features; F0: Fundamental frequency; HMM: Hidden Markov model;
HPM: Hierarchical prosodic model; HTK: Hidden Markov model toolkit;
LPC: Linear predictive coding; M0: The Huffman coding scheme with the
Markov information source of zero order; M1: The Huffman coding scheme
with the Markov information source of first order; MELP: Mixed excitation
linear prediction; MGC: Mel-generalized cepstral coefficient; MLSA: Mel log
spectrum approximation; MQ: Matrix quantization; MUSHRA: MUltiple Stimuli
with Hidden Reference and Anchor; NAT: Vocoded NAtural speech with 24-
dimensional Mel-generalized cepstral coefficients; PCM: Pulse Code Modulation;
PLA: piecewise linear approximation; PLM: Prosody labeling and modeling;
PPh: Prosodic phrase; PW: Prosodic word; SD: Speaker dependent; SI: Speaker
independent; SR: Speech rate; SYL: Syllable; TTS: Text-to-speech; VQ: Vector
quantization

Fig. 10 An example of speaking rate conversion: speech signal and pitch contour of (a) the original, (b) the reconstructed of the same speaking
rate (normal), (c) the reconstructed of the faster speaking rate, and (d) the reconstructed of the slower speaking rate. The text is “er zeng-zi-gu yu
yuan-you gu-fen quan-li yi-wu jian bu-tong de shi ...(而增資股與原有股份權利義務間不同的是...)”
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