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Abstract

This work studies a wind noise reduction approach for communication applications in a car environment. An endfire
array consisting of two microphones is considered as a substitute for an ordinary cardioid microphone capsule of the
same size. Using the decomposition of the multichannel Wiener filter (MWF), a suitable beamformer and a
single-channel post filter are derived. Due to the known array geometry and the location of the speech source,
assumptions about the signal properties can be made to simplify the MWF beamformer and to estimate the speech
and noise power spectral densities required for the post filter. Even for closely spaced microphones, the different
signal properties at the microphones can be exploited to achieve a significant reduction of wind noise. The proposed
beamformer approach results in an improved speech signal regarding the signal-to-noise-ratio and keeps the linear
speech distortion low. The derived post filter shows equal performance compared to known approaches but reduces
the effort for noise estimation.
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1 Introduction

Hands-free communication applications in a car environ-
ment always face the problem of unwanted noise com-
ponents in the microphone signals. Commonly, single-
channel algorithms like the Wiener filter and spectral
subtraction are used for noise suppression [1, 2]. Multi-
channel approaches are able to improve the speech quality
further [3-6]. Considering more than one microphone,
closely spaced microphones are often used in commu-
nication systems for signal augmentation by forming a
differential microphone array [7—11]. This allows to cre-
ate a directivity-dependent beam pattern to augment a
desired signal direction, while suppressing noise coming
from other incident angles.

The use of micro-electro-mechanical system (MEMS)
microphones as a replacement for ordinary microphone
capsules has gained interest in [12—14], especially for the
application of directive beamforming [15, 16] due to its
reduced size and cost compared with an ordinary micro-
phone capsule. However, differential microphone arrays
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are not ideal in the presence of wind noise. The direc-
tional beam pattern may lead to a significant amplification
of the wind noise due to the correlation properties of the
noise terms [17]. The required first-order low-pass filter
for the equalization regarding the speech signal makes this
behavior even worse. One proposed solution for a differ-
ential microphone array is to switch to a single micro-
phone with an omnidirectional response if wind noise is
detected [17].

Besides car noise, wind noise components often occur in
hands-free communication applications in a car environ-
ment, caused by open windows, fans, or open convertible
hoods that create airflow turbulence over the microphone
membranes and result in low frequency signal compo-
nents of high amplitude [18].

Noise reduction algorithms in car environments are
typically based on the assumption that the noise is sta-
tionary or varies only slowly in time. In [19], Wilson et al.
demonstrated that wind noise consists of local short-time
disturbances which are highly non-stationary. This makes
the reduction of wind noise a challenging task. The sup-
pression of wind noise is mostly covered in the context
of digital hearing aids or mobile devices in the literature
[17, 20, 21]. For single-channel wind noise reduction,
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often the different power spectral density (PSD) proper-
ties of speech and wind noise are exploited [17, 20, 22].
Several other methods exist that aim to reduce wind noise
for a single microphone [23-27].

The utilization of more than one microphone allows
to take the diversity of the sound field into account to
indicate wind noise and reduce it successfully. In [20], a
spectral weighting filter based on the coherence between
two microphones is proposed. The coherence is also
used in [28], where in addition to the magnitude squared
coherence (MSC) the information that relies on the
phase component is applied to synthesize a spectral filter
function.

In [29], the decomposition of the multichannel Wiener
filter into a minimum variance distortionless response
(MVDR) beamformer and a single-channel Wiener post
filter for an arbitrary microphone arrangement is pre-
sented. The approach is based on the assumption that
the wind noise is uncorrelated at the microphones, while
having equal noise power spectral densities, but arbitrary
acoustic transfer functions (ATFs). From these assump-
tions follows for closely spaced microphones that a sim-
ple delay-and-sum (DS) beamformer achieves maximum
signal-to-noise-ratio (SNR) beamforming, because equal
ATFs from the speech source to the microphones can be
assumed for low frequencies.

In this work, we propose a wind noise reduction
approach for a closely spaced microphone array consist-
ing of two MEMS microphones, which is considered as
a substitute for an ordinary cardioid microphone cap-
sule. The decomposition of the MWF in a beamformer
and a single-channel post filter is used similar to [29]
as well as the assumption that the wind noise is uncor-
related at the microphones. But in contrast to [29], we
assume that the noise powers at the microphones may
differ. Since the geometry of the microphone array and
the location of the desired speech source are known,
additional assumptions about the speech and noise sig-
nal properties can be made to design a low-complexity
wind noise reduction algorithm. Even for distances of
only a few centimeters, the variation in the microphone
signals can be used to reduce wind noise significantly.
The coherence properties of speech and wind noise sig-
nals are exploited to form a beamformer, as well as to
obtain estimates of the speech and noise PSDs for the
post filter. Simulations with recorded wind noise show
that the proposed approach improves the signal-to-noise-
ratio, while keeping the linear distortion of the speech
signal low.

The remainder of this paper is structured as follows. The
signal model and the notation are briefly introduced in
Section 2. In Section 3, the proposed wind noise reduction
approach is presented. Simulation results are discussed in
Section 4, followed by a conclusion in Section 5.

Page 2 of 9

2 Signal model and notation

In the following, the signal model and the notation is
briefly explained. We consider a linear MEMS micro-
phone array, which is mounted in a car in front of the
speaker’s seat in an endfire configuration. The acoustics
in the car environment are considered as linear and time
invariant. Using the the sub-sampled time index « and the
frequency bin index v, the spectrum Y;(k,v) of the ith
microphone can be written in the short-time frequency
domain as

Yi(Krv) :Hi(v)X(K!V)+Ni(K!V)! (1)

where X(k,v) corresponds to the short-time spectrum
of the speech signal. H;(v) denotes the acoustic transfer
function, S;(x,v) = H;(v)X(k,v) is the spectrum of the
speech component, and Nj(k,v) is the spectrum of the
noise at the ith microphone. For two microphones, the
signals can be written as vectors

S(k,v) = [S1(k, 1), Sa ke, )T (2)
N(x,v) = [Ni(k, ), N2k, 1)]" (3)

H(v) = [H1(v), Ho(0)]" (4)
Y(x,v) = S(k,v) + N(«k, v). (5)

Vectors and matrices are written in bold, and scalars
are normal letters. T denotes the transpose of a vec-
tor, * denotes the complex conjugate, and T denotes the
conjugate transpose.

We assume that the speech and noise signals are zero-
mean random processes with the short-time power spec-
tral densities d>]2\,i(/<,v) and ¢§i(K,v) at the ith micro-
phone. It is assumed that the speech and noise terms
are uncorrelated. The noise correlation matrix can be
expressed as

Rk, v) = E [NGe, »NGe, '} (6)
and similar the speech correlation matrix as
Rs(k,v) = E {S(K, S, u)T} — oX(c,HH!, (7)

where E denotes the mathematical expectation and
CI>§((K, v) the PSD of the clean speech signal. Due to the
short-time PSD fluctuations, the PSDs are time and fre-
quency dependent. However, for briefness, the indices
(k,v) are often omitted in the following.

3 Wind noise reduction algorithm

In this section, the proposed noise reduction algorithm is
derived. The filtering is only applied in the low frequency
range which is affected by wind noise. It should be noted
that the noise signal consists of wind as well as car noise
components. However, in the presence of wind noise, the
wind noise components are dominant at low frequen-
cies. In the following, we consider only the non-stationary
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wind noise components at low frequencies and neglect the
slowly varying driving noise. Such stationary noise com-
ponents can be estimated and reduced by state-of-the-art
noise reduction approaches.

The proposed wind noise reduction approach is derived
from the commonly used speech distortion weighted mul-
tichannel Wiener filter [3], which is defined as

GMVF = (Rg + uRN) ™! OZHA* ®)

where H is the acoustic transfer function of an arbitrary
chosen microphone channel. x is a noise overestimation
parameter which allows a trade-off between noise reduc-
tion and speech distortion. The output signal Zyrwr of the
Wiener filter is obtained by

:
Zuwr =Y - GMWE', (9)

In [30, 31], it is shown that GMWF can be decomposed
into an MVDR beamformer

-1
GMVDR _ RN H

= (10)
-1
H'R'H
and a single-channel Wiener post filter
yout
"= T an
Yo+
as
GMWF _ GMVDR | -WF s 12)

The term y°" is the narrow-band SNR at the beam-
former output which is defined as

~1
yout = tr (RSRN ) ,

where tr(-) denotes the trace operator. We exploit this
decomposition for the proposed wind noise reduction.
Firstly, we derive a beamformer for the considered micro-
phone setup.

(13)

3.1 Beamformer

In the following, we consider time-aligned signals where
the alignment compensates the different times of arrival
for the speech signal. This is achieved by delaying the front
microphone with a suitable sample delay 7 to be in phase
with the rear microphone,

A eI forve0,..., Lk —1
Y =Y B Trr2 14
1) 1) {e’Z”L’ forv e %,...,L—l (14)

where L denotes the block length of the short-time Fourier
transform. After this alignment, we assume that the ATFs
in H are identical, because the low frequency speech
components have a large wavelength compared with the
microphone distance.

H=H =H,
H=H[1,1]"

(15)
(16)

Page 3 0of 9

which leads to the speech correlation matrix depend-
ing only on the PSD of the speech signal at one of the
microphones

11 11
Rs=¢§<|H|2(1 1):‘1%(1 1)‘

Furthermore, it can be assumed that the wind noise
terms for both microphone signals are uncorrelated even
for small distances of the microphones [28, 32]. This sim-
plifies the noise correlation matrix as well as its inverse
since the cross-terms can be neglected

(17)

o 0
-1 @y,
Ry = 01 1| (18)
o7,
The numerator term of the GMYPR in (10) can be writ-
ten as
_1
-1 o
RyH=H | " (19)
Y
Ny

and the denominator as

N 1 1
H'RY'H = |H|*- (2 + 2) . (20)
(DNI CDNz
Since H is not known, it is set to H = 1. This results in

the minimum variance (MV) beamformer coefficients

G =— (21)

Y
N

1
o7,
1 ’

+ cbi]zvz
which can be interpreted as a noise-dependent weight-
ing of the input signals. Note that the MV beamformer
achieves the same narrow-band output SNR as the MVDR
beamformer but no distortion-free response [5]. Finally,
the output of the beamformer can be written as
Yary = (ffl Gty 6. (22)
Using (17) and (18), we are able to calculate the narrow-

band output SNR of the beamformer as

1 1 2

out __ 52 _ S
14 - (DS ’ (cDZ + (DZ ) - (-DZ ?
N Na Nbeam

(23)

where <I>]2\[mm denotes the noise PSD at the beamformer
output. This PSD can be calculated as

2 2
2 _ (DNI ) CDNZ (24)
Nbeam — (DZ + CD2 :

Ny N,
3.2 Special cases
In the following, we consider some special cases for the
beamformer derived in (22). Assuming ¢12\11 = d>12\,2 and

uncorrelated noise terms as in [29], then GfVIV reduces to



Grimm and Freudenberger EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:7

the simple weighting of a delay-and-sum beamformer (a
simple summing of the aligned signals)

GPS=_™M (25)

which results in the output signal

Yps = % ()A/l + Yg) . (26)

A delay-and-sum beamformer is also proposed in [17]
for closely spaced microphones with wind noise.

We keep the condition of uncorrelated noise terms and
assume a special case where the short-time noise PSDs
are varying over time and frequency. This is motivated by
the highly non-stationary local short-time wind noise dis-
turbances [19] and implies that only one microphone is
affected by wind noise at any given time and frequency
index x and v

DX, (k,v) << DY, (k) (27)
or
CDZZVI (k,vV) >> CDZZVZ(K,U). (28)

Then, the noise PSD-dependent weighting in (21)
reduces to a selection approach of the dedicated frequency
bins by comparing the short-time PSDs of the micro-
phone signals <I>2i, because the speech signal PSDs CIDEI, are
assumed to be identical for both microphones. Therefore,
the resulting output signal Yrgs can be written as

Yi(k,v), &3 (k,v) < @YZ(K V)

Yo (k,v), dDY (k,v) > dD (/< V) (29)

Yrps(k,v) = {

3.3 PSD estimation

Next, we derive estimates for the speech and noise PSDs
which are required for the beamformer and post filter. As
mentioned in [29], most single-channel noise estimation
procedures (i.e., [33—35]) rely on the assumption that the
noise signal PSDs are varying more slowly in time than
the speech signal PSD. This is not the case for wind noise.
The fast varying short-time PSDs make noise estima-
tion a challenging task for a single microphone. However,
using more than one microphone, the different correlation
properties for speech and wind noise can be used for the
estimation.

A reference for the wind noise can be obtained by
exploiting the fact that the wind noise components in
the two microphones are incoherent while the speech
components are coherent. To block the speech signal,
a delay-and-subtract approach is used to obtain a noise
reference

-1
2

, (30)

Page 4 of 9

which depends only on incoherent wind noise terms. The
PSD of this noise reference is

% = E {NN*} (31)

()] o
2 2

1 PN N
L[] -2

—E{Ygf’f‘}+E{Y2Y2*}) (33)
- e}z |
—E{NR7] +E{Nang ). (34)

The cross-terms vanish, because the wind noise terms
are uncorrelated. Hence, we obtain

o Ok
@2 =S4 fe2 35
N 4 4 (35)

Note that the delay-and-subtract signal in (30) is used
in other applications as the output of a differential micro-
phone array [17]. Obviously, this is not suitable for micro-
phone positions that are sensitive to wind noise, because
the noise terms are heavily amplified.

By summing the aligned signals according to (26), we
augment coherent signal components. The combined sig-
nal Ypgs has the PSD

oY, = E{YpsYps*} (36)

() -

1/ (o w
E(E[YIYf‘] {Y1Y2

+E{ni] +E{nr])

(38)

E{ss*} + % (E{fnfr} + B { Rt

+E {Nofit |+ E (NoN ) (39)

Again, the noise cross-terms vanish and we obtain

Mo 0%
2 1 2
Dy, = 4 + =

Combining (35) and (40) yields the PSD of the clean
speech signal

2
cDS - q)YDS

=i+ (40)

%, (41)
and the noise PSD at the ith microphone

o, = b}, — 3. (42)

Note that this derivation only holds for uncorrelated
noise terms. ®2 may still contain correlated noise. How-
ever, we neglect the correlated driving noise as stated at
the beginning of this section. In contrast to Zelinskis post
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filter [36], which also assumes zero correlation between
the microphone signals, we assume the short-time noise

PSDs to be different (CDIZ\[1 * CDJZVZ).

3.4 Postfilter

As described in (12), the beamformer is followed by a
single-channel Wiener post filter to achieve additional
noise suppression. We use the post filter

GVF=_V 43)
Y +u
with the SNR estimate
y = o5 (44)
o3,

That is, the noise PSD is estimated according to (35)
instead of (23), because this estimate showed a better per-
formance in the simulations regarding SNR and speech
distortion. Note that ®%, > CDIZVbeam holds, with equality if
@12\[1 = @12\,2. Hence, the noise estimation in (44) results
in an overestimation of the noise power if the short-time
PSDs at the microphones vary. This is similar to using an
overestimation parameter p > 1.

Finally, the output of the complete wind noise reduction
algorithm is

Z (45)

(fq GV 4y, GQW) . GYF

= Yy - GVE. (46)

This wind noise reduction algorithm is only applied
for frequencies below a cutoff frequency f;, because wind
noise mostly contains low frequency components and the
assumptions about the signal properties are only valid for
low frequencies. Figure 1 shows the block diagram of the
signal processing structure.

4 Simulation results

In the following, simulation results for the algorithm pro-
posed in Section 3 are presented for wind noise in a car.
For the signal measurements, a linear MEMS microphone
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array in an endfire configuration was mounted above the
sun visor at the driver seat position. To investigate vary-
ing microphone distances, an array with four sensors
was used. The microphone distances were 7.1, 14.3, and
21.4 mm.

The noise recordings and the speech recordings were
done separately and mixed in the simulation. For the noise
recordings, the driving speed was 100 km/h and both front
windows at the driver side as well as the co-driver side
were completely open to allow a turbulence airflow over
the MEMS array. The speech signals for testing were four
ITU speech signals convolved with the impulse responses,
which were measured from the mouth reference point of
an artificial head (HMS IL5 from HEAD acoustics) at the
driver’s position to the MEMS array microphones.

For the simulations, a sampling rate fs = 16 kHz and
an fast Fourier transform (FFT) size of 512 samples was
used. The FFT shift was 128 samples, and each block was
windowed before it was transformed into the frequency
domain. The cutoff frequency f; was set to 1 kHz.

As quality measures, we consider the segmental signal-
to-noise ratio (SSNR), the log spectral distance (LSD), as
well as short-time objective intelligibility measure (STOI)
as described in [37]. The STOI is a metric for speech
intelligibility.

It should be noted that the SSNR and LSD mea-
sures are calculated for the frequency region below the
cutoff frequency f. since the frequency region above
f. is not affected by the proposed wind noise reduc-
tion approach. Therefore, the signals are transformed
back into the time domain and are low-pass filtered
to calculate the SSNR and LSD values. The STOI is
calculated over the complete frequency range with 15
third-octave bands.

The LSD measures the linear speech distortion and is
calculated as the average logarithmic spectral distance
of two PSDs. These are the signals under test, i.e., the
speech component of the filtered output signal and the
clean speech reference X. The PSDs are calculated over all
speech active blocks using an ideal voice activity detector.

N1

+FFT

Windowing time delay Y1
compensation

S1 Y1

X

O

Fig. 1 Block diagram of the signal model and the proposed processing

S2 Y2

+FFT

Windowing

A 4

pSD i
estimates [
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For further details regarding the LSD calculation, we refer
to [38].

The SSNR is calculated based on [39]. However, we cal-
culate the SSNR by the ratio of the signal energy of the
speech and the noise components in speech active frames
as

RI+M—1 |~
par e Ol%

1 .~ 35
RAM=1 53k 2 )]

1 K-1
SSNR = — > |:1010g10 (

=0 —10

(47)

5(k) and 7(k) are the speech and noise components at
the output of the dedicated noise reduction approach in
the time domain. k is the time index, M is the frame
length, R is the frame shift, and K is the total number
of considered frames. The frame length was 512 samples,
and the frame shift was 256 samples. The SSNR values are
limited between —10 and 35 dB.

Car noise, which is also present in the microphone sig-
nals, is not considered in our algorithm. Thus, the SSNR
improvements in absolute value can be lower compared
with measured noise signals which contain wind noise
only.

4.1 Coherence properties

Figure 2 shows the results of the magnitude squared
coherence calculation of speech and noise for varying
microphone distances. The magnitude squared coherence
for two signals u; (k) and uy (k) is calculated as

Efuug) ’

MSC = ) (48)

\/IE [thu) - E {Uht)

MSC - noise signals

Magnitude

Frequency in Hz
MSC - speech signals

O ! T ki
=
= ——21.4 mm
05 ---- 143 mm
<
= 7.1 mm
0 i
10 10°

Frequency in Hz

Fig. 2 Magnitude squared coherence for the noise signals Ny and N,
(top) as well as the speech signals S; and S, (bottom) with different
microphone distances
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where U; and U, denote the corresponding short-time
spectra. The mathematical expectation values of the input
signals are estimated by the Welch periodogram using
recursive smoothing. A very high smoothing factor of
0.9995 was chosen to average over many signal frames. An
MSC value close to one means the signals are highly cor-
related, whereas a value close to zero indicates that the
signals are uncorrelated.

As can be observed, the assumption that noise is uncor-
related while speech is highly correlated is fulfilled for
frequencies below 600 Hz for all microphone distances,
which justifies the assumptions made in Section 3.

4.2 Beamformer output

In Table 1, the SSNR gain of the beamformer output is
compared with a single microphone. This comparison is
considered, because the approach in [17] suggest to switch
from a differential microphone array to a single omnidi-
rectional microphone if wind noise is detected. The SSNR
of the single microphone is 2.14 dB. For further compar-
ison, the results of the delay-and-sum beamformer Yps
are shown, which is the summing of the aligned signals as
described in (26) (and also proposed in [17] for combin-
ing of wind noise-affected signals). Also, the output of a
frequency bin selection (Yrps) approach as stated in (29)
is examined. The noise estimates in (42), as derived in
Section 3.3, are used for the beamformer. Moreover, the
ideal noise PSDs are used to get a benchmark. Since the
noise signals where recorded separately for the simula-
tions, the ideal noise PSDs are obtained by using the noise
only signals for the PSD calculation. The PSDs are calcu-
lated by the Welch periodogram using recursive smooth-
ing. However, the short-time recursive PSD smoothing
was omitted, because this achieved the best results due to
the high non-stationarity of the wind noise.

As can be observed, all beamformer approaches are
able to improve the SSNR in the considered frequency
region compared with a single microphone, where all
SNR gains are getting larger as the distance between the
microphones is increased. It is interesting to see that
the delay-and-sum approach Yps has the worst perfor-
mance for all microphone distances, whereas the fre-
quency bin selection approach shows results similar to

Table 1 SSNR gain compared with single microphone for
different beamformer outputs

Signal Microphone distance

7.1 mm 143 mm 214 mm
Yps (Eq. (26)) 0.96 dB 1.22dB 1.58dB
Yrgs (Eq. (29)) 1.80dB 2.25dB 247 dB
Yy (Eq. (22)) (noise estimate) 1.77 dB 234dB 2.80dB
Yy (Eq. (22)) (noise benchmark) 1.80 dB 251 dB 3.04 dB




Grimm and Freudenberger EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:7

the MV beamformer. This indicates that the short-time
PSDs at the microphones vary heavily. Comparing the
performance with estimated noise PSDs with that of the
beamformer with the actual noise PSDs, we observe that
the results regarding the SSNR are similar, i.e., the PSD
estimates are sufficiently accurate.

4.3 Post filter output

Now, the SSNR as well as the LSD for the complete MWF
including the post filter (as derived in (46)) are examined.
To compare the post filter of (43) with other approaches, a
wind noise reduction filter by Franz et al. [20] that defines
a filter function based on the magnitude squared coher-
ence is used as a reference. The proposed post filter in (43)
as well as the post filter derived in [20] are applied to
the beamformer output Y;sy which uses the noise esti-
mates. As can be seen in Table 2, the SSNR can be further
improved while keeping the speech distortion below 1 dB
compared with the single microphone signal Y7.

For the post filter comparison, the noise overestimation
parameter ¢ was set to achieve a similar LSD value as the
post filter in [20]. The short-time PSDs used for the post
filter, as well as the calculated MSC needed for the filter
design in [20], were recursively smoothed by the same fac-
tor of 0.85 to make a fair comparison. As can be seen, both
post filters are able to achieve the same noise reduction.

Table 2 also contains values for the STOI. The STOI
is closely related to the percentage of correctly under-
stood words averaged across a group of users. The maxi-
mum STOI value is one and larger values indicate better
speech intelligibility. The noisy speech signals are com-
pared with the time domain signal of the clean speech X.
It can be seen in Table 2 that the STOI is increased for
the beamformer output Y3y compared with the single
microphone Y;. The results indicate that additional post
filtering improves the STOI, where the post filters obtain
similar STOI values.

Figure 3 shows the spectrogram for the omnidirectional
reference microphone, as well as the output Z of our pro-
posed wind noise reduction algorithm with a microphone
distance of 21.4 mm. It can be observed that the high
energetic noise terms in the low frequencies are success-
fully suppressed. Above 600 Hz the noise reduction is not
as strong, i.e., the assumptions for the wind noise signal

Table 2 Results for the post filter output for wind noise and
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clean speech signal
1000 1 L S

500

Frequency

Time in s
single microphone signal

1000 |

Frequency

Time in s

wind noise reduced signal
1000

500

Frequency

Time in s

Fig. 3 Spectrogram for a single microphone Y; (middle) and the
output signal Z from (46) (bottom)

properties with this noise recording are only valid for
frequencies below 600 Hz (cf. Fig. 2).

4.4 Wind noise only scenario

Finally, the wind noise reduction is considered in a sce-
nario containing only wind noise and no driving noise.
The SSNR of the single microphone Y7 is 4.86 dB in this
scenario. The results can be seen in Table 3. Again, the
beamformer output Y,sy with noise estimation is used
with both post filter approaches as in Section 4.3. All
parameters except for the overestimation parameter are
the same. The table contains results for two different
values of the overestimation parameter for the Wiener
post filter in order to demonstrate the trade-off between
speech distortion and noise reduction. With © = 8, the
Wiener filter and the filter from [20] obtain similar perfor-
mance values. Reducing the overestimation parameter to
n = 1 also reduces the SNR gain, but results in better LSD
and STOI values. Comparing the results with the gains in

Table 3 Results for the post filter output in a scenario containing
only wind noise

driving noise Signal SSNR gain LSD STOl

Signal SSNR gain LSD STOI \z - 23dB 0.896
Yy - 23dB 0.799 Yuy (Eq. (22)) 342d8B 23dB 0917
Yy (Eq. (22)) 2.80dB 22dB 0.821 Y (Eq. (22)) + post filter after [20] 9.18dB 3.1dB 0.900
Yy (Eq. (22)) + post filter after [20] 543dB 33dB 0.825 Z(Eq.(46), u =8 9.34dB 33dB 0.906
7 (Eq. (46)), u = 6 544 dB 33dB 0826 Z(Eq.46),u=1 5.69dB 24dB 0923
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Table 2, the achieved SSNR values are higher due to the
absence of the driving noise.

Figure 4 shows the spectrogram of the output Z for
the wind noise only scenario. The noise is significantly
reduced over a wide frequency range. Since the coherent
driving noise terms are not present in this scenario, noise
reduction can also be observed for frequencies above
600 Hz.

5 Conclusions

In this paper, a wind noise reduction approach for a com-
pact endfire array was examined. Based on the decom-
position of the MWF, a beamformer and a post filter
were derived. Due to the known geometry of the MEMS
microphone array in endfire configuration and knowl-
edge about the position of the speech source, assumptions
about the signal properties of the speech and wind noise
components were made. The acquired estimates of the
PSDs for the wind noise as well as the speech signals
are used to design a beamformer as well as a post filter
for wind noise reduction. The simulations based on noise
recordings in a car environment show that a significant
wind noise reduction is possible while keeping the speech
distortion low.

Further investigations should be made to combine the
proposed wind noise reduction approach with the reduc-
tion of car noise. The driving noise is neglected in our
study. The compact microphone array can be part of an
array of more widely spaced microphones, where the spa-
tial diversity of the sound field can be exploited for further
noise reduction. Since the non-stationary noise terms are
mostly reduced with the proposed approach, state-of-the-
art noise estimation procedures can be chosen that rely
on the assumption that the driving noise is only slowly
varying.
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Fig. 4 Spectrogram for a single microphone Y; (top) and the output

signal Z from (46) (bottom) in a wind noise only scenario
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Wind noise-induced disruptions are a commonly
known problem with differential beamforming, e.g., with
the closely spaced microphone arrangements in hearing
aids [17]. Hence, the proposed noise reduction approach
may also be applicable for hearing aids.
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