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Abstract

As the foundation of many applications, multipitch estimation problem has always been the focus of acoustic music
processing; however, existing algorithms perform deficiently due to its complexity. In this paper, we employ deep
learning to address piano multipitch estimation problem by proposingMPENet based on a novelmultimodal sparse
incoherent non-negative matrix factorization (NMF) layer. This layer originates from a multimodal NMF problem with
Lorentzian-BlockFrobenius sparsity constraint and incoherentness regularization. Experiments show that MPENet
achieves state-of-the-art performance (83.65% F-measure for polyphony level 6) on RAND subset of MAPS dataset.
MPENet enables NMF to do online learning and accomplishes multi-label classification by using only monophonic
samples as training data. In addition, our layer algorithms can be easily modified and redeveloped for a wide variety of
problems.

Keywords: Multipitch estimation, Multimodal NMF, Non-negative sparse coding, Non-negative incoherent dictionary
learning, Deep learning

1 Introduction
Multipitch estimation problem (MPE, cf. [1–4] and refer-
ences therein) is the concurrent identification of multiple
notes in an acoustic polyphonic music clip. For example,
{C4,D4}, {E0,G2,A5}, {F3,A3,C4,E4,G4,B4,D5}1, or other
combinations. Generally, it is a prerequisite for Auto-
matic Music Transcription (AMT, [5]), Musical Informa-
tion Retrieval (MIR, [6]), and many other acoustic music
processing applications. It is worth emphasizing that MPE
is different from Automatic Chord Estimation (ACE, [7])
in two aspects: (1) note combinations in MPE can be
totally random instead of certain relationships in ACE and
(2) MPE is a multi-label classification [8] problem while
ACE is a single-label one.
One challenge of MPE is overlapping partials [9, 10] (the

spectra of different notes share many common frequency
bins with each other). It is an inevitable result caused
by temperament relationships and vibration properties.
For example, Table 1 gives the frequency relationship
between the first 30 overtones of a reference note and its
upper octave under exact equal temperament assumption.
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Given a reference note n and its fundamental frequency
f, denoting semitone shifts as subscripts, the fundamen-
tal frequency of n’s fifth note (seven semitones above n),
for instance, is f7 = f × 2

7
12 . According to the equal tem-

perament, the interval from f7’s first octave to f ’s third
overtone is about 2 cents (1200 ∗ log2

(
3f
2f7

)
≈ 2, refer to

the 9th row of Table 1). Analogically, we have the interval
from f3’s fourth octave to f ’s 19th overtone is about − 2
cents (1200 ∗ log2

(
19f
24f3

)
≈ − 2, refer to the 4th row of

Table 1). One can easily testify the rest of the table.
Besides, the acoustical characteristics of different

instruments make the problem even more difficult:
on the one hand, timbre variation results in different
overtone magnitude distributions; on the other hand,
inharmonicity2 leads to various overtone frequency dis-
tributions [11]. Pianos are especially harder to deal with
than other stringed instruments due to the complicated
way of strings being wired. Due to the inharmonicity and
its uniqueness on different strings [11], the slight fre-
quency mismatch between the first overtone of a note and
its upper octave will cause an interference pattern (a.k.a.
acoustic beat) if pianos are tuned by exact equal tempera-
ment. In order to eliminate such acoustic beats, pianos are
usually tuned individually by well-trained experts (called
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Table 1 Frequency relationships between the overtones of a reference note n and its upper octave

Harmonic Interval Semitone Variance cents

1 2 4 8 16 Prime (octave) 0 0

17 Minor second + 1 + 5

9 18 Major second + 2 + 4

19 Minor third + 3 − 2

5 10 20 Major third + 4 − 14

21 Fourth + 5 − 29

11 22
Tritone + 6

− 49

23 + 28

3 6 12 24 Fifth + 7 + 2

25
Minor sixth + 8

− 27

23 26 + 41

27 Major sixth + 9 + 6

7 14 28
Minor seventh + 10

− 31

29 + 30

15 30
Major seventh + 11

− 12

31 + 45

Numbers under “Harmonic” indicate the overtone indices of n. Column indices of “Harmonic” indicate the octave numbers starting from 0. Variance cents in the last column
are rounded up into integers

harmonic tuning, the deviation from the exact equal tem-
perament often forms a Railsback curve [12]).
The other challenge of MPE comes from the complex-

ity of note combination. Strategies for solving multi-label
classification can be generally categorized into two, “one
vs. all” and “one vs. one,” respectively. Let the class number
be n, the former needs n classifiers while the latter needs(
n
2

)
= n2−n

2 ones. Although it is computationally fea-

sible for most circumstances, classifiers are trained inde-
pendently from feature extraction. The lack of supervision
in feature extraction may degrade the performance since
it is more meaningful for features to minimize classifica-
tion error rather than reconstruction error [13]. Another
existing strategy needs 2n classifiers by encoding multi-
labels into single-labels. It is only feasible when n is not
large; otherwise, onemay suffer from dimension explosion
problem. Taking the piano for example, choosing 7 notes

from 88 yields
(
88
7

)
≈ 6.3 × 109 combinations. Even if

only timbre and decay are included, it is almost impossible
to construct and train such a large-scale dataset.
Moreover, as one of the most commonly used features

in acoustic music processing applications, time-frequency
representation is constrained by the uncertainty princi-
ple. The algorithm performance then may be degraded
by such deficient feature. Meanwhile, recent results have
shown that feature fusion from different sensors (namely
modality, one may consider someone’s fingerprint and
iris, or footages of some action from different angles)

has advantages for recognition tasks (cf. [14–16] and
references therein). Combined information from multi-
ple sources is more robust and tolerant to noises and
errors. Multimodal joint representation under constraints
maximizes the utility of different features, which can be
used more effectively in task-driven scenarios. Note that
multimodal features are different from stacking multiple
features into one because the latter does not take the
modality relationship into account, and increasing dimen-
sionality brings huge computation and storage costs.
Based on and inspired by the above discussion, we in

this paper propose MPENet, which is a deep learning
(DL, [17–21]) network enhanced by a novel multimodal
sparse incoherent NMF layer (MSI-NMF layer). MPENet
andMSI-NMF layer are implemented by Caffe [22]. Struc-
tures of training and test phase are given in Figs. 1 and 2,
where tensors (i.e., Caffe blobs) are denoted by arrows,
Caffe built-in layers are denoted by rectangles (computa-
tion) and ellipses (loss), layer collections by hexagons, our
implemented layers by rounded rectangles. “Mod,” “cod,”
and “pred” are abbreviations for modality, coding, and
prediction, respectively. Modality indices are appended
by dashes. Repeated elements (represented by dashed
lines) are omitted for simplicity purpose. Network details
are explained in Sections 3 and 4. MPENet incorporates
the supervision from data and task to train dictionaries
and classifiers adaptively and jointly. Representative and
discriminative features then can be used to make multi-
label inference directly from superposed inputs. Our main
contributions include:
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Fig. 1 Training structure of MPENet. Following Caffe terminology, this figure shows the computation graph of training phase. Arrows indicate blobs;
rectangles and ellipses indicate Caffe built-in computation and loss layers. Hexagons indicate layer collections. Rounded rectangles indicate our
implemented layers. All built-in layer names conform to Caffe. More details are explained in Sections 3 and 4. Repeated elements of each modality
are omitted by dashed lines

• Lorentzian-BlockFrobenius sparsity: A novel
‖ · ‖L−BF ,γ is imposed to a multimodal NMF model.
Penalty is determined by the magnitude of class
templates of all modalities so that class sparsity can
be ensured.

Fig. 2 Test structure of MPENet. Following Caffe terminology, this
figure shows the computation graph of test phase. Legends can be
referred to Fig. 1. More details are explained in Sections 3 and 4

• Multimodal sparse incoherent NMF layer: A new
deep learning layer based on the above constrained
NMF model is presented. Sparse representations, as
layer outputs, are computed by Alternating Direction
Method of Multipliers (ADMM). Dictionaries, as
layer parameters, are updated by Projected Stochastic
Gradient Descent (PSGD). Incoherentness is added
to the net loss as weight decay. Layer formulation and
algorithms are given in Section 3.

• Multipitch estimation network (MPENet) : Given the
decomposition capability of proposed layer, we
employ “one vs. all” strategy and present a unified
deep learning network consisting of a training subnet
and a test subnet. Experiments show that the test net
achieves state-of-the-art results by using only two
modalities of monophonic samples as training data.
Network details are explained in Section 4.

2 Related work
Owing to the non-negativity and superposition proper-
ties of musical spectra, Non-negative Matrix Factoriza-
tion (NMF, [23]) is applied widely in the latest acoustic
music processing studies. Musical spectral data is decom-
posed into a dictionary and corresponding coefficients
(also referred to as codings, activations, or activities in
some references, we may use any of them according
to the context). Note that NMF algorithms converge in
unsupervised fashion, only rank-1 decomposition makes
sense for computational stability and uniqueness purpose.
Thus, most methods utilizing NMF employ a three-step
procedure: (1) training note templates individually from
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samples of each note, (2) constructing a dictionary by
concatenating all note templates, and (3) estimating mul-
tiple notes by computing the codings with the dictionary
fixed. In early studies, each template has only one atom
(columns of a dictionary are called atoms). Weninger et al.
[24] develop this simple structure by dividing note sam-
ples into two parts: onset and decay. Then, two atoms
are learned respectively from both parts, which yields a
two-column note template. Such dictionary helps to cap-
ture the feature variation and distinguish note state over
time. O’Hanlon and Plumbley [25] take a further step
on dictionary flexibility. Note templates are constructed
by using linear combinations of several pre-defined fixed
narrow-band harmonic atoms. The input spectral data
is then approximated under β-divergence group sparsity
constraint. Other methods employing similar idea but
different implementations are proposed in [2, 4, 26–29].
Such procedure uses fixed dictionary to get note activa-
tions during test, so MPE results heavily depend on the
learned note templates, i.e., training samples. One has to
retrain each template once new samples are added into
training set. For other work using NMF with row/group
sparsity and incoherent dictionaries, refer to [30–32] and
references therein. Note that there are also studies that use
unsupervised NMF instead of training note templates via
isolated note samples. Bertin et al. [33] propose a temper-
ing scheme favoring NMF with Itakura-Saito divergence
to global minima. O’Hanlon and Sandler [34] propose an
iterative hard thresholding approach for l0 sparse NMF
problem with Hellinger distance. ERBT spectrograms of
polyphonic music pieces are decomposed directly and a
pitch salience matrix is calculate to detect active notes. A
semi-supervised NMF method can be referred to [35].
Many non-NMF based algorithms have been proposed

for MPE problem. Tolonen and Karjalainen [36] divide the
signal into two channels according to a fixed frequency
and compute autocorrelation of the low channel and the
envelope of the high channel to form summary autocorre-
lation function (SACF) and enhanced SACF (ESACF). The
SACF and ESACF representations are used to observe the
periodicities of the signal and estimate notes. Klapuri [37]
calculates the salience representation through a weighted
summation of overtone amplitudes. Three estimators
based on direct, iterative, and joint strategies are pro-
posed to extract notes from the salience function. Emiya
et al. [1] employ a probabilistic spectral smoothness prin-
ciple to iteratively estimate polyphonic content from a set
of note candidates. An assumption of maximum num-
ber of concurrent notes (nmax = 6) is imposed to avoid
extracting overmany notes. Adalbjörnsson et al. [3] use a
fixed dictionary to reconstruct input signal under block
sparsity constraint. Notes are then identified through
coding magnitudes. The fixed dictionary used here, how-
ever, is constructed according to equal-tempered scale

so that the algorithm is unsuitable for instruments with
inharmonicity.
Deep learning has been used to address AMT prob-

lem in recent papers. Sigtia et al. [38] presents a real-
time model which introduces recurrent neural networks
(RNN) into a convolutional neural network (CNN, with
only convolution, pooling, and fully connected layers).
Kelz et al. [39] compare the performances of networks
with different types of inputs (spectrograms with lin-
early/logarithmically spaced bins, logarithmically scaled
magnitude, and constant-Q transform), layers (dropout
and batch normalization), and depths. Hawthorne et al.
[40] propose a deep model with bidirectional long short
termmemory (BiLSTM) networks and two objective func-
tions (onsets and frames), achieving state-of-the-art per-
formance onMAPS [1] under configuration 2 described in
[38]. For more acoustic music processing work using deep
learning, refer to [40] and references therein. Note that the
deep learning methods listed here all use music pieces as
training data, which means polyphonic information can
be accessed, hence music language model and classifiers
are learned simultaneously.

3 Multimodal sparse incoherent NMF layer
3.1 Notation
Throughout this paper, we denote vectors and matrices by
bold lowercase and uppercase letters, for example, v ∈ R

m

andM ∈ R
m×n. Parts of vectors and matrices are denoted

by subscripts: vi is the i-th entry of v; Mi, Mi→, Mi,j, and
Mi,j,p,q represent the i-th column, i-th row, (i, j)-th entry,
and p × q block starting from (i, j)-th entry, respectively.
〈·, ·〉 denotes the inner product of two vectors. For p � 1,
the lp norm of v is defined as ‖v‖p �

(∑m
i=1 |vi|p

) 1
p , and

the Frobenius norm ofM as ‖M‖F �
(∑

i,j M2
i,j

) 1
2 . Projec-

tion operator and indicator function of a set C with respect
to a point x are respectively defined as

�C(x) � argmin
y∈C

‖y−x‖22, δC(x) �
{
0, x ∈ C
∞, otherwise

For notation simplicity, we also define Nm � {1, 2, . . . ,m},
R�0 � {x|x ∈ R, x � 0}.

3.2 Prototype
In comparison with other information fusion techniques,
multimodal joint sparse representation provides an effi-
cient tool and results in superior performance [41].
Redundancy is generally employed in dictionary learning
algorithms [15, 42, 43] so that training data can be fit bet-
ter and codings can be more discriminative and sparser.
Besides, lp,1 norm ([15]) is usually used to regularize
codings for row sparsity, where
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‖M‖lp,1 �
d∑

i=1
‖Mi→‖p, M ∈ R

d×m, p � 1 (1)

It enforces dictionaries of different modalities using same
atom to present same event, for example, l2,1 encourages
collaboration among all modalities, and l1,1 imposes extra
sparsity within rows.
For MPE problem, dictionary incoherentness should be

imposed to provide flexibility of modeling universal note
representations in contrast to redundancy. As we dis-
cussed in Section 1, single-atom note templates cannot
cover the diversity of music spectra whereas NMF can-
not guarantee the stability and uniqueness for multi-atom
ones. Because harmonic tuning aggravates overlapping
partials, we can not distinguish that a spectral peak is a
note overtone or a summation of several ones, i.e., it is
not feasible to decompose frequency domain into orthog-
onal bins according to the center frequencies of harmonic
series. In order to detect notes directly from factorization,
a “good” dictionary should be trained under the supervi-
sion of data and task, possessing the following properties:
(1) note templates are mutually discriminative and (2) for
a certain note, all possible variants can be and only can be
represented by its templates.
Moreover, we improve lp,1 norm for two reasons. The

first one is coding structure does not satisfy row-wise
sparsity since dictionary incoherentness is imposed. Note
samples are approximated by linear combination of its
template atoms. The second one is l1 norm imposes too
much penalty so that every activation is either scaled
down or zeroed out by soft threshold shrinkage [44]. For
unknown number and loudness in MPE problem, each
coding entry is crucial for detecting notes correctly, so we
want to preserve as many effective activations as possible.
Opposed to l1 and l2, the Lorentzian-l2 norm [45]3,
defined as

‖v‖L−l2,γ �
d∑

i=1
log
(
1 + v2i

γ 2

)
, v ∈ R

d , γ � 0 (2)

penalizes large activations with small weights but the
other way around so that non-zero activations keep their
contributions. Besides, l1 norm is not differentiable at 0,
which makes the computation of gradient complicated
([15] tackles this by introducing “active set”). The every-
where smoothness of Lorentzian-l2 provides good con-
vergence property. Figure 3 shows the contours of several
common regularizations.
Summing up the above discussion, the prototype of

multimodal sparse incoherent NMF layer is a multimodal
sparse incoherent NMF model whose cost function is,
given multimodal input

{
xi ∈ R

f i
�0, i = N

m
}
,

Fig. 3 Contours of several norm regularizations are discussed here

l
({
Di} ,A; {xi}) �

min
A∈A,Di∈Di

m∑
i=1

⎛
⎝1
2
∥∥DiAi − xi

∥∥2
2 + μ

2

d∑
j=1

d∑
k=1,k 
=j

〈
Di

j ,Di
k

〉2
⎞
⎠

(3)

+ λ1‖A‖L−BF ,γ + λ2
2

‖A‖2F , μ > 0, λ1 > 0, λ2 > 0

where superscripts indicate modality indices, m denotes
modality number, f denotes feature dimensionality, n
denotes class number, a denotes atom number of each
class template, d = n × a is dictionary column num-
ber, and {μ, λ1, λ2} are penalties. A �

{
M|M ∈ R

d×m
�0

}

is coding space; Di �
{
N|N ∈ R

f i×d
�0 , ‖Nj‖2 � 1, j = N

d
}

are dictionary spaces. Lorentzian-BlockFrobenius norm is
defined as

‖A‖L−BF ,γ �
n∑

i=1
log
(
1+ ‖Ai�‖2F

γ 2

)
,Ai��A(i−1)a+1,1,a,m,γ >0

In (3), Ai� contains all template coefficients of the
i-th class of all modalities. Frobenius norm incorpo-
rates the contributions of different modalities. Thus,
Lorentzian-BlockFrobenius norm imposes class sparsity
instead of row sparsity. The inner product term enforces
that the dictionary columns have the least coherentness.
It ensures the discrimination among class templates as
well as the linear representation within each template.
Note that analytic or straight optimization cannot be done
for (3) because it is not jointly convex with respect to
(w.r.t)

{
Di, i = N

m} and A. It is convex w.r.t either one
while the other fixed. Hence, many alternating schemes
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([42, 44, 46, 47]) split (3) into two subproblems, sparse
coding and dictionary learning, respectively.

3.3 Structure
MSI-NMF layer is constructed by re-translating the two
subproblems of (3), where we treat A as layer outputs and{
Di, i = N

m} as layer parameters. Using the same network
notations as in Section 1, Fig. 4 shows the structure of
MSI-NMF layer, where layer parameters are denoted by
texts within parentheses.

3.4 Forward pass
The forward pass produces the solution of a multimodal
non-negative sparse coding problem whose cost function
is defined as

lf
(
A;
{
xi,Di}) �min

A∈A
1
2

m∑
i=1

∥∥DiAi − xi
∥∥2
2 (4)

+ λ1‖A‖L−BF ,γ + λ2
2

‖A‖2F
To solve (4), let f = ∑m

i=1 f i, define D ∈ R
f×md
�0 , a ∈

R
md
�0, and x ∈ R

f
�0

D �

⎛
⎜⎜⎜⎝

D1

D2

. . .
Dm

⎞
⎟⎟⎟⎠ , a �

⎛
⎜⎜⎜⎝

A1
A2
...

Am

⎞
⎟⎟⎟⎠ , x �

⎛
⎜⎜⎜⎝

x1
x2
...
xm

⎞
⎟⎟⎟⎠

Then, (4) can be rewritten as

lf (a; x,D) � min
a∈Rmd

�0

1
2
‖Da−x‖22+λ1‖a‖L−bl2,γ +λ2

2
‖a‖22
(5)

where

Fig. 4 Structure of MSI-NMF layer. Legends can be referred to Fig. 1.
Following Caffe terminology, arrows indicate tensors (Caffe blobs),
and dictionaries (Di , i = N

m) are treated as layer parameters

‖a‖L−bl2,γ �
n∑

i=1
log
(
1 + ãi

γ 2

)
(6)

ãi =
m∑
j=1

a∑
k=1

a2(j−1)d+(i−1)a+k (7)

(5) can be solved using Alternating Direction Method of
Multipliers (ADMM, ref. [44, 46, 47]), details are given in
Algorithm 1 (proofs in Appendix), where � is given in
Algorithm 2.

Algorithm 1 Forward Pass ofMultimodal Sparse Incoher-
ent NMF Layer: Multimodal Non-negative Sparse Coding
Require: D, x, a(0) = 0md, b(0) = 0md, λ1 > 0, λ2 > 0,

γ > 0, ρ > 0 and k = 1
1: repeat

t = (DTD+(ρ+λ2)I
)−1(DTx+ρ

(
a(k−1) − b(k−1)

))

u = �
R
md
�0

(
b(k−1) + t

)

a(k) = �(u, λ1, ρ, γ ) , using Algorithm 2

b(k) = b(k−1) + t − a(k)

k = k + 1
2: until a converges

Ensure: a

3.5 Backward pass
The backward pass is to update D through gradient
descent. The incoherentness constraint is treated as
weight decay of layer parameters. Denoting the network
cost function by lnet, the new cost function becomes

lnew � lnet + μ

2

m∑
i=1

⎛
⎝

d∑
j=1

d∑
k=1,k 
=j

〈
Di

j ,Di
k

〉2
⎞
⎠ (8)

Then, we have

∂lnew
∂Dp,q

= ∂lnet
∂Dp,q

+ μ

2

∂
∑m

i=1

(∑d
j=1
∑d

k=1,k 
=j

〈
Di

j ,Di
k

〉2)

∂Dp,q

(9)

where p = N
f , q = N

md. According to the chain rule, the
first term of (9) is

∂lnet
∂Dp,q

=
〈
∂lnet
∂a

,
∂a

∂Dp,q

〉
(10)

In order to get ∂a
∂Dp,q

, recalling that a is a minimizer of
(5), taking the derivative w.r.t a, we have

DT(Da − x) + λ1W̃a + λ2a = 0 (11)

where W̃ = 
(a) is defined as
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Algorithm 2 �: Inner Update Algorithm of a in
Algorithm 1
Require: u, λ1, ρ, γ , λ = λ1

ρ
, σ = 2λ + γ 2, p = 0n and

a = 0md

1: for j = 1, 2, . . . , n do

u =
m∑
l=1

a∑
k=1

u2(l−1)d+(j−1)a+k (12)

2: if u = 0 then

pj = 0

3: else
4: if λ � 4γ 2 then
5: if γ 2 = 1

27 and λ = 4γ 2 then

pj = 1
3

6: else

A=u2−3uσ, B=9uγ 2−uσ,C=σ 2−3uγ 2,�=B2−4AC

y1,2 = 3

√
u
2

(
2A + 3B ± √

�
)

pj = 1
3

+ y1 + y2
3u

7: end if
8: else
9: if � > 0 then goto 6

10: else if � = 0 then

K = B
A
, y1 = 1 + K , y2 = −K

2

pj = argmin
x∈{y1,y2}∩[0,1]

λ log
(
1 + u

γ 2 x
2
)

+ u
2

(x − 1)2

11: else

θ =
arccos u2

A
√
A

(
2u − 9σ + 9γ 2)

3

y1 = 1
3

−
√
A (cos θ + sin θ)

3u
, y2 = 1

3
+ 2

√
A cos θ

3u

pj = argmin
x∈{y1,y2}∩[0,1]

λ log
(
1 + u

γ 2 x
2
)

+ u
2

(x − 1)2

12: end if
13: end if
14: end if
15: end for
16: for j = 1, 2, . . . ,md do

aj = ujpk , k = 
j/a� mod n

17: end for
Ensure: a

W̃ =

⎛
⎜⎜⎜⎝

W
W

. . .
W

⎞
⎟⎟⎟⎠ (13)

W =

⎛
⎜⎜⎜⎝

w1I
w2I

. . .
wnI

⎞
⎟⎟⎟⎠ (14)

wi = 2
γ 2 + ãi

, i = N
n (15)

ã is defined in (7). Then, ∂lnew
∂Dp,q

can be computed because
∂a

∂Dp,q
can be obtained by taking the derivative w.r.tDp,q on

(11) and ∂lnet
∂a is given by the last layer.

The backward algorithm of proposed layer is listed in
Algorithm 3 (proofs in Appendix), where Vi ∈ R

d×n is
defined as

Vi �

⎛
⎜⎜⎜⎝

A1,i,a,1
Aa+1,i,a,1

. . .
A(n−1)a+1,i,a,1

⎞
⎟⎟⎟⎠ (16)

i = N
m, diag(M) is a diagonal matrix whose diagonal

entries come fromM, and Ui ∈ R
d×d.

Algorithm 3 Backward Pass of Multimodal Sparse Inco-
herent NMF Layer: Multimodal Non-negative Incoherent
Dictionary Learning
Require:

{
Di, xi, i = N

m}, A, ∂lnet
∂A , λ1 > 0, λ2 > 0, γ > 0,

μ > 0 and η1 > 0
1: compute W̃ using Eq.(13)
2: for i = 1, 2, . . . ,m do
3: generate Vi using the definition in Eq.(16)
4:

Ui = DiTDi − diag
(
DiTDi) (17)

5:

Pi = DiTDi + λ1W
(
I − WViViT)+ λ2I (18)

6:

Qi = (Pi)−T ∂lnet
Ai

(19)

7:

∂lnew
∂Di = (xi − DiAi

)
QiT −DiQiAT

i + μDiUi (20)

8:

Di ← �Di

(
Di − η1

∂lnew
∂Di

)
(21)

9: end for
Ensure: updated

{
Di, i = N

m}
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4 MPENet
In this section, we detailedly explain the layer and tensor
specifics of MPENet. In order to avoid misunderstand-
ings caused by layer names in different deep learning
frameworks (for example, commonly called “fully con-
nected” is named as “inner product” in Caffe, “linear” in
PyTorch, and “dense” in TensorFlow), during illustration,
we will give the mathematics expression of some layers
if necessary. Meanwhile, in order to give the most direct
ideas of how MPENet is constructed, we switch to Caffe
terminology accordingly (see Figs. 1 and 2).
In Figs. 1 and 2, training and test phases have same

core modules, differences only locate in the top lay-
ers. “Data” layer produces multimodal features and their
labels. Labels are binary vectors whose entries are 1 if
corresponding classes are active and 0 otherwise. “Sig-
moidCrossEntropyLoss” layer is a stack of “sigmoid”
layer and “cross-entropy” layer. Cross-entropy loss is
defined as

−1
n

n∑
i=1

(
pi log p̂i + (1 − pi) log

(
1 − p̂i

))
, p, p̂ ∈ R

n

where p and p̂ are predictions and labels.

4.1 Deepmulti-label prediction module (DMP)
The structure of “Deep Multi-label Prediction” (DMP)
is shown in Fig. 5. “Slicing” layer segments an n × a
vector into n parts. “Detection” is a classifier module
with replaceable structure, and is supposed to output
the existence magnitude according to the input. “Concat”
(concatenation) layer joints n detections to form a multi-
label prediction. In our experiment, five layers are used
to implement “Detection” module (structure is shown in
Fig. 6). “InnerProduct” represents the transform from x ∈
R
m to y ∈ R

n

y = Wx + b, W ∈ R
n×m,b ∈ R

n

“ReLU” (Rectified Linear Unit) stands for the transform
from x ∈ R

m to y ∈ R
m

yi = max(xi, 0), i = Nm

For other tasks, one can modify this combination
accordingly.
The reason for such structure roots from the property

of incoherent dictionaries. If samples of certain class can
be and only can be represented by its template atoms,
the existence of this class is only related to the coeffi-
cient magnitudes. “One vs. all” strategy can be employed
natively. If dictionaries are not as good as expected, cross-
entropy loss will correct each “detection” module as well
as dictionaries of the proposed layer through backward
pass, which completes a positive circle.

4.2 Multi-label accuracy layer
Multi-label accuracy layer is implemented to conduct
training and test in a unified framework. It consists of
three sequential operations: sigmoid activation, binary
output, and metric computation. The second one out-
puts either 0 or 1 according to the comparison result
between the sigmoid activation and a predefined thresh-
old t. The third one calculates the Precision (P), Recall (R),
and F-measure (F) according to the binary outputs and the
ground truths, where

P = TP
TP + FP

, R = TP
TP + FN

, F = 2 × P × R
P + R

TP, FP, and FN stand for true positive, false positive, and
false negative, respectively.

5 Experiment results
In this section, we first briefly demonstrate the dataset and
features used in our experiment, then illustrate parameter
initialization and network configuration in detail. Piano
MPE results, experiment results about how MPENet

Fig. 5 Structure of “DMP.” Legends can be referred to Fig. 1. All built-in layer names conform to Caffe. Details can be referred to Section 4.1
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Fig. 6 Structure of “Detection” implemented in our experiment. Legends can be referred to Fig. 1. All built-in layer names conform to Caffe. Details
can be referred to Section 4.1

works, timbre robustness results, and AMT results are
given in the end of this section.

5.1 Dataset and features
MAPS [1] is a commonly used piano dataset formultipitch
estimation and automatic transcription. It contains nine
kinds of recording conditions (referred to as “StbgTGd2,”
“AkPnBsdf,” “AkPnBcht,” “AkPnCGdD,” “AkPnStgb,” “Sptk-
BGAm,” “SptkBGCl,” “ENSTDkAm,” and “ENSTDkCl”),
two of them (“ENSTDkAm” and “ENSTDkCl”) are from
real pianos and seven are synthesized by softwares. Each
kind has same subset hierarchies which include ISOL
(monophonic recordings), RAND (random combination),
and UCHO (chords).
ISOL/NO subset, which contains 264 monophonic wav

files covering 88 notes (n = 88) and 3 loudness levels,
is used as training set. RAND subset, which contains 6
polyphony levels ranging from 2 to 7 (labeled as P2–P7),
is used as test set. Each one of P2–P7 has 50 files, and the
note combination of each file is generated randomly. In
[1], a 93-ms frame which is 10 ms after onset of each file
in P2–P6 is analyzed. As comparison, we conduct similar
evaluation in our experiment. P7 is used as validation set
for parameter tuning.
Each wav file in MAPS is stereo with sampling rate

44100 Hz. To extract features, we firstly generate a mono
counterpart by averaging both channels. Then, the silent
part of each counterpart is truncated according to the
provided onsets and offsets. Finally, two kinds of fea-
tures (m = 2) are extracted from the remainder by
Short Time Fourier Transform (STFT) and Constant-Q
Transform (CQT). The reason for using STFT and CQT
is mainly because the former has good resolution in
high-frequency domain while the latter does well in low-
frequency domain. STFT and CQT features are further
transformed into non-negative dB scale using

h(·) � log10(·/ε + 1)
log10(1/ε + 1)

(22)

where · is either CQT or STFT feature and ε is the
machine precision. Other extraction specifics are listed
in Table 2, where flen, slen, minf, maxf, dim, ppo, and
nfft are abbreviations for frame length, step length, min-
imal frequency, maximal frequency, dimensionality, par-
tition per octave, and n-point Fast Fourier Transform,
respectively.

5.2 Parameter initialization
Due to the non-convexity of problem (3), only local min-
imization can be guaranteed. The initial value of dictio-
naries is crucial for convergence and performance. Since
totally random initialization makes the codings of first
several epochs meaningless, it is a waste of time and
computation resources. Plus, because each monophonic
file in the training set lasts for over 2 s, many samples
are similar to each other during decay. It is not reason-
able to initialize the dictionary using random samples as
most dictionary learning algorithms do [15] either. In our
experiment, two procedures are employed to initialize the
dictionary.
To avoid the heavy overhead caused by joint learn-

ing of dictionaries and classifiers, before really get-
ting into MPENet, we propose a pre-learning phase
called Label Consistent Incoherent Dictionary Learning
(LCIDL) derived from [48, 49] to obtain a better start
than random initialization and sample initialization for
dictionaries in MSI-NMF layer. The cost function of
LCIDL is

llc
({
Di} ,A; {xi}) �

min
A∈A,Di∈Di

m∑
i=1

⎛
⎝1
2
∥∥DiAi − xi

∥∥2
2 + μ

2

d∑
j=1

d∑
k=1,k 
=j

〈
Di

j ,Di
k

〉2
⎞
⎠

(23)

+ λ1‖A‖L−BF ,γ + λ2
2

‖L − A‖2F
where L ∈ R

d×m (referred to as discriminative coding) is,
if
{
xi, i = N

m} belongs to the j-th note,

L =
⎛
⎜⎝

L1
...
Ln

⎞
⎟⎠ , Lk =

{
1a×m, k = j
0a×m, otherwise , k = R

n

It is worth emphasizing that (23) is a plain data-driven
problem, and neither MPENet nor classifiers are involved

Table 2 Feature specifics used in MPENet

Flen (ms) Slen (ms) Minf (Hz) Maxf (Hz) Dim Misc

CQT
23.2 6.5 27.5 7000

576 ppo:72

STFT 648 nfft:4096
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Fig. 7 Precision-Recall Curve of P7. “Detection” module produces similar results when t varies in a relatively large interval around 0.5, the best result
is shown by a gray square

at the time. It has nothing to do with deep learning and
can be implemented by any language. The form of L is the
extension of binary labels to impose classification infor-
mation, because there are no note probabilities but only
codings on our hands.
Likewise, LCIDL also needs a good dictionary to start

for acceleration. In order to find it and determine the atom
number, a fast clustering algorithm based on density peaks
[50] is employed to filtrate samples hierarchically. Specifi-
cally speaking, we first extract 30 cluster centers from each
modality of each file in the training set. Then, we stack
them according to their note indices. This gives us two
matrices with 810 columns for each note (810 = 30 × 3
(loudness) ×9 (recording)). Finally, through computing
density peaks on these two matrices and considering the
overhead and efficiency of computation and storage, we
empirically set the atom number of each note template to

Table 3 Precision (%) result with unknown polyphony level

P2 P3 P4 P5 P6

Tolonen [36] 47 46 51 53 48

Tolonen-500 [36] 58 59 59 60 50

Klapuri [37] 94 92 88 84 84

Emiya [1] 97 95 92 91 91

MPENet 95.29 93.26 92.76 92.21 90.52

be 15 (i.e., a = 15 in (3)) and obtain a 576 × 1320 matrix
and 648 × 1320 matrix for starting LCIDL.
After LCIDL is done, we obtain a “roughly good” dictio-

nary, it has low reconstruction loss, incoherentness, and
coding shape like L as (23) governs. When the real train-
ing of MPENet begins, this “roughly good” dictionary is
copied into MSI-NMF layer, and classifiers are initialized
randomly. During the first several epochs of training, the
learning rate of classifiers is relatively larger than that of
MSI-NMF since we want to hold codings a little bit to
fit classifiers first. As the classification error decreases,
the learning rates of all layers become equal to do joint
learning.

5.3 Network configuration
Choices of parameters used in MPENet are all empiri-
cal. The output numbers of three “InnerProduct” layers

Table 4 Recall (%) result with unknown polyphony level

P2 P3 P4 P5 P6

Tolonen 58 43 35 30 28

Tolonen-500 77 68 52 45 32

Klapuri 89 88 83 78 62

Emiya 90 82 71 63 47

MPENet 99.00 95.26 87.56 82.15 77.75
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Table 5 F-measure (%) result with unknown polyphony level

P2 P3 P4 P5 P6

Tolonen 53 45 42 38 33

Tolonen-500 65 63 57 51 40

Klapuri 91 90 86 81 72

Emiya 93 87 80 75 63

MPENet 97.11 94.25 90.08 86.89 83.65

in Fig. 6 are set to be 60, 30, and 1 from left to right. All
three layers use bias term. For MSI-NMF layer, we use
λ1 = 0.15, λ2 = 0.1, μ = 1.32, ρ = 0.2, γ = 1.09,
and t = 0.5 for training. Considering that only one note
is active at a time during training whereas at least two are
active concurrently during test, test constraints should be
weaker than those of training. Limited by the computa-
tion overhead, a fully greedy search cannot be done to get
the best result. Therefore, we initialize several groups of
parameters, and the one with λ1 = 0.03, λ2 = 0.1, μ =
1.32, ρ = 0.2, and γ = 0.55 gets the best result through
evaluating the test net on P7. To tune binary threshold
t of multi-label accuracy layer, we plot a Precision-Recall
Curve in Fig. 7 according to the evaluation result on P7,
where t ranges from 0 to 1 with step 0.001. Through
the figure, we find that “detection” modules produce very
polarized outputs. The best result (91.37% Precision and
70.92% Recall, see the gray square in Fig. 7) and similar
ones can be achieved when t is within a relatively large
interval around 0.5. Therefore, we keep t = 0.5 unchanged
for test.

5.4 MPE results
Evaluation metrics are listed in Tables 3, 4, and 5 when the
polyphony level is unknown. Our network outperforms all
other algorithms on Recall and F-measure. Precisions of
P2, P3, and P6 get the second best results with slight gaps
compared to Emiya’s. The decrease of sparsity constraint
is the reason for this result shortage. During evaluation,
we can achieve over 99.9% F-measure for P2 and P3 if
we use training parameters. Such configuration can also
maintain high Precision results for P4–P6; however, Recall
will drop dramatically due to strong sparsity. It is a trade
off and contradiction between sparsity and concurrent
notes.
We also report the evaluation results in Table 6 when

polyphony level is known as prior. For polyphony level
k, we choose the indices of first k largest outputs

Table 6 F-measure (%) result with known polyphony level

P2 P3 P4 P5 P6

99.78 94.48 86.91 85.13 80.42

in sigmoid layer as active notes. Results show that
F-measure increases for P2 and P3 while things are dif-
ferent for P4–P6. It states a fact that when concurrent
number is small, the ground truths have higher probabil-
ities than others in our algorithm; as concurrent number
grows, undetected ground truths become undetectable.

5.5 HowMPENet works
In order to show how each key part of MPENet con-
tributes to the performance, we conduct four groups and
seven in total experiments. Considering the combination
complexity, each experiment only changes single part to
show its impact on the system. Group indices, names, and
settings are listed in Table 7, where

√
and× indicate pres-

ence and absence, respectively; the setting described in
Sections 5.3 and 5.4 is called MPENet-default (MPENet-
d for short). Unless otherwise specified, all experiments
in this subsection share same parameters with MPENet-
d except the modified part. Implementation details and
results are explained in the following subsections.

5.5.1 Modality
Config.1 and Config.2 use single modal features listed in
Table 7 as training inputs to show our multimodal effi-
cacy. Results are plotted in Fig. 8. We find that STFT’s
Precision outperforms CQT’s on all test sets, while the
STFT’s Recall decreases substantially from P3.MPENet-d,
as expected, incorporates the advantages of both modali-
ties and amend their drawbacks.

5.5.2 Atom number
Group 2 (Config.3–Config.5), in conjunction with
MPENet-d, shows the influence of atom number on our
system. We only change a described in Section 5.2 to ini-
tialize dictionaries with different sizes. Results are plotted
in Fig. 9. Interestingly, the Precision of each one in group
2 gets improvement except P2 of Config.4. Especially, the

Table 7 Experiment settings for part comparison, where group 1
corresponds to modality variation only, group 2 to atom number,
group 3 to joint learning, and group 4 to dictionary
incoherentness

Group Name Modality (m) Atom
number (a)

Incoherentness Joint
learning

1 Config.1 CQT 15
√ √

Config.2 STFT 15
√ √

2 Config.3 CQT&STFT 5
√ √

Config.4 CQT&STFT 10
√ √

Config.5 CQT&STFT 20
√ √

3 Config.6 CQT&STFT 15
√ ×

4 Config.7 CQT&STFT 15 × √

MPENet-d CQT&STFT 15
√ √
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Fig. 8Modality comparison results. Precision, Recall, and F-measure are shown in three subplots from top to bottom, respectively, where y axis
indicates percentage value and x axis indicates polyphony level. Three subplots share same legends
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Fig. 11 Precision results of timbre robustness experiment
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Fig. 12 Recall results of timbre robustness experiment
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Fig. 13 F-measure results of timbre robustness experiment
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Precision increase of Config.5 (a = 20) for all test sets and
that of Config.3 (a = 5) for P5–P6 are substantial. While
the Recall for P2 are all close to each other, and Config.5’s
Recall remains approximately equal to MPENet-d’s for
P2–P5, Config.3’s Recall and Config.4’s (a = 10) decrease
a little. As a result, the F-measures of Config.3 for P2
and Config.5 for P2–P4 are slightly higher than that of
MPENet-d. Such result implies that MPENet becomes
robust to polyphony level under same parameters as atom
number increases. We think the reason for oscillated
metrics is parameters still have strong influences on the
outputs in this situation. Although Config.5 performs
better than MPENet-d for P2–P5, considering time
complexity (∝ O

(
pmn2√κDTD+(ρ+λ2)I

)
for conjugate

gradient method or ∝ O
(
pmn3

)
for Cholesky decompo-

sition method, where p is ADMM iteration number, κ

is condition number, m, n,D are defined in (5)) and the
F-measure of P6, we consider MPENet-d sufficient
enough. For those with unlimited computation resources,
one can modify a and re-validate corresponding
parameters for better performances.

5.5.3 Joint learning
Config.6 (without joint learning) is implemented by divid-
ing dictionary and classifier learning as separate opera-
tions. During training, we first learn dictionaries by using

Table 8 Frame-level AMT results using 60 full-length music
pieces in “ENSTDkCl/MUS” and “ENSTDkAm/MUS”

Precision (%) Recall (%) F-measure (%)

Hawthorne [40] 88.53 70.89 78.30

Sigtia [38]* 71.99 73.32 72.22

Kelz [39]* 81.18 65.07 71.60

Melodyne [40] 71.85 50.39 58.57

MPENet 90.14 48.96 62.95

Final metrics are the average over all pieces
Results with asterisks are reimplemented by [40]

(23) in Section 5.2 since it is the only way to impose
supervision. Then, we compute the codings of mono-
phonic training data by using (4) with learned dictionaries.
Finally, monophonic codings are directly fed into “dmp”
modules plotted in Fig. 1 to train classifiers. During test,
we first compute the codings of polyphonic test data in
P2–P6, then use the test phase in Fig. 2 to get metrics.
Note that dictionaries are only learned once and do not
change any more during coding computation and clas-
sifier training. Comparison results are shown in Fig. 10,
where we find that although Config.6 beats MPENet-d
by 2% constantly on Precision, the Recall of Config.6 has
increasing gap compared with MPENet-d’s as polyphony
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Fig. 14 AMT results of the first 30 s of “MAPS_MUS-bk_xmas5_ENSTDkCl” produced by plain MPENet, where green indicates true positives, red
indicates false negatives and blue indicates false positives. A typical case of false positives is extra note detection in some chords. A typical case of
false negatives is where more than 7 notes are active simultaneously (MPENet can detect the attacks, but not the decays)
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Fig. 15 AMT results of the first 30 s of “MAPS_MUS-deb_clai_ENSTDkCl” produced by plain MPENet, where legends can be referred to Fig. 14. A
typical case of false negatives is where notes have long duration (still, MPENet can detect the attack of each note, but decays are discontinuous
since the note probabilities are polarized caused by non-linear classifiers, c.f Fig. 7)

level grows. As a result, MPENet-d outperforms Config.6
greatly on F-measure for P4–P6.

5.5.4 Dictionary incoherentness
For Config.7 (without dictionary incoherentness), we
remove the incoherentness regularization in (3). Due to
the absence of incoherentness, block sparsity makes no
sense then. The cost function used in Config.7 becomes

l
({
Di} ,A; {xi}) � (24)

min
A∈A,Di∈Di

m∑
i=1

(
1
2
∥∥DiAi − xi

∥∥2
2

)
+λ1‖A‖L−rl2,γ + λ2

2
‖A‖2F

where Lorentzian-Row_l2 is defined as

‖A‖L−rl2,γ �
d∑

i=1
log
(
1 + ‖Ai→‖22

γ 2

)

The corresponding form of (23) then becomes

llc
({
Di} ,A; {xi}) � min

A∈A,Di∈Di

m∑
i=1

(
1
2
∥∥DiAi − xi

∥∥2
2

)

+ λ1‖A‖L−rl2,γ + λ2
2

‖L − A‖2F
(25)

Forward and backward algorithm for (24) can be derived
according to Algorithms 1 and 3. During training, we find
the loss of training phase stays to a relatively high value
(about two order higher than that of MPENet-d). Things
do not change even if we reinitialize the parameters or
train for extra several epochs. Moreover, during test, the
sigmoid outputs of multi-label accuracy layer for P2–P6
are all less than the detection threshold t, so the metrics of
Config.7 are all zero, test fails.
Summing up the results, we find that incoherentness

regularization is crucial for MPENet while modality, atom
number and joint learning only affect performance. If
sorting them by importance, we have

incoherentness � modality � joint learning � atom number

5.6 Timbre robustness
In order to explore the generalization error of MPENet,
another experiment is conducted by evaluating tim-
bre robustness. In this experiment, we only choose
“ENSTDkCl” as training set and test on other eight kinds.
Parameter settings are all kept the same as in the last sub-
section. The reason for choosing “ENSTDkCl” is that it
is recorded from a real piano with “close” recording con-
dition. Inharmonicity, tuning, timbre, decay, background
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Fig. 16 Structure of the recurrent network used in AMT experiments.
The inputs are 16 time steps before and after current label. The
number of hidden state of GRUs is 200, the output numbers of
InnerProducts are all 200 except the last one is 88. Before
concatenation, we only keep the last step’s output of each GRU
because they accumulate all the information through time. Legends
can be referred to Fig. 1

noise and all other factors that can influence spectra may
be very different from the other eight. The results in
Figs. 11, 12, and 13 show that MPENet becomes over-
fitting since all metrics of test sets drop fairly except
“ENSTDkAm” (only recording condition is different from
training set).

5.7 AMT results
Due to the underlying strong relationship between MPE
and AMT, and in order to further explore the capacity
of MPENet, we also conduct AMT experiments following
configuration 2 described in [38]. Specifically speaking,
we use total 60 full-length music pieces contained in
the “MUS” subsets of “ENSTDkCl” and “ENSTDkAm” as
input and run MPENet frame by frame. Parameters and
hyper-parameters are all kept the same as “MPENet-d”
(c.f Sections 5.3 and 5.4). In line with the training phase
of MPENet, the ground truths of music pieces are gen-
erated by discretizing note durations provided in corre-
sponding txt files. Table 8 gives the frame-level average

AMT results of MPENet, with comparison to state-of-
the-art performance reported in [40]. MPENet maintains
the Precision as in Section 5.4, but performs poorly on
Recall. Figures 14 and 15 reveal some occasions where
false positives and false negatives take place, in which
green indicates true positives, red indicates false negatives
and blue indicates false positives. In brief, false positives
consist of a few wrong chord detections and many scat-
tered unrelated notes; while false negatives come from
massive so-called super-combinations (number of simul-
taneously active notes is over 7) and plenty of notes with
long duration. The former circumstance of false nega-
tives, as discussed in Section 5.4, is an inevitable result
caused by sparsity constraints. For the latter circumstance
of false negatives, however, we think the reasons behind
such behaviors are mainly caused by two aspects: (1)
the training set of MPENet lacks negative samples. Since
training loss is not zero and recall the decay proper-
ties of piano notes, classification errors of monophonic
samples in training set include wrong detections and
missing detections. The lack of negative samples makes
MPENet tend to distinguish the beginning from the end
of same note, which leads to insufficient durations; (2)
MPENet knows nothing about music language, which
prevents MPENet from rejecting scattered, unreasonable
detections.
In order to compensate the second aspect discussed

above and incorporate music prior with MPENet, we also
train a simple recurrent network whose structure is given
in Fig. 16. The training set follows the configuration 2 in
[38], which consists of all music pieces in MAPS except
the ones in “ENSTDkCl” and “ENSTDkAm”. The music
context is constructed as follows: for a certain time step
t, the recurrent network takes current binary label lt as
ground truth, and 16-time steps (about 100 ms) before
and after it ({lt−16, . . . , lt−1, lt+1, . . . , lt+16}) as input. The
number of hidden state in Gated Recurrent Units (GRU)
is 200. The output number of all InnerProduct layers is
200 as well except the last one is 88 for label consis-
tency. Before concatenation, we only keep the last step’s
output of each GRU because they accumulate all the infor-
mation through time. After the training is done, we use
this recurrent network to perform Gibbs sampling on
the sigmoid output of MPENet. If letting the total frame
number of test dataset be N and running Gibbs sampling
N times as one full step, we find that one full step gives the
best performance improvement (1.81% on Precision and
0.11% on Recall). As expected (see Fig. 17 for example),
the recurrent network smooths out some scattered detec-
tions. With more than one full step, however, the recur-
rent network breaks down the initial MPENet output and
tends to “recompose” it into a new piece of music, which
results in a major metrics decreasing. Note that indices of
Gibbs sampling are selected randomly, so not all frames



Li et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:11 Page 18 of 23

0 7 15 22 29

time(s)

10

20

30

40

50

60

70

80

no
te

 in
de

x

Fig. 17 AMT results of the first 30 s of “MAPS_MUS-deb_clai_ENSTDkCl” after the regularization of recurrent network. Some false positives are
smoothed out. Note that since Gibbs sampling indices are selected randomly, not all frames have been updated by the recurrent network

have been updated during one full step. Also note that our
recurrent network has way shorter memory than those in
[38, 40], so it learns little music language and only has
effects on scatted detections. Because AMT is not the
concern of this paper, we do not experiment more here
but maybe focus on possible AMT-related refinements in
the future work.

6 Conclusions
In this paper, we propose a new deep learning layer
based on a NMF model with multimodal inputs under
sparsity and incoherentness constraints. Such “layeriza-
tion” of optimization problem provides the possibility to
learn dictionaries and other features jointly under a uni-
fied deep learning framework. It enables modularization,

Fig. 18 Colinearity explanation of a′ and u′ . Dashed lines indicate projections and dotted lines indicate the distance between two points
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online learning, and parameter fine-tuning for dictionary
learning problem, which can be used to simplify themodel
refactoring and extension. In comparison with the “high
level” features produced by other deep learning layers,
the proposed layer learns discriminative and represen-
tative dictionaries so that the outputs are more realis-
tically meaningful. Experiment results demonstrate that
our test net improves the MPE performance substantially
on MAPS dataset.
Restricted by hardwares, we pay more attention to layer

algorithm and the network structure than model training.
Unlike those fully explored and well-tuned deep learning
models, MPENet with empirical parameters, simple layer
combinations and shallow structures have plenty room for
improvements. For future work, there are several direc-
tions that can be considered: (1) from the layer point
of view, performance grows with the increasing modality
number. According to our experiment results, automatic
parameter adaptation will also improve the estimation
greatly; (2) from the network point of view, regularization,
depth, and structure are new focuses for extracting more
representative and robust features.

Endnotes
1 Scientific PitchNotation is used to represent notes, i.e.,

sub-contra octave is indexed by 0.
2 For certain stringed instruments, overtones are close

to but not exactly integer multiples of the fundamental
frequency, the degree of departure from whole multiples
is called inharmonicity.

3Note that Lorentzian-l2 norm is not truly a norm since
it satisfies all norm axioms except absolute homogene-
ity, but we follow the convention of l0 norm and [45]
throughout this paper.

Appendix
Proposition 1 a obtained by Algorithm 1 is a minimizer

of (5).

Proof Algorithm 1 is a straightforward application of
ADMM. Introducing t, b and using the notation in 3.4, the
unconstrained form of (5) is

1
2
‖Dt−x‖22+λ1‖a‖L−bl2,γ +λ2

2
‖t‖22+

ρ

2
‖t−a+b‖22+δ

R
md
�0

(a)

(26)

Applying ADMM, the update scheme of (26) is

t = min
t

1
2‖Dt − x‖22 + λ2

2 ‖t‖22 + ρ
2 ‖t − a + b‖22 (27)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
a = min

a
λ1‖a‖L−bl2,γ + ρ

2 ‖t − a + b‖22 + δ
R
md
�0

(a) (28)

b = b + t − a (29)

Solving (27) yields

t = (DTD + (ρ + λ2)I
)−1 (DTx + ρ(a − b)

)

which is the update of t in Algorithm 1. To solve (28), we
first change its form into

a = min
a

λ1
ρ

‖a‖L−bl2,γ + 1
2
‖t−a+b‖22 + δ

R
md
�0

(a) (30)

Denoting λ = λ1
ρ

and using Karush-Kuhn-Tucker con-
ditions, we introduce v ∈ R

md
�0. The Lagrange function of

(30) is

L(a, v) � λ‖a‖L−bl2,γ + 1
2
‖t − a + b‖22 − 〈v, a〉 (31)

and KKT conditions are

(λW̃ + I)a = t + b + v (32)
ai � 0 (33)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
vi � 0 (34)
viai = 0 (35)

where i = N
md and W̃ is defined in (13). It is easy to find

(32) can be split into n independent groups

(λW + I)ai� = ti� + bi� + vi�, i = N
n (36)

where

ai� �

⎛
⎜⎝

a(i,1)↓
...

a(i,m)↓

⎞
⎟⎠ , a(i,k)↓ �

⎛
⎜⎝

a(k−1)d+(i−1)a+1
...

a(k−1)d+ia

⎞
⎟⎠, k = N

m

(37)

and ti�, bi�, vi� are defined accordingly. For any i = N
n,

we omit the subscript and let a′ = ai� and u′ = ti� +
bi� + vi�, we have equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
2λ

γ 2+‖a′‖22
a′
j + a′

j = u′
j

...
2λ

γ 2+‖a′‖22
a′
k + a′

k = u′
k

...

, j, k = N
ma (38)

Through (38), we have a′ and u′ are collinear. Or one
can get this conclusion more intuitively from a geomet-
rical point of view through (31). In Fig. 18, for any a3 ∈
{a | ‖a‖ > ‖u′‖}, we have L(u′) < L(a3); for any
a2 ∈ {a | 〈a,u′〉 � 0} we have L(0) < L(a2); for any
a1 ∈ {a | ‖a‖ � ‖u′‖, 〈a,u′〉 > 0}, a1 can be written as
a1 = a1‖+a1⊥ where a1‖ = hu′, h > 0 and 〈a1⊥,u′〉 = 0,
one can testify that L(a1‖) � L(a1).
Setting a′ = βu′,β ∈[ 0, 1], (30) can be rewritten as

β = argmin
β∈[0,1]

λ‖βu′‖L−bl2,γ + ‖u′‖22
2

(β − 1)2 (39)

Using the notation u = ‖u′‖22 in Algorithm 2, (39)
becomes

β = argmin
β∈[0,1]

λ log
(
1 + u

γ 2 β2
)

+ u
2

(β − 1)2 (40)

the necessary conditions of minimizing (40) w.r.t β is

u
(

2λβ
γ 2 + uβ2 + β − 1

)
= 0 (41)

if u = 0, i.e., u′ = 0, it is easy to testify a′ = 0 through
(30), we set β = 0 in this case; otherwise, we have

uβ3 − uβ2 + (2λ + γ 2)β − γ 2 = 0 (42)

Since u > 0, let λ′ = λ
u , γ

′ = γ 2

u , (42) becomes

β3 − β2 + (2λ′ + γ ′)β − γ ′ = 0 (43)

According to Cardano’s method, the discriminant of
(43) is

(
2λ′ + γ ′)3 + 2γ ′2 − 10γ ′λ′ − λ′2 + γ ′ (44)

Due to λ > 0 and γ > 0, let λ = ξγ 2, ξ > 0, then
λ′ = ξγ ′, (44) becomes

γ ′ ((2ξ + 1)3 γ ′2 + (2 − 10ξ − ξ2
)
γ ′ + 1

)
(45)

The discriminant of (2ξ+1)3 γ ′2+(2−10ξ − ξ2
)
γ ′+1 is

ξ (ξ − 4)3 (46)

If ξ < 4, i.e., λ < 4γ 2, (45) is greater than 0 con-
stantly, then (43) has only one real root. One can calculate
it directly through Cardano’s method; if ξ = 4, when
γ ′ = 1

27 , (45) equals to 0, then we have β = 1
3 , otherwise

(43) still has only one real root.
For ξ > 4, we only discuss the case when (44) < 0, then

(43) has three different real roots. Let the roots be β1, β2,
β3 and β1 < β2 < β3. First, according to the shape of
(43), one can conclude that λ log

(
1 + u

γ 2 β
2
)

+ u
2 (β − 1)2

is monotonically decreasing on [−∞,β1], monotoni-
cally increasing on [β1,β2], monotonically decreasing on
[β2,β3] and monotonically increasing on [β3,∞]. β2 is
a local maximum and can be excluded. For calculating
β1 and β3, recalling Cardano’s method again, for a cubic
equation ax3 + bx2 + cx + d = 0, a > 0 (hereafter there
are some abuse of notation for conventional compliance),
we have

⎧⎪⎪⎨
⎪⎪⎩

x1 = − b
3a + 3√ρ1 + 3√ρ2

x2 = − b
3a + ω 3√ρ1 + ω̄ 3√ρ2

x3 = − b
3a + ω̄ 3√ρ1 + ω 3√ρ2

(47)

where

ρ1=−q
2
+√

�, ρ2=−q
2
−√

�,ω=−1
2
+

√
3
2

i, ω̄= −1
2
−

√
3
2

i

and

� =
(q
2

)2+
(p
3

)3
, p= 3ac − b2

3a2
, q= 2b3 − 9abc + 27a2d

27a3

In order to avoid calculating cubic roots, we rewrite ρ1
and ρ2 in polar form as

ρ1 = r (cos θ + i sin θ) , ρ2 = r (cos θ − i sin θ)

where

r =
√

−
(p
3

)3
, θ = arccos

−q
2r

According to De Moivre’s formula, one group of 3√ρ1 and
3√ρ2 is
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y1 = 3√r
(
cos

θ

3
+ i sin

θ

3

)
, y2 = 3√r

(
cos

θ

3
− i sin

θ

3

)
,

Substituting y1 and y2 into (47), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = −b+2A cos θ
3

3a

x2 = −b−A
(
cos θ

3+sin θ
3

)

3a

x3 = −b−A
(
cos θ

3−sin θ
3

)

3a

(48)

where

A = b2 − 3ac, θ = arccos
−2b3 + 9abc − 27a2d

A
√
A

Note that ax3 + bx2 + cx+ d = 0 having three different
real roots, so its derivative 3a2 + 2bx+ c has two different
real roots, i.e., 4b2 − 12ac = 4A > 0 constantly. Finally,
for θ ∈[ 0,π ], it is easy to find that x2 < x3 < x1, we have
β1 = x2, β3 = x1. Substituting the coefficients of (42) into
x2 and x1, one can get the equivalent expression described
in Algorithm 2.
Back to v, according to (35), we have

uivi = 0 ⇒ vi (ti + bi + vi) = 0, i = N
md (49)

Combining the constraints of (34) and (33), we have

vi =
{
0, ti + bi > 0
−(ti + bi), otherwise

(50)

Summing all the above discussion up completes
Algorithm 1.

Proposition 2
{

∂lnew
∂Di , i = N

m
}
described in Algorithm 3

is the gradient of lnew w.r.t Di.

Proof This proposition exploits the fact that the coding
and dictionary of any two different modals are inde-
pendent. First of all, (11) can be rewritten as equations

DkT
(
DkAk − xk

)
+λ1WAk +λ2Ak = 0, k = N

m (51)

Taking the derivative w.r.t Dk
i,j, we have

0=EkT
ij

(
DkAk−xk

)
+DkT

(
Ek
ijAk+Dk ∂Ak

∂Dk
i,j

)
+λ1

∂(WAk)

∂Dk
i,j

+λ2
∂Ak

Dk
i,j

(52)

where i = N
f k , j = N

d and Ek
ij ∈ R

f k×d denotes an all-zero
matrix except the (i,j)-th element is 1.

Recalling the definition of ã in (7), then the q-th value of
∂(WAk)

∂Dk
i,j

is

[
∂(WAk)

∂Dk
i,j

]

q

= ζq
∂Aq,k

∂Dk
i,j

= ζq

⎛
⎝∂Aq,k

∂Dk
i,j

− ζqAq,k


q/a�a∑
l=(
q/a�−1)a+1

(
Al,k

∂Al,k

∂Dk
i,j

)⎞
⎠

(53)

where

ζq = 2
γ 2 + ã
q/a�

, q = N
d

Combing (52) and (53) and omitting some reduction
and rearrangement, we have

(
DkTDk + λ1W

(
I − WVkVkT

)
+ λ2I

) ∂Ak

∂Dk
i,j

(54)

= EkT
ij

(
xk − DkAk

)
− DkTEk

ijAk

where Vk is defined in (16). Let

Pk�DkTDk+λ1W
(
I−WVkVkT

)
+λ2I,Qk�

(
Pk
)−T ∂lnet

∂Ak

According to (10),

∂lnew
∂Dk

i,j
=
〈

∂lnet
∂Ak

,
∂Ak

∂Dk
i,j

〉
+μ

2

∂
∑d

i1=1
∑d

i2=1,i2 
=i1

〈
Dk

i1 ,D
k
i2

〉2

∂Dk
i,j

(55)

The first term of (55) is
〈

∂lnet
∂Ak

,
∂Ak

∂Dk
i,j

〉
=
〈
∂lnet
∂Ak

,P−1
(
EkT
ij

(
xk−DkAk

)
−DkTEk

ijAk
)〉

=
〈
Qk ,EkT

ij

(
xk − DkAk

)
− DkTEk

ijAk
〉

=
〈
xk − DkAk ,Ek

ijQ
〉
−
〈
DQk ,Ek

ijAk
〉

(56)

The second term is

μ

2

∂
∑d

i1=1
∑d

i2=1,i2 
=i1

〈
Dk

i1 ,D
k
i2

〉2

∂Dk
i,j

= μ

d∑
i=1,i
=j

〈
Dk

i ,Dk
j

〉
Dk

i,j

(57)

Substituting (56) and (57) into (55), we have

∂lnew
∂Dk =

(
xk − DkAk

)
QkT − DQkAT

k + μDkUk (58)

where Uk is defined in (17).
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