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The performance of automatic speech recognition systems degrades in the presence of emotional states and in
adverse environments (e.g., noisy conditions). This greatly limits the deployment of speech recognition application
in realistic environments. Previous studies in the emotion-affected speech recognition field focus on improving
emotional speech recognition using clean speech data recorded in a quiet environment (i.e,, controlled studio
settings). The goal of this research is to increase the robustness of speech recognition systems for emotional
speech in noisy conditions. The proposed binaural emotional speech recognition system is based on the analysis
of binaural input signal and an estimated emotional auditory mask corresponding to the recognized emaotion.
Whereas the binaural signal analyzer has the task of segregating speech from noise and constructing speech mask
in a noisy environment, the estimated emotional mask identifies and removes the most emotionally affected
spectro-temporal regions of the segregated target speech. In other words, our proposed system combines the two
estimated masks (binary mask and emotion-specific mask) of noise and emotion, as a way to decrease the word
error rate for noisy emotional speech. The performance of the proposed binaural system is evaluated in clean
neutral train/noisy emotional test scenarios for different noise types, signal-to-noise ratios, and spatial configurations
of sources. Speech utterances of the Persian emotional speech database are used for the experimental purposes.
Simulation results show that the proposed system achieves higher performance, as compared with automatic
speech recognition systems chosen as baseline trained with neutral utterances.
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1 Introduction

Speech is the most convenient means of communication
for humans. In the last years, scientific and technical im-
provements in speech technology have resulted in a more
natural human-machine speech interaction and natural
language processing systems.

Despite all the recent advances in speech technology,
often these systems struggle with issues caused by speech
variabilities. These variabilities can occur due to
speaker-dependent characteristics (e.g., shape of the vocal
tract, age, gender, and emotional states), environmental
noise, channel distortion, speaking rate, and accent vari-
abilities [1, 2].
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The automatic speech recognition (ASR) systems have
been employed in many applications (e.g., voice-controlled
personal computers) in the last decades. However, noise
and speech variabilities such as emotions degrade the
performance of the ASR systems, and this greatly limits the
deployment of the systems in realistic situations [3, 4].

Characterization of the effect of emotional expression
on speech, together with related techniques to improve
the performance of speech processing systems, is a major
research topic [1, 2, 5]. The emotional states such as anger,
happiness, fear, sadness, and disgust affect the speech
production by introducing changes in speech loudness,
muscle tension, breathing rate, etc, and these in turn
modify the factors such as glottal waveform, intensity,
speech quality, prosody, and timing. Although most of the
research has been focused on the recognition of speech
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emotions, a limited work has been performed in the area
of emotion affected speech recognition (EASR) [6-8].

Generally, the performance degradation in the EASR
systems arises mainly due to the statistical mismatch be-
tween neutral training and emotional testing conditions.
The proposed solutions for the EASR systems can usually
be classified into three main categories, namely, feature
level, acoustic model (AM) level, and language model
(LM) level.

The feature-level approaches aim to find more robust
acoustic features or to compensate for the effects of
emotional states during the recognition phase. As the
main work in this category, Sun et al. [9] have improved
the performance of the EASR system by increasing the
resolution of important frequency bands in extracting
Mel-frequency cepstral coefficients (MFCCs) and percep-
tual linear prediction (PLP) features. They utilized Fisher’s
F-ratio analysis method in statistics to analyze the signifi-
cance of different frequency bands for EASR. In another
work, Sheikhan et al. [8] have used the neutralized MFCCs
in a hidden Markov model (HMM)-based ASR system
trained by neutral speech to improve the speech
recognition rate for emotional speech utterances. In their
method, the frequency warping is performed in the second
formant (F2) frequency range to obtain the neutralized
MECCs. Here, the warping factor is first calculated by
employing a hybrid structure of dynamic time warping
(DTW) and multi-layer perceptron (MLP) neural network.
Then, the frequency warping is applied to the stages of
Mel-filterbank and/or discrete cosine transform (DCT) in
the MFCC feature extraction to obtain the neutralized
MECCs.

The goal of the acoustic model-based methods, on the
other hand, is to tune the models in the training stage to
make AMs more matched to emotional speech [10, 11].
Pan et al. [10] have used an adaptation technique to con-
struct the emotion-dependent AMs with a small amount
of emotional speech. In their work, a model selection
approach based on emotion classification is proposed
using the Gaussian mixture models (GMMs) to improve
the performance of the EASR system. A rapid model
adaptation technique has been developed by Ijima et al.
[11] for EASR which utilizes the multiple regression
HMM (MRHMM) framework. In this method, first,
MRHMM is trained using a speaker-independent neutral
style model with a small amount of target speaker’s data.
Then, the acoustic model for speech recognition is
adapted to emotional input speech from the trained
MRHMM.

In the category of LM techniques, some high-level
knowledge, i.e., emotion-specific clues, are added to the
model. Athanaselis et al. [3] improved the recognition
rate for spontaneous emotionally colored speech by
using an emotionally enhanced language model. In this
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approach, the emotionally enriched LM was derived by
adapting an already existing corpus, the British National
Corpus (BNC). Here, first, an emotional dictionary is
used to identify emotional words in the BNC. Then,
sentences containing these words are recombined with
the BNC to form a corpus with a raised proportion of
emotional material.

Another major factor that leads to the degradation in
the performance of ASR systems is the presence of envir-
onmental noise. Many techniques have been developed
that attempt to address this issue. These include (among
others) model-based techniques which use noise models
in the recognition procedure [12], noise-robust feature
extraction approaches [13], and speech enhancement
methods such as spectral subtraction [14].

In contrast to the performance of ASR systems, human
speech perception is remarkably robust. Listeners can
follow a conversation in the presence of background noise,
even in cases where two or more speakers are simultan-
eously active [15, 16]. This robustness is, for the most
part, due to the ability of the auditory system to analyze
and decompose complex acoustic scenes into its constitu-
ent acoustic sources. The capability of the auditory system
to segregate a target sound from an acoustic mixture is
termed as auditory scene analysis (ASA) by Bregman [17].
Bregman’s work has inspired interest in the development
of computational auditory scene analysis (CASA) systems,
which aim at modeling the human process of ASA. Typic-
ally, the techniques of CASA operate on a time-frequency
(T-F) representation of the input and produce an output
that can be viewed as a binary T-F mask. A reasonable ob-
jective of CASA is the ideal binary mask (IBM) [18], which
assigns the values of 0 or 1 to each T-F unit. A value of 1
indicates that the corresponding T-F unit is grouped into
the segregated target, and a value of 0 indicates that the
unit is considered a part of interference, and hence,
removed.

The other obvious advantage of human is the listening
with two ears (binaural hearing). This advantage arises
from the spatial separation of target and interfering
sources, which causes differences between the time of
arrival and the sound level of the two ears. These cues are
referred to as interaural time difference (ITD) and inter-
aural level difference (ILD). Given a complex acoustic
scene, human listeners are able to separate and localize
sounds in space by measuring the ITDs and ILDs. The
task of understanding speech with two ears in the pres-
ence of other concurrent talkers was termed the “cocktail
party problem” [19].

A number of different computational methods were
developed to segregate a target source from background
noise or to perform speech recognition based on estimat-
ing an ideal binary mask [20, 21]. May et al. [22] proposed
a novel binaural scene analyzer to robustly localize and
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detect a known number of speech sources in the presence
of spatially distributed interfering noise signals. The
proposed system has two processing stages: In the first
stage, a binaural unit analyzes the input acoustic mixture
to detect the activities of relevant sound sources. Then, in
the second stage, based on an estimated binary mask, a
speech detection module is constructed which has the
task of choosing most likely speech positions from a set of
candidate source positions. This is achieved by a two-class
Bayesian classifier that is trained to discriminate between
speech and noise signals.

Previous studies in the field of EASR [8-11] have
focused on improving emotional speech recognition using
clean (noiseless) speech data recorded in a quiet environ-
ment (ie., controlled studio settings). However, in
real-world scenarios, emotional speech signals are usually
disturbed with different types and levels of noises, which
decrease the performance of the speech recognition
systems. On the other hand, human beings are capable of
perceiving emotional speech even in noisy scenarios.
Therefore, it is reasonable to believe that the performance
of a speech recognition system can be improved by adopt-
ing an approach that models the (known) mechanisms of
auditory processing [23].

This paper proposes a binaural emotional speech recog-
nition (BESR) system based on known principles of CASA.
Our proposed method combines binaural processing with
an emotion recognition module to improve the recognition
rate of ASR systems in the presence of emotion and back-
ground noise. The binaural front-end employs the tech-
nique of binaural scene analysis proposed by May et al.
[22]. This unit aims at segregating speech from noise using
an estimated binary mask. The remaining parts of the
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proposed BESR system have the task of estimating a binary
emotional mask based on the identification of emotional
state. This mask is used to identify and retain the speech
T-F units that are most likely neutral and remove those
units that are mostly affected by emotional states.

The paper is organized as follows. Section 2 explains
in detail the main components of the proposed BESR
system, including binaural scene analysis, feature extrac-
tion, emotion recognition, and emotional mask estima-
tion. In Section 3, the evaluation procedure and the
experimental results are provided. The concluding
remarks together with a general discussion are given in
Section 4.

2 Binaural emotional speech recognition

The block diagram of the proposed BESR system is illus-
trated in Fig. 1, which is composed of train and test process-
ing phases. In the training phase, based on the extracted
features from the input utterance, the Gaussian mixture
models (GMMs) are obtained for each emotional state.

The test phase includes three main processing stages,
namely, binaural processing, emotion recognition, and
emotional masking and recognition. In the binaural
processing stage, the target speech is segregated from the
noise using the method proposed by May et al. [22]. In
the emotion recognition stage, the emotional content of
input speech is detected using some pre-trained models of
emotional states. In the final stage, based on the
recognized emotion, an emotional mask is estimated and
applied to the target speech to obtain the most
neutral-like segments of speech. Then, the resynthesized
noise- and emotion-free signal is fed into a neutrally
trained ASR system.
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As shown in Fig. 1, the proposed BESR system enables
us to obtain both the emotional state (i.e., paralinguistic
information) and the recognized words (i.e., linguistic
information) contained in a speech signal at the same
time. The different computational stages of the proposed
system are described in detail below.

2.1 Binaural processing

The acoustic input to the proposed BESR model is a
binaural mixture signal consisting of speech and noise
sources that are positioned at pre-specified spatial
locations. The processing unit, called the binaural scene
analysis, takes the binaural signal and returns the associ-
ated mask of the segregated target speech together with
the better ear (BE) signal at its output. The procedure is
based on the approach provided by May et al. [22],
where the localization and detection of the sources are
performed in sequence. The building blocks of the
method are shown in Fig. 2.

In the case of monaural input, the block diagram
consists of a monaural path (dashed line) which pro-
cesses the signal only via the gammatone filterbank
without the processing stages required for the binaural
input signal. The monaural path signal is fed to the emo-
tional masking and recognition unit (see Fig. 1). This
structure, called monaural emotional speech recognition
(MESR), makes possible the application of the emotional
speech recognition in the monaural scenario. In our
experiments, the MESR structure serves as a comparison
baseline system to assess the efficiency of the proposed
BESR system.

The building blocks of the binaural scene analysis are
described in detail below.

2.1.1 Gammatone filterbank

In the first stage of the binaural scene analysis, the bin-
aural signal is decomposed by a bank of gammatone filters
consisting of Q =32 filters [24], with the center frequen-
cies equally distributed on the equivalent rectangular
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bandwidth (ERB) rate scale from 80 to 5000 Hz. The
impulse response of the gammatone filter is given as:

g ()= N1 exp[-27b(f,)] cos(2nf .t + P) u(t),

c

(1)

where ¢ refers to time, N =4 is the order of the filter,
b(f.) is the equivalent rectangular bandwidth, f, is the
center frequency of the filter channel ¢, ¢ is the phase,
and u(t) is the step function.

After decomposing the signal with the gammatone fil-
terbank, the signal in each frequency channel is proc-
essed by units of half-wave rectification and square-root
compression which model the auditory inner hair-cell
behavior.

2.1.2 Binaural cue extraction

The binaural cues of the interaural time difference (ITD)
and interaural level difference (ILD) are computed inde-
pendently for each channel by the cross-correlation ana-
lysis and the energy comparisons between the right and
left ear signals, respectively. The extraction of ITDs and
ILDs at each auditory channel is performed by overlap-
ping the frames of 20 ms with a 10-ms shift.

2.1.3 Spatial log-likelihood map computation

After the extraction of the aforementioned binaural
cues vector, x.r=(ITD,;ILD,ys), a GMM classifier,
which has been trained with the azimuth-dependent
distribution of feature vectorsx,s is used to deter-
mine the log-likelihood of each source location.
Here, the training of the GMM classifier is per-
formed at K =37 different sound source positions in
the steps of 5° within the range of [-90°,90°]. The
likelihood is a three-dimensional map that represents
the probability that the kth source direction is active
at frame ¢ and frequency f:
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£t f, k) = logp(xt7f|/1f7¢k), (2)

where p(x;f|Arg,) is a Gaussian mixture density with
15 components, and ¢, represents the kth source
direction.

2.1.4 Source position detection

In this stage, at each time frame ¢, the likelihood of a
source location is summed across all frequency channels
to determine the most probable sound source position:

P() = arg max Z?Zlﬂ(t, f.k). (3)

Then, an azimuth histogram is computed based on the
estimated P(t). This histogram is used to determine all
active sound sources. Here, it is assumed that through-
out the time intervals the azimuth histogram is com-
puted, the source positions do not change. The peaks in
this azimuth histogram correspond to a set of speech
source candidate positions L = {{y, ..., [4}.

2.1.5 Mask estimation

In order to determine and isolate the T-F units of each
individual sound source, the spatial log-likelihood map
L£(t, f,k) is employed to create a binary mask M,,(t,f)
for each candidate positionm = {1, ..., A}:

1, if m= argmax L£(¢,f,k
Mm(t,f)Z{ %EL ( f )

0, otherwise.

2.1.6 Speech detection

For each estimated mask, the type of corresponding
source (i.e., speech or noise) is determined by employing
a simple log-likelihood classifier [22]:

S h
p(FMSpeech) p§C
log| ———"— 0. (5)
p(FMNoise) <
Noise

Here, the feature vector F represents the mean absolute
deviation of the smoothed envelope which is extracted sep-
arately for noise and speech and used to train the
corresponding speech and noise GMMS, Agpeech, and Anises
with 32 components and diagonal covariance. In this work,
the GMM models of speech and noise are obtained by
using the Persian ESD [25] and the NOISEX [26] databases,
respectively.

After the detection of the speech source, its correspond-
ing mask, called speech mask, is given to the next process-
ing units, as shown in Fig. 1. Unlike the approach taken
by T. May [22], in which the detected speech mask is used
for missing data -based speaker recognition task, in our
present work, the estimated mask is employed to compute
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eventually an emotional mask from the target speech in
the proposed system.

2.1.7 Better ear selection

Generally, the binaural input signals of the left and right
ears differ in their signal-to-noise ratio (SNR) values.
This motivates us to select the signal for the next pro-
cessing stages with the highest SNR value, named as the
better ear (BE) signal. The underlying effect is referred
to as the better ear effect [27]. After detecting the target
speech from a set of speech source candidates, the
corresponding azimuth of the target is used to select the
BE signal. This is achieved by choosing the closest ear
signal to the estimated azimuthal position of the corre-
sponding target speech source. The output of BE selec-
tion procedure is one of the left or right mixture signals
with the highest SNR, which is used in the “emotional
masking and recognition” unit.

2.2 Emotion recognition

In the proposed BESR system, employing the appropri-
ate model in the emotional mask estimation process
requires the recognition of the underlying emotion from
the test utterance. To this aim, probabilistic models are
trained for the emotional states during the train phase.
The details of the emotion recognition process are
described below.

2.2.1 Feature extraction

Here, since a binary decision is to be made within each
T-F unit in the stage of the mask estimation, an appropri-
ate representation should be found for each T-F unit. So,
the acoustic features are derived at the frame level for
both the train and test stages. To extract the features for
the T-F unit u,,, in channel b and frame g, the gammatone
filterbank output of the channel b (i.e., the signal x,(z)) is
divided into 20 ms time frames with 10 ms overlapping.
Then, feature extraction techniques are employed at the
frame level to calculate the feature vector for u, ;.

In this work, power normalized cepstral coefficients
(PNCC) [28] are extracted and employed in the train and
test stages of the proposed BESR system. This feature has
been shown to provide better recognition accuracies com-
pared to other features [29, 30]. The results of our previ-
ous work [30] conducted for EMO DB [31] and Persian
ESD [25] databases confirm the robustness and effective-
ness of the PNCC for speech emotion recognition in both
clean and noisy conditions.

PNCC employs medium-time processing to alleviate the
noise corruption and uses power-law compression instead
of a log compression [29]. This feature is extracted from
the signal in each T-F unit. First, the short-time power
spectrum of the input signal is computed using the gam-
matone frequency summation procedure where the center
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frequencies of a 40-channel gammatone filterbank are
linearly spaced in equivalent rectangular bandwidth (ERB)
scale between 200 and 8000 Hz. Then, based on the
medium-duration temporal analysis, an asymmetric filter-
ing and temporal masking are carried out to subtract the
background noise. Finally, a power-law nonlinearity and
DCT are applied to obtain a 31-D feature vector. The final
93-D feature vector is constructed by employing the first
and second derivatives.

2.2.2 Model training

The recognition of the underlying emotions during the
test phase requires some pre-trained class (i.e., emotional)
models. To this aim, first, for each emotional state, &, and
frequency sub-band b, feature vectors are extracted from
the training utterances. Then, the extracted features are
used to obtain a Gaussian mixture model (GMM), /lf,
with 32 Gaussian components and diagonal covariance
matrices. The computed GMMs for all emotional states
(i.e., anger, disgust, fear, happiness, sadness, and neutral)
are utilized in the testing phase to recognize the under-
lying emotions from the input signal and subsequently in
the estimation of the emotional mask.

2.2.3 Emotion recognition

In our recent work, the performance of the emotion rec-
ognition system was evaluated using different acoustical
features in a real environment [30]. Here, in a similar
approach, the simple maximum-likelihood estimation is
used as the emotion classification method. During the
test phase, the pre-trained GMMs are employed to de-
termine the underlying emotion using simple likelihood
estimation. Let x,,, represents the speech feature vector
obtained from the T-F unit, u;,, in frequency sub-band
b, and time frame g. The recognized emotion of the
signal is the one that maximizes the likelihood function
over all frequency sub-bands and time frames:

€= arg ((Ipnax Z Zp(xb,qui), (6)

where B and Q are the number of bands in the gamma-
tone filterbank and time frames, respectively. After the
recognition of a specific emotion, its corresponding GMM
is used in the emotional mask estimation procedure.

2.3 Emotional masking and recognition

Using the selected model for the underlying emotion
and the information obtained from the binaural process-
ing unit (ie., the detected speech mask and the BE
signal), an emotional mask is estimated based on the
likelihood ratio of the emotional and neutral states for
each T-F unit. Then, the output signal is resynthesized
after the application of the emotional mask to the BE
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signal. Finally, the reconstructed signal is fed to the ASR
system to achieve the final recognition process. More
details are given as follows.

2.3.1 Feature extraction

The BE signal and the target mask obtained from the
binaural processing unit are used to extract appropriate
features from the target-dominated T-F units. Note that
in the case of monaural scenario, only the monaural
filtered signal (refer to Fig. 2) is used for the feature
extraction process. The computed auditory features are
used in the next stage for the estimation of the emo-
tional mask. Here, the PNCC algorithm is employed for
feature extraction as described in Section 2.2.1.

2.3.2 Emotional mask estimation

Our proposed EASR system is based on employing a
binary mask to select portions of a speech which are less
affected by emotions. The motivation behind using such
an auditory mask is the following: emotional states of
humans do not affect all parts of speech in the same way
and to the same amount. Using the idea of the auditory
mask, a speech recognition system can be equipped with
a pre-processing unit to eliminate the parts of speech
which are more affected with emotions. It is expected
that this will remove the regions of the emotional speech
which degrades the performance of the ASR system. The
following binary mask is proposed and estimated in the
test stage of the system shown in Fig. 1:

Melb,g) = b p(xb,qmﬁ)/p(x,,‘quf)wb -
a, otherwise,

where Mg(b, g) is the mask computed for the sub-band b
and frame g, p(xp,4|1;) and p(xp, |A£/) are the likelihood
functions of emotional (denoted as &) and neutral (de-
noted as \') states, respectively. The threshold 6, in
Eq. (7) is used as an adjustment parameter in sub-band b
and determines the extent of the spectro-temporal regions
to be retained as the most likely neutral in the specified
sub-band. The parameter a is a weighting parameter
which controls the amount of removal of most emotion-
ally affected spectro-temporal units from the final speech.
This is achieved by removing the affected unit partially
(e.g., a =0.5) or completely (i.e., a =0).

The motivation behind the definition of the parame-
ters of @ and 6, is to preserve the linguistic content of
speech as much as possible while improving the recogni-
tion rate.

2.3.3 Mask application and resynthesis

Using the estimated binary emotional mask, it is straight-
forward to resynthesize the speech signal from the output
of the gammatone filterbank (the BE signal or monaural).
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This can be achieved by employing a method introduced
by Weintraub [32]. In this approach, after some
pre-processing stages, the energy in each T-F unit is
weighted by the corresponding T-F mask value obtained
from the estimated binary mask. Then, the weighted
responses are summed across all frequency channels to
yield a speech waveform which is mostly neutral.

2.3.4 ASR

A typical ASR system comprises two stages: feature ex-
traction and decoding. In the first stage, the input speech
signal is processed by the feature extraction unit to pro-
vide a stream of acoustic feature vectors or observations.
In the second stage, the extracted observation sequence is
fed into a decoder to recognize the most likely word
sequence. Three main knowledge sources, i.e., lexicon,
language model, and acoustic model, are used in this stage
[33]. In the statistical framework, the Bayesian decision
rule is employed to find the most probable word sequence

W given the observation sequence O = (01, 0, ..., 0,,):

W = arg max P(W|0), (8)
w

Using the Bayes’ rule, we obtain:

W = arg max POW)P(O|W)
W P(0) (9)
= arngax P(W)P(O|W),

where the prior probability P(W) and P(O| W) specify
the language model and acoustic model, respectively.
The probability P(O) is discarded in the second equation
since it does not alter the search for the best hypothesis.

In order to recognize the underlying words for the
input target speech, the resynthesized signal is given to
an ASR system. This system which was trained by neu-
tral and noise-free (i.e., clean) speech utterances is used
to determine the recognition accuracy of speech from
noisy emotional test signals.

3 Experiments and evaluations

3.1 Experimental setup

In a conventional speech recognition system, neutral
speech is used for both train and test stages. This estab-
lishes a neutral train/neutral test scenario. However, in
real conditions (i.e., emotional and noisy speech), the neu-
trally trained ASR system results in poor performance
when employed directly in the emotional noisy speech
recognition condition. In this paper, clean-neutrally train/
noisy-emotionally test situation is considered in the recog-
nition experiments. Here, to verify the effectiveness of the
proposed BESR system, its performance is evaluated and
compared with those of the two baseline systems: a
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neutrally trained Kaldi ASR and the monaural ESR
(MESR) (refer to Section 2.1) in noisy emotional test
conditions.

The analysis and evaluation results are presented in
two different experimental conditions. In the first ex-
periment, the speech recognition task is performed using
clean emotional speech utterances taken from the Per-
sian ESD [25]. In the second experiment, the recognition
task is conducted with the noisy emotional speech in
which four different types of noise, including babble,
white, factory, and speech-shaped noise (SSN), and,
taken from the Noisex-92 database [26] are artificially
added to each utterance at various SNRs. The effect of
noise addition is investigated for different SNR values
ranging from the - 5 dB SNR to 30 dB SNR.

The binaural target and noise signals in the experiments
are created by convolving the signals with their corre-
sponding head-related impulse responses (HRIRs) of the
KEMAR artificial head [34]. The binaural acoustic mixture
signal is generated by combining a binaural target speech
located at 0° of azimuth with a binaural noise positioned
at azimuths of 0°, +30°, +60°, and +90°. Here, it is as-
sumed that the acoustic mixture is created in an anechoic
room.

Our proposed method for improving the EASR system
is based on applying a binary acoustic mask which is esti-
mated using the pre-trained emotional GMM models.
The GMMs used for emotional models of the proposed
EASR system are composed of 32 components with diag-
onal covariance matrices. As an acoustic feature, the
PNCC is extracted [29] and employed in the train and test
stages of the proposed EASR system. This feature is used
together with its first and second derivatives to construct
the final feature vector.

In the emotional mask estimation procedure, the
threshold values, 6,, in each frequency sub-band are set
to retain 95% of the regions most related to the neutral
state. This means that in each sub-band, 5% of the
spectro-temporal regions are suppressed by the masking
procedure.

3.2 Database

Speech utterances of Persian ESD [25] are used for the
experimental purposes. Persian ESD is a comprehensive
emotional speech database for colloquial Persian. The
database was produced in a professional recording studio
in Berlin, Germany, under the supervision of an expert
linguist and an acoustician. It contains a set of 90 vali-
dated novel sentences uttered by two native Persian
speakers (one male and one female) in different emotional
states. As shown in Table 1, the Persian ESD comprises
472 speech utterances, each with a duration of 5 s on aver-
age, which are classified into five basic emotional groups
of anger, disgust, fear, happiness, and sadness, as well as
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Table 1 Number of utterances per state for Persian ESD
database used in the experiments

Emotions Number of Utterances
Anger 62

Disgust 58

Fear 58

Happiness 58

Sadness 56

Neutral 180

Total 472

the neutral state. The database was articulated in three sit-
uations: (1) congruent (emotional lexical content spoken
in a congruent emotional voice), (2) incongruent (neutral
sentences spoken in an emotional voice), and (3) baseline
(all emotional and neutral sentences spoken in neutral
voice). The validity of the database was assessed by a
group of 34 native speakers in a perception test. Utter-
ances having a recognition rate of 71.4% or better were
regarded as valid descriptions of the target emotions. The
recordings are available at a sampling rate of 44.1 kHz and
mono channel.

3.3 Evaluation criterion

The performance of an ASR system for a particular task
is often measured by comparing the hypothesized and
reference transcriptions. In this context, word error rate
(WER) is the most widely used metric which is used to
assess the quality of our proposed BESR system. After
the alignment of the two-word sequences (i.e., hypoth-
esis and reference), the number of substitutions (S),
insertions (/), and deletions (D) is obtained in the Kaldi
ASR. These are all considered as errors, and the WER is
calculated by the rate of the number of errors to the
total number of words (N) in the reference:

S+1+D

WER = x 100%. (10)

3.4 Kaldi ASR system

The effectiveness of the proposed emotional mask in re-
moving most emotional areas is assessed by an ASR
system that has been trained by neutral speech utterances.
This paper uses the ASR system implemented by the Kaldi
toolkit, which is based on finite-state transducers (FST)
[35]. Kaldi uses the weighted finite-state transducers
(WESTs) for training and decoding algorithms. The FST
framework provides graph operations, which can be
effectively used for decoding. Using the FST, the speech
decoding task is expressed as a beam search in a graph,
which is a well-studied problem [36].
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Here, a GMM-HMM model is trained on neutral
utterances of Persian ESD corpus using the Kaldi recipe.
In the process of feature extraction, first, 13 MFCCs are
extracted. Then, cepstral mean-variance normalization
(CMVN) and delta and delta-delta operations are
applied to compute the final 39 acoustic features. For
decoding, the trained acoustic models are employed
within which the phonemes are modeled by three-state
single-mixture left-to-right monophone HMMs. For this
purpose, 30 phonemes are used including silence and
pause. The corresponding HMMs of the Kaldi system
are trained using the neutral utterances of the Persian
ESD which comprises 180 utterances (2 speakers, 90
utterances per speaker). The statistical language model
used in the ASR system is the word-pair bigram lan-
guage model. Because of the lack of a standard lexicon
in the Persian language for speech recognition tasks, a
lexicon is created from the Persian ESD dataset.

3.5 Results and discussions

3.5.1 Kaldi baseline

We first examine the effects of noise and emotion on
the performance of the speech recognition system. To
this aim, the trained ASR system with clean and neutral
utterances is first tested with clean emotional utterances
and then with noisy ones. In this experiment, the test
utterances from different emotional states are mixed
with four different noise types and in six different SNR
levels, ranging from -5 to 30 dB. Tables 2 and 3 show
the results of speech recognition in terms of WER
obtained in clean and noisy conditions, respectively.

The recognition result for the neutral case is obtained
through a distinct experiment in which 80% of the total
neutral utterances are used for the training of the acoustic
model, and the rest is reserved for the testing.

The results in Table 2 indicate that the neutrally trained
ASR system can achieve a high performance on neutral
speech while performing poorly on emotional input. This
confirms the fact that emotion has a negative impact on
speech recognition accuracy. The average WERs for emo-
tional speech obtained is 12.47%, which are much higher
than the results achieved by neutral speech (1%).

As the results of Table 3 show, the performance of the
ASR system degrades in the presence of noise. Specific-
ally, it is observed that by increasing the SNR value, the
recognition performance is enhanced. However, it is seen
that even at high SNR values (e.g., SNRs of 20, 30 dB),

Table 2 The performance of speech recognition for clean
emotional speech using Kaldi ASR trained with neutral speech

Sadness  Neutral

11.60 1

Emotional states Anger
WER (%) 11.31

Disgust  Fear
1392 13

Happiness
1252
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Table 3 The performance of Kaldi system in terms of WER (%)
for noisy emotional speech trained with neutral speech

Noise Emotional  SNR

types states s 0 5 10 20 30

Babble  An. 9443 9164 8623 6508 3574 2656
Dis. 93.04 8791 7509 6227 359 17.95
Fe. 9505 9176 8791 7564 3846 2033
Ha. 93.74 9088 814 6834 3483 1932
Sad. 9506 9392 8992 7681 3327 1825
Mean 9426 9122 8411 6963 3565 2048

White An. 9738 9377 8344 7082 40 25.74
Dis. 9469 9139 8663 7692 5696 29.12
Fe. 9835 9451 9066 8553 5348 2875
Ha. 9714 9052 8354 7013 4383 2665
Sad. 96.58 943 8897 8365 6483 3821
Mean 9683 9290 8665 7741 5182 29.69

SSN An. 9836 9475 8303 718 3902 2475
Dis. 9634 8974 8462 6905 3663 1612
Fe. 9927 9707 9121 804 4341 2381
Ha. 9946 9553 864 7513 3649 2075
Sad. 9905 9582 924 8384 4411 192
Mean 9850 9458 8853 7604 3993 2093

Factory — An. 96.56 9131 841 66.07 3672 2574
Dis. 9414 9158 837 6886 3883 1978
Fe. 9853 9579 9194 8132 4487 2344
Ha. 96.78 9356 8497 703 3757 1699
Sad. 9734 9259 8802 7833 4011 2053
Mean 96.67 9297 8655 7298 3962 2130

the WER ranges from 35 to 52 and 20 to 30, respect-
ively, signifying the detrimental effect of noise.

3.5.2 MESR baseline

In the second experiment, the performance of the mon-
aural ESR system is evaluated in the emotional clean and
noisy scenarios. In comparison with the ASR system of
the first experiment (Kaldi baseline), this system utilize a
pre-processing to decrease the effect of emotion. It is
expected, therefore, that this system performs better than
the Kaldi baseline in the clean emotional conditions. The
results of this experiment are shown in Tables 4 and 5 for
clean and noisy emotional utterances, respectively.

Table 4 represents the recognition results achieved by
the MESR system based on two different mask estimation
methods (i.e, PNCC-mask and MFCC-mask) for two
different parameter values of @ (0 and 0.5) used in the
mask estimation process compared with the results
obtained with the Kaldi baseline. As the table shows, in
general, the monaural ESR system with different masks
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Table 4 The performances of the Kaldi baseline and the MESR
systems in terms of WER (%) based on three mask estimation
methods and different values of ain clean condition

Emotional Kaldi MESR baseline
states baseline  pNCC-mask MFCC-mask

a=0 a=05 a=0 a=05
Anger 11.31 11.97 4.10 19.34 5.08
Disgust 13.92 13.92 13.19 21.25 15.02
Fear 13.00 14.10 897 27.11 11.36
Happiness 12.52 12.34 948 29.86 8.94
Sadness 11.60 8.94 9.70 17.30 9.70
Average 1247 12.25 9.08 2297 10.02

Table 5 The performances of MESR system in terms of WER (%)
based on PNCC-mask for noisy emotional speech. For comparison,
the mean values of the recognition rates for the Kaldi system have
been included (see Table 3)

Noise Emotional SNR

types states s 0 c 10 20 30

Babble  An. 93 89 73 50 13 7
Dis. 92 86 75 59 20 1
Fe. 92 88 72 46 14 8
Ha. 94 90 79 58 26 1
Sad. 93 89 78 52 18 1
Mean 928 884 754 53 182 96
Kaldi mean 9426 9122 8411 6963 3565 2048

White An. 92 92 83 62 21 9
Dis. 94 92 90 73 35 16
Fe. 92 89 82 70 27 12
Ha. 93 91 84 69 31 15
Sad. 94 91 86 74 32 14
Mean 93 91 85 69.6 29.2 132
Kaldi mean 9683 9290 8665 7741 5182 2969

SSN An. 93 91 78 57 16 8
Dis. 93 90 86 69 24 13
Fe. 92 90 82 58 16 10
Ha. 94 92 83 66 27 13
Sad. 95 90 85 71 22 13
Mean 934 90.6 82.8 64.2 21 114
Kaldi mean 9850 9458 8853 7604 3993 2093

Factory  An. 93 90 83 65 21 9
Dis. 91 91 88 76 32 15
Fe. 95 94 89 68 25 1
Ha. 95 93 87 72 33 15
Sad. 92 91 89 79 36 16
Mean 93.2 91.8 87.2 72 294 132
Kaldi mean 9667 9297 8655 7298 3962 2130
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attains lower WERs as compared with the Kaldi system,
which confirms the effectiveness of the system. Here, it is
observed that the mask estimation based on PNCC
achieves the lowest WER value. On the average, the error
rate obtained by the PNCC-mask is 9.08% for a=0.5,
which is almost 1% lower than that achieved with the
MECC-Mask for the same value of a. Moreover, for this
value of the parameter (i.e., « =0.5) the performance of
the PNCC-mask is 3.4% better than that obtained from
the Kaldi baseline. As the results show, among different
mask-based implementations of MESR system, the lowest
WER is obtained for the case when a = 0.5. This improve-
ment in the performance can be interpreted by the fact
that using this value of the weighting parameter (ie., a =
0.5) in the mask calculation removes partially the most
emotionally affected regions, and this in turn improves
the recognition rate in the sense of reducing WER.

Experimental results demonstrate the effectiveness of
the PNCC for emotional speech recognition. This is due
to incorporating different processing stages in the imple-
mentation of the PNCC, including the use of a power-law
nonlinearity, employing a noise suppression algorithm
based on asymmetric filtering, and using a module that
accomplishes temporal masking [29]. In all the experi-
ments that follow, we will use the PNCC-mask with a =
0.5 due to its high performance.

The performance of MESR system based on the
PNCC-mask is depicted in Table 5 in terms of WER for
distinct values of SNRs and noise types. For the purpose
of comparison, the mean recognition values of the Kaldi
system have also been included. Comparing these results
with those of the Kaldi baseline shows that the MESR
system has a better performance in noisy situations. Spe-
cifically, the amount of improvement increases generally
by increasing the SNR value.

3.5.3 Proposed BESR

In the third experiment, the performance of the BESR
system is evaluated in emotional noisy scenarios. Here, for
each azimuth position of the interferer, including azimuths
of 0, £30, +60, and +90°, 120 distinct tests (five emo-
tional states, four noise types, and six SNR values) are per-
formed comprising a total of 840 different test conditions.
The results of the experiment are shown in Fig. 3 for noisy
emotional utterances. To show the results in a compact
way, the outcomes of speech recognition are averaged for
symmetric azimuths (i.e., + 30, £ 60, + 90) and emotional
states. For comparison, the mean values of WER for the
Kaldi baseline and monaural ESR (MESR) systems are also
included.

As shown in Fig. 3, in general, the proposed BESR
system improves the emotional speech recognition rate in
noisy conditions. Among various azimuths, the BESR
recognition rates yield the worst results at the azimuth of
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0°, as expected. This observation relies on the fact that in
this case, both of target and noise sources are located at
the same position (collocated scenario), where the
binaural scene analysis is not able to segregate the sources.
This situation is equivalent to the monaural (i.e., MESR)
case as the results show. For other azimuths, the results of
BESR are close to each other. With the exception of the
babble noise scenario, the best result is achieved for the
case when the noise source is located at the azimuth of
90°. In this case, the distance between the target and the
noise is maximized, and therefore, the segregation is
performed well as compared with other spatial
configurations.

The amount of improvement obtained by the BESR
system in comparison with other systems varies with noise
types and SNR values. The maximum improvement is
attained in the case of babble and SSN noises which is
probably due to the gaps occurring in time-frequency
representations of these noise types.

At the SNR of -5 dB, the highest improvement is
achieved for the babble noise and the least improvement
is obtained with the white and factory noises. Generally, as
the level of SNR increases, the amount of improvement of
the BESR increases gradually in contrast to the other
systems and reaches its maximum in the SNR range of 5—
10 dB, after which it starts to decrease. Specifically, for the
babble and SSN, the highest improvement is reached to
approximately 40 to 50%, compared to the Kaldi and
MESR baselines. However, this amount reaches 30% for
white and factory noises.

The results of the figure also show that the performance
difference between MESR and BESR systems is observed
below the SNR values of 20 dB, and as expected, the two
systems have the same performance at higher SNR levels
(e.g., 20 and 30 dBs).

3.5.4 Emotion recognition

It is expected that enhancing the recognition of emotion
results in improving emotional speech recognition. Once
the type of emotion is recognized, the appropriate
emotional model can be used in the emotional mask
estimation procedure. This expectation is verified in an
experiment in which the performance of the proposed
binaural system (i.e., BESR) for the emotion recognition
task (refer to Fig. 1) is evaluated in both clean and noisy
conditions against that of the monaural system (ie.,
MESR) for different noise types and SNR values. The
results of this experiment are shown in Fig. 4.

The figure illustrates the average values of the emotion
recognition rates for the BESR and MESR systems ob-
tained among different noise types (babble, white, SSN,
and factory) and different emotional states (anger, disgust,
fear, happiness, neutral, and sadness) of the Persian ESD.
As it can be seen from the figure, both systems have the
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Fig. 3 Comparing the performance of the BESR system with MESR and Kaldi baseline systems in motional noisy scenarios

White noise

100

WER (%)

0 . . . .
-5 0 5 10 20 30
SNR (dB)

Factory noise

100

80

60

—— BESR (0°)
—A— BESR (30°)
—%— BESR (60°)
—6— BESR (90°)
201 —p— MESR
KALDI

WER (%)

40

0 . . .
-5 0 5 10 20 30
SNR (dB)

same performance in the clean condition. In this condi-
tion, the average accuracy obtained by the MESR and
BESR systems is about 97%. Obviously, as the SNR is
decreased, the recognition rates of the systems also de-
crease. However, the difference between the performances
of the systems increases, in a way that the BESR maintains
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Fig. 4 Emotion recognition rates of the BESR and MESR systems
based on the PNCC feature in both clean and noisy conditions for
different SNR values obtained as mean values among different noise
types and emotional states

Clean

always its higher performance against the MESR. Specific-
ally, a large gap in the performances of both systems is
observed at the SNR of — 5 dB where the recognition rates
for the MESR and BESR systems reaches to 25% and 55%,
respectively. The improvement in emotion recognition of
the BESR system is due to binaural processing in sup-
pressing the effect of the noise when the target and noise
source have different azimuthal positions.

The above discussion confirms the notion that enhan-
cing the emotion recognition enables the system to select
the appropriate emotional model which improves the
emotional mask estimation. This in turn increases the rec-
ognition rate of the ASR in the final stage of the proposed
binaural emotional speech recognition.

4 Conclusions

In this paper, we consider the problem of emotional
speech recognition in noisy conditions and propose a new
approach to improve the recognition rate of the EASR
systems. The proposed binaural emotional speech recog-
nition (BESR) system is based on the binaural processing
of the input signal and estimation of an emotional audi-
tory mask corresponding to the recognized emotion. The
proposed binaural system employs a preprocessing stage
in which the target is first segregated from the noise and
then the most emotionally effected spectro-temporal
regions are removed. This is achieved by using the idea of
a binary mask and the recognition of underlying emotions.
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The performance of the proposed binaural system is
evaluated against two baseline systems, namely monaural
ESR (MESR) and Kaldi, in neutral train/noisy emotional
test conditions for different noise types, SNRs, and spatial
configurations of sources. Speech utterances of Persian
ESD are used for experimental purposes.

In the experiments, first, we show the effect of noise
and emotion on the performance of speech recognition.
Then, the performance of MESR is evaluated in clean and
noisy conditions. This stage of experiments shows an im-
provement in emotional speech recognition as compared
with the Kaldi ASR system, which can be justified as a
result of incorporating a preprocessing stage to remove
the emotionally affected regions. Finally, the speech recog-
nition performance of the proposed binaural system is
compared with those of the baselines, which shows further
improvements in the sense of WER measures.

The results of assessment for the proposed BESR system
in different spatial configurations show the best WER
score when the noise source is located at the azimuth of
90° whereas the worst score is attained at 0° where the tar-
get and noise signals stem from the same spatial location.
In the experiments involving different noise types, high
amounts of improvement (up to 50%) are obtained for
babble and SSN compared with the performances of base-
lines, while this improvement reaches to a maximum of
30% for factory and white noises.

Another contribution of the proposed binaural system
concerns its capability in the recognition of different
emotions. As to this, the performances of the proposed
binaural system (i.e., BESR) and the monaural system (i.e.,
MESR) are evaluated in the framework of emotion recog-
nition task in different noisy conditions. Here, the pro-
posed system shows again satisfactory results in terms of
recognition rates.

The experimental results show a higher performance of
the proposed system as compared with the baseline sys-
tems, namely, Kaldi and monaural ESR. This is mainly
due to the use of binaural processing and emotional
masks in the removal of emotionally affected areas.

As future work, the authors plan to evaluate the proposed
system in other environmental conditions, such as rever-
berant rooms, to study more on the effects of other audi-
tory masking methods on the recognition accuracies, to
incorporate other peripheral analysis techniques based on
more physiologically justified auditory models, and also to
consider the feasibility of missing data handling methods in
the framework of emotional speech recognition.
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