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Abstract

Several factors contribute to the performance of speaker diarization systems. For instance, the appropriate selection
of speech features is one of the key aspects that affect speaker diarization systems. The other factors include the
techniques employed to perform both segmentation and clustering. While the static mel frequency cepstral coefficients
are the most widely used features in speech-related tasks including speaker diarization, several studies have shown the
benefits of augmenting regular speech features with the static ones.
In this work, we have proposed and assessed the use of voice-quality features (i.e., jitter, shimmer, and Glottal-to-Noise
Excitation ratio) within the framework of speaker diarization. These acoustic attributes are employed together with the
state-of-the-art short-term cepstral and long-term prosodic features. Additionally, the use of delta dynamic features is also
explored separately both for segmentation and bottom-up clustering sub-tasks. The combination of the different feature
sets is carried out at several levels. At the feature level, the long-term speech features are stacked in the same feature
vector. At the score level, the short- and long-term speech features are independently modeled and fused at the score
likelihood level.
Various feature combinations have been applied both for Gaussian mixture modeling and i-vector-based speaker
diarization systems. The experiments have been carried out on Augmented Multi-party Interaction meeting corpus.
The best result, in terms of diarization error rate, is reported by using i-vector-based cosine-distance clustering together
with a signal parameterization consisting of a combination of static cepstral coefficients, delta, voice-quality, and
prosodic features. The best result shows about 24% relative diarization error rate improvement compared to the
baseline system which is based on Gaussian mixture modeling and short-term static cepstral coefficients.
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1 Introduction
An audio recording normally consists of different
speakers, music segments, noises, etc. Speaker diarization
needs to first classify the speech and non-speech parts of
the audio signal. Then, it marks the speaker changes in
the detected speech. Finally, it clusters speech segments
which belong to the same speaker [1].
One of the factors that affect the performance of

speaker diarization systems is the extraction of relevant
speaker features. Mel frequency cepstral coefficients
(MFCCs) are the most widely used short-term speech fea-
tures for speaker diarization [2]. Despite its broad employ-
ment in speaker diarization, it is described in [3, 4] that

augmenting short-term speech characteristics with long-
term ones improves the performance of speaker diariza-
tion systems. These results manifest that the long-term
features provide some complementary and discriminative
information about different speakers not captured by the
classical MFCCs.
One of the main contributions of this work is the use

of jitter and shimmer voice-quality features both for
GMM- and i-vector-based speaker diarization systems.
Jitter and shimmer voice-quality measurements discern
variations of fundamental frequency and amplitude, re-
spectively. Studies show that these measurements can be
used to detect voice pathologies [5], speaking styles, and
emotions [6] and also identify age and gender [7]. For
example, the authors in [8] report that fusing jitter and
shimmer voice-quality measurements with the baseline
cepstral features improves the performance of speaker
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recognition systems. It is also described in [6] that the
use of jitter and shimmer measurements together with
cepstral ones improves the classification accuracy of dif-
ferent speaking styles. These measurements have also
been successfully used in speaker diarization in our pre-
vious works of [9, 10].
In addition to speech features, other factors that affect

the performance of speaker diarization systems are the
statistical techniques employed to carry out speaker seg-
mentation and speaker clustering. Speaker diarization
approaches typically employ Gaussian mixture modeling
(GMM)-based Bayesian information criterion (BIC) clus-
tering technique to merge clusters.
Factor analysis techniques which are the state of the art

in speaker recognition have recently been successfully ap-
plied in speaker diarization experiments [11–17]. In these
works, the speech clusters are first represented by i-vectors
and the successive clustering stages are carried out using
i-vector modeling techniques. The representation of the
speech clusters by i-vectors enables to reduce the
large-dimensional feature vector into a small-dimensional
one while retaining most of the relevant information. For
instance, it is reported in [18] that modeling speech seg-
ments by i-vector and using cosine-distance clustering
technique improves the performance of a diarization sys-
tem compared to GMM-based BIC clustering technique. It
is also shown in [19, 20] that use of i-vector-based probabil-
istic linear discriminant analysis (PLDA) clustering tech-
nique provides better diarization error rate (DER) result
compared to both GMM-based BIC and i-vector-based
cosine-distance clustering techniques.
Note that the above mentioned works extract i-vectors

exclusively from the short-term cepstral features for
speaker clustering. In our work, we have proposed the
extraction of i-vectors from the short-term cepstral and
long-term speech features and the fusion of their
cosine-distance and PLDA scores. These results have
already been published in our previous works of [21, 22].
Based on these studies, we have proposed the use of

jitter and shimmer voice-quality features both for
GMM- and i-vector-based speaker diarization systems.
The voice-quality features are used together with other
long-term features (i.e., pitch, intensity, formants, and
Glottal-to-Noise Excitation ratio) and short-term ceps-
tral features. The fusion of the voice-quality features
with the other long-term and short-term cepstral fea-
tures is carried out both at the feature and score levels.
The other contribution of this work is the use of delta

dynamic features for speaker clustering both for GMM-
and i-vector-based speaker diarization systems. The first
time derivative of the instantaneous cepstral features
(i.e., deltas) have been successfully used in speaker rec-
ognition [23] and speech recognition [24]. However, they
are not widely used in speaker diarization systems. For

example, it is reported in [25] that since the delta fea-
tures deteriorate the diarization results, only the static
MFCC features are used in speaker diarization. It is also
reported in [26] that delta features are not used in
speaker diarization systems.
Since delta features provide dynamic information to

the static cepstral coefficients, we have also analyzed the
impact of delta features both for GMM- and i-vector-
based diarization systems. The delta features have been
used only in speaker clustering because of their limited
temporal resolution in segmentation. The delta features
are used together with the static cepstral coefficients in
speaker clustering.
In all of our previous works [9, 10, 21, 22], only the

static MFCCs were used. The deltas were not used in
these works. We have also analyzed the impact of using
formants together with MFCC both for GMM- and
i-vector-based speaker diarization systems. The test ex-
periments have been carried out on 112 AMI shows. In
our previous works, the test experiments were carried
out on only 20 AMI shows [27].
The rest of this paper is organized as follows. The next

section gives an overview of the proposed long-term speech
features followed by the proposed speaker diarization sys-
tems. Finally, Section 4.2 and Section 6 are presented.

2 Long-term speech features for speaker
diarization
Mel frequency cepstral coefficients (MFCCs) are the most
widely used short-term speech features in speaker diariza-
tion [2]. While short-term features are extracted from a
single speech frame, long-term features are extracted from
portions of speech longer than one frame. Long-term fea-
tures capture phonetic, prosodic, lexical, syntactic, seman-
tic, and pragmatic information. Although short-term
spectral features are the most widely used ones in different
speech applications, the authors in [3, 4, 28] show that
long-term features can be employed to reveal individual
differences which cannot be captured by short-term spec-
tral features.
Since long-term features add complimentary informa-

tion to the classical MFCC features, fusion of short-term
spectral features with long-term features has been ap-
plied on speaker diarization experiments [3, 4, 29].
Fusion techniques also increase the reliability and ro-
bustness of a system [30].
The proposed long-term speech features proposed in

this work are described as follows:

2.1 Dynamic features
It is possible to obtain more detailed speech features by
using a derivation on the MFCC acoustic vectors. This
permits the computation of the dynamic MFCCs, as the
first-order derivatives of the MFCC. The speech features
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which are the time derivatives of the spectrum-based
speech features are known as dynamic speech features.
The delta dynamic features can complement the static
information obtained by the MFCC.
Most of the state-of-the-art speaker diarization sys-

tems use only the static MFCC for diarization [2]. The
static MFCC features cannot accurately capture the tran-
sitional characteristics of speech signal which contains
speaker-specific information. The delta features can be
used to extract more detailed speech features using the
time derivation of static MFCC acoustic vectors. Hence,
they provide dynamic information to the static MFCC
features [31]. The dynamic features are not also ad-
versely affected by convolution noise (i.e., channel effect)
like the static MFCCs.
The MFCC feature vector describes only the power

spectral envelope of a single frame. However, a
speech signal has also information in the dynamics
(i.e., what are the trajectories of the MFCC coeffi-
cients over time). The delta features are computed as
the time differences between a set of consecutive fea-
ture vectors. They are usually appended to the static
coefficients at the frame level. The extraction of the
MFCC trajectories and appending them to the static
MFCC features improve the performance of different
speech applications. The delta features have been
shown to improve the performance of speaker recog-
nition [23], speech recognition [24], and speaker clas-
sification [32] systems.
The delta features are computed by the weighted sum

of feature vector differences between two consecutive
static coefficients as follows:

dt ¼
Pω

θ¼1θ Ciþθ−Ci−θð Þ
2
Pω

θ¼1θ
2 ð1Þ

where dt is the delta coefficient at time t computed in
terms of the corresponding static coefficients from Ci − θ

to Ci + θ. The delta window size is represented by ω.
The delta dynamic features are used together with the

static and other long-term ones. While the static MFCC
and other long-term features are used both in segmenta-
tion and clustering, the deltas are used only in speaker
clustering.

2.2 Voice-quality features
Jitter and shimmer voice-quality measurements measure
variations of the fundamental frequency and the ampli-
tude of speaker’s voice, respectively. They have been ap-
plied in several speaker-related tasks reporting successful
results. For instance, it is reported in [8] that adding jitter
and shimmer voice-quality features to the baseline spec-
tral ones improves the performance of a speaker recogni-
tion system. By using Praat [33], five different jitter and

six different shimmer measurement estimations can be ex-
tracted. But we have extracted only absolute jitter, abso-
lute shimmer, and shimmer apq3 as they are used in [8]. It
is reported in [8] that absolute jitter (Fig. 1), absolute
shimmer (Fig. 2), and shimmer apq3 measurements pro-
vide better results for speaker recognition compared to
the other jitter and shimmer measurements.

� Jitter (absolute): It is a cycle-to-cycle perturbation in
the fundamental frequency of the voice, i.e., the
average absolute difference between consecutive
periods, expressed as:

litter absoluteð Þ ¼ 1
N−1

XN−1

i¼1

Ti−Tiþ1j j ð2Þ

where Ti are the extracted pitch period lengths and N is
the number of extracted pitch periods.

� Shimmer (absolute): It is the average absolute
logarithm of the ratio between amplitudes of
consecutive periods, expressed as:

Shimmer absoluteð Þ ¼ 1
N−1

XN−1

i¼1
20 log

Ai þ 1
Ai

� �����
����
ð3Þ

where Ai are the extracted peak-to-peak amplitude data
and N is the number of extracted pitch periods.

� Shimmer (apq3): It is the three-point Amplitude
Perturbation Quotient, the average absolute
difference between the amplitude of a period
and the average of the amplitudes of its
neighbors, divided by the average amplitude.
It is expressed as:

Fig. 1 Absolute jitter measurement for N = 3 pitch periods
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apq3 ¼
1

N−1

XN−2

i¼2
Ai−

Ai−1 þ Ai þ Aiþ1

3

����
����

1
N−1

XN

i¼1
Ai

ð4Þ

where Ai are the extracted peak-to-peak amplitude data
and N is the number of extracted pitch period.

2.3 Prosodic features
Prosody studies those aspects of speech that typically
apply to a level above that of the individual phoneme.
It is expressed using intonation, rhythm, and stress

which are perceived by listeners as changes in funda-
mental frequency, sound duration, and loudness, re-
spectively [34].
Encouraged by work of [4], we have extracted features

related to the evolution in time of pitch, acoustic inten-
sity, and the first four formant frequencies to validate
their performance in this work.

� Pitch

Pitch is the most important prosodic property of
speech. It contains speaker-specific information. The de-
fault pitch value and range of a speaker is influenced by
the length and mass of the vocal folds in the larynx [35].
The pitch values of different speakers vary in relation to
their age and gender. Pitch can be used as an important
acoustic cue for tone, lexical stress, and intonation.

� Acoustic intensity

It shows changes in loudness or energy of a speech
signal. It is used to mark stress and express emotions.
Therefore, changes in loudness can be used as a poten-
tial speaker discriminant measure.

� Formant frequencies

They are concentrations of acoustic energy around par-
ticular frequencies at roughly 1000-Hz intervals. They
occur only in voiced speech segments around frequencies
that correspond to the speaker-specific resonances of the
vocal tract. Therefore, they are suitable measures to help
discriminate speakers.

2.4 Glottal-to-Noise features
In addition to jitter and shimmer acoustic parameters
that are used to measure perturbations of speech signals,
noise parameters can also be used to assess voice quality
of a speaker [36]. Noise parameters can be used to assess
the noise content of the signal and can be used in the
evaluation of voice quality [36].
Glottal-to-Noise (GNE) is an acoustic measure that

can be used to assess the amount of voice excitation by
vocal-fold oscillations versus excitation by turbulent
noise. It indicates whether a given voice signal originates
from vibrations of the vocal folds or from turbulent
noise generated in the vocal tract [37]. The main advan-
tage of GNE is its computation is independent of varia-
tions of fundamental frequency and amplitude [36, 38].
GNE is closely related to breathiness and is considered
as a reliable measure for the relative noise level even in
the presence of strong amplitude and frequency
perturbations.
The process of extracting GNE (see Fig. 3) is described

in [37] as follows:

1. Down-sample the audio signal to 10 kHz.
2. Do inverse filtering of the speech signal.
3. Calculate the Hilbert envelopes of different

frequency bands with fixed bandwidth and different
center frequencies.

Fig. 2 Absolute shimmer measurement for N = 3 pitch periods

Fig. 3 Process of GNE extraction
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4. Consider every pair of envelopes for which the
difference of their center frequencies is equal or
greater than half the bandwidth: calculate the cross
correlation function between such envelopes.

5. Pick the maximum of each correlation.
6. Pick the maximum from the maxima.

It is shown in the work of [36] that GNE parameter
has a significant potential to screen voices since it quan-
tifies the amount of voice excitation and turbulent noise.
It is also reported in [39] that GNE provides reliable
measurements in terms of discrimination among normal
and pathological voices compared to other classical
long-term noise measurements, such as normalized
noise energy and harmonics-to-noise ratio. It has also
been used successfully to screen voice disorders in [39].

3 Proposed speaker diarization systems
The baseline or reference speaker diarization system used
in this work is depicted in Fig. 4. Conceptually, the system

performs three tasks: the first task performing the feature
extraction (Fig. 4, block A), the second detecting speaker
changes to segment the speech data (Fig. 4, block B), and
the third one grouping the segmented regions together
into speaker-homogeneous clusters and displaying the sys-
tem hypothesis (Fig. 4, block C).
In the proposed speaker diarization systems, the

short-term cepstral coefficients are augmented with
long-term feature information. Firstly, the non-cepstral
features (i.e., prosodic and GNE) are combined together
at the feature level. Then, they are fused with MFCCs at
the score level to assess the contribution of each set of
feature representation. Depending on the proposed sys-
tem, the fused score is interpolated either by using the
likelihood produced by GMM models or by the corre-
sponding i-vector scoring method.

3.1 Proposed GMM-based speaker diarization system
One of the main differences of the proposed GMM
speaker diarization system is the inclusion of jitter and
shimmer voice-quality information and its combination
with formants, pitch, intensity, GNE, and MFCC
characteristics.
In addition to the long-term information, the proposed

HMM/GMM speaker diarization system is also aug-
mented with the extraction of the delta dynamic fea-
tures. In order to capture several speaker properties, two
feature representations are explored. While the first one
is the combination of static cepstral coefficients and
delta features, the second speaker vector consists of the
voice-quality, prosodic, and GNE information. It is
worth to mention that both sets of feature representa-
tions are employed both for speaker segmentation and
clustering. However, delta features are only employed in
the clustering task and discarded from the audio seg-
mentation one.
After the computation of short- and long-term speech

features, the audio signal is equally partitioned to gener-
ate the initial number of clusters (see Fig. 4, block A).
The initial number of clusters depends on meeting dur-
ation, but it is constrained between 10 and 65. This is
done to avoid the common issues of agglomerative hier-
archical clustering (AHC) such as over-clustering and its
high computational cost of pair-wise distance computa-
tion. Independent HMM/GMM models are estimated
for each feature set. The fusion of short- and long-term
information in speaker segmentation is carried out at
the score level (see Fig. 4 block B). It is done by a
weighted interpolation of the two log-likelihoods result-
ing from each GMM distribution, i.e., cepstral and
long-term feature distributions.
Given a set of input feature vectors {x} and {y}, the

log-likelihood score in the proposed segmentation is

Fig. 4 Proposed HMM-GMM speaker diarization system. The dotted
rectangles are the ones proposed in the proposed system. The
undotted ones are the baseline system
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computed as a joint log-likelihood between feature dis-
tributions as follows:

log Pr x; yjθxi ; θyi
� � ¼ α log Pr xjθxi

� �
þ 1−αð Þ log Pr yjθyi

� � ð5Þ

where log Prðx; yjθxi ; θyi Þ is the logarithm of the fused
emission probabilities for cluster i. While the model of
cluster i using cepstral feature vectors is represented by
θxi , the model for the same cluster i using long-term fea-
tures is denoted by θyi . The interpolation weight which
controls the individual contribution of each feature set is
α. The values of α are tuned on development data set.
Once the audio data is segmented by the Viterbi algo-

rithm, the homogeneous segments are grouped together
based on Bayesian information criterion (BIC) distance
among clusters (Fig. 5 block C).
Given two speech segments i and j, the BIC distance

computation is carried out as follows:

BIC i; jð Þ ¼ β:BICx
ij þ 1−βð Þ:BICy

ij ð6Þ

where BICx
ij and BICy

ij are the BIC distances between

clusters i and j generated using short- and long-term
speech features. The BIC distances computed using the
short- and long-term feature sets are weighted by β and
(1 − β), respectively, driving the contribution of each dis-
tance to the final fused BIC distance.

3.2 Proposed i-vector-based speaker diarization system
The extraction of i-vectors from audio segments and its
usage for speaker clustering are the key components of
our proposed i-vector system. The extraction is inde-
pendently performed from the short-term static cepstral
coefficients and from the long-term speech features.
Therefore, two sets of i-vectors are extracted for each
segmentation, representing different speaker traits.

While the first i-vector is extracted from short-term fea-
tures, the second i-vector is computed from the
long-term ones, i.e., the combination of voice-quality,
pitch, intensity, formants, and GNE.
We have also investigated the use of delta features for

speaker clustering. The delta features are combined to-
gether with the static cepstral coefficients at the feature
level, yielding a vector of size 40. Once the i-vectors are
extracted from the audio segments, the fused distance
between two segments is computed as interpolation of
two i-vector distances. We have carried out both cosine
and PLDA scoring techniques to explore the better one.
It is worth to highlight that i-vectors are uniquely
employed for speaker clustering task. In fact, it is the
main difference of the proposed i-vector system com-
pared to the previous HMM/GMM system. Note that
the feature extraction and speaker segmentation mod-
ules are the same both in the proposed GMM system
(see previous section) and in the proposed i-vector sys-
tem. Results reported in the literature [20] suggest that
i-vector modeling is not well suited for the speaker seg-
mentation task since it is difficult to reliably compute an
estimate of i-vector from segments of short duration.
The extraction of i-vectors from short duration has
shown to degrade the performance of speaker recogni-
tion systems [20]. Several works have paid attention to
this issue during the last few years within the speaker
recognition community [40, 41]. We have carried out
some experiments to explore the impact of applying
i-vectors on our segmentation module. Similar to results
of speaker recognition in [40], the experimental results
show that the use of i-vectors for speaker segmentation
results in performance degradation in terms of diariza-
tion error rate.

3.2.1 Cosine-distance scoring
In order to perform the agglomerative cluster procedure,
the similarity measure among all pairs of i-vectors is
needed to be computed leading to a symmetric matrix
of distances. Then, at each iteration of the agglomerative
clustering, the two closest clusters are merged, i.e.,
i-vector pairs with the highest cosine-distance score.
After merging the two closest clusters, the Viterbi seg-
mentation is carried out, and this process iterates by
extracting a new set of i-vector from the newly hypothe-
sized clustering. The similarity matrix between cluster
pairs is also updated. The previous steps iterate until the
speaker diarization system reaches the stopping criterion
and provides the final segmentation.
The cosine-distances from both sets of i-vectors are

linearly weighted and applied as a fused distance metric
for speaker clustering. The fused cosine-distance score is
computed as follows:

Fig. 5 Proposed i-vector-based clustering architecture. The proposed
i-vector-based cosine-distance and PLDA clustering are based on
short- and long-term speech features
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CDS ¼ β � wi � wj

wik k wj

�� ��þ 1−βð Þ w
0
i � w

0
j

w0
i

�� �� w0
j

���
���

ð7Þ

where CDS stands for the fused distance score between
clusters i and j. The corresponding i-vectors extracted
from short-term cepstral coefficients and for clusters i and
j are denoted by wi and wj, respectively. Similarly, the vec-
tors w

0
i and w

0
j represent the i-vectors extracted by model-

ing long-term speech features for the same clusters i and
j, respectively. Furthermore, two different weights are
assigned to both cosine-distances. While β weights the
cosine-distance of i-vectors extracted from short-term fea-
tures, (1 − β) weights the cosine-distance of i-vectors ex-
tracted from the long-term features.

3.3 PLDA scoring
The main contribution of this section comprises the re-
placement of the i-vector-based cosine-distance by an
i-vector-based PLDA scoring within the speaker cluster-
ing. Since PLDA is the state of the art in speaker verifica-
tion [42] and speaker diarization systems [21], we are also
motivated to use the i-vector-based PLDA clustering tech-
nique in our proposed speaker diarization system.
Firstly, two sets of i-vectors are extracted from the

short- and long-term speech features. Then, the PLDA
scores of these two i-vectors are linearly weighted to ob-
tain a fused distance score for further use on the speaker
clustering task.
Finally, the fused PLDA score is computed as follows:

y: log
p wi;wjjH1
� �

p wijH0ð Þp wjjH0
� �

þ 1−γð Þ
p w

0
i;w

0
jjH1

� 	

p wijH0ð Þp wjjH0
� �

ð8Þ

where wi and wj are the i-vectors extracted from the
short-term cepstral coefficients for cluster i and cluster j,
respectively. Similarly, w

0
i and w

0
j represent the i-vectors

extracted from long-term speech features for the same
clusters i and j, respectively. Moreover, hypothesis H1

and H0 assume that the two i-vectors belong to the same
and different speakers, respectively. Finally, the PLDA
scores of i-vectors extracted from the short- and
long-term features are weighted by γ and (1 − γ),
respectively.
Note that the long-term features in Eqs. 7 and 8 refer

to two possibilities: voice quality with prosodic features
and voice-quality with prosodic and GNE features.

4 Experimental setups and results
4.1 Databases and experimental setup
The experiments are developed and tested on AMI corpus,
a multi-party and spontaneous speech set of recordings
[27]. The AMI is a meeting corpus consisting 100 h of
audio in 171 shows which use a range of signals synchro-
nized to a common timeline. The shows were recorded
using close-talking and far-field microphones. The meetings
were recorded in English using three different rooms with
different acoustic properties in IDIAP, Edinburgh, and
TNO sites.
The development and test set are based on the

far-field microphone array channels sampled at 16 kHz.
Development set: 10 shows are selected from IDIAP,

Edinburgh, and TNO sites as a development set. These
shows are used to tune the optimum parameters (i.e.,
optimum set of weight values for the short- and
long-term speech features and optimum stopping
threshold value). The total and average duration of the
development set is 284 and 28.4 min, respectively.
Test set: In order to evaluate the performance of the

proposed systems, the test experiments are carried out
on 112 AMI shows selected from the IDIAP, Edinburgh,
and TNO sites. The total and average duration of the
test sets of the whole recording are 4075 min (about
69 h) and 36.38 min, respectively.
Manually annotated speech references are used to ex-

tract the speech frames and discard the non-speech
ones. The main reason for using the speech references,
instead of speech activity detector (SAD), is that we are
motivated to focus exclusively on speaker errors that
occur to the diarization approach. But we have carried
out a few set of experiments with SAD to compare the
results of the systems with and without using SAD.
The short-term cepstral coefficients are computed

within a 30-ms frame window at a 10-ms shift. The di-
mension of the cepstral coefficients is 20. The
voice-quality, prosodic, and GNE features are extracted
over a 30-ms frame length and at a 10-ms shift using
Praat software [43]. Then, each of the voice-quality,
prosodic, and GNE features is estimated over a 500-ms
window with a 10-ms shift. This is done to smooth out
the feature estimation of the unvoiced frames. It is also
done to synchronize them with the cepstral coefficients.
The UBM and the T matrix are trained using 100 AMI

shows which have a duration of 60 h. Three universal back-
ground models (UBMs) of 512 Gaussian components have
been trained. While the first UBM is trained using only the
static cepstral coefficients, the second UBM is trained using
both the static cepstral coefficients and delta dynamic fea-
tures. The third UBM is trained using long-term features
(i.e., voice-quality, pitch, intensity, formants, and GNE).
One hundred- and 50-dimensional raw i-vectors are

extracted from the short- and long-term speech features,

Zewoudie et al. EURASIP Journal on Audio, Speech, and Music Processing  (2018) 2018:14 Page 7 of 11



respectively. The sizes of the total variability matrix are
100 and 50 for the short- and long-term speech features,
respectively. The i-vector extraction is carried out using
ALIZE open-source toolkit [44].
The PLDA of the short-term and long-term speech

features is trained on 40 and 20 dimensional speaker
spaces, respectively. The PLDA is trained on the same
data used to train the UBM and T matrix. The i-vectors
are length normalized before the PLDA training.
The selection of threshold value for stopping criterion for

the proposed i-vector-based speaker diarization systems is
carried out as it is shown in Fig. 6. It is based on a
data-driven approach. The DER and corresponding cosine-
distance/PLDA score values at each iteration are compared,
and λ value that minimizes the DER is selected. Thus, the
system stops merging when the highest cosine-distance/
PLDA score value among all pair of clusters is less than λ.
As it is shown in Fig. 6, the DER values decrease for some it-
erations. However, its values start to increase after some
number of iterations because of over-clustering.
Note that optimum parameters found through experi-

mentation on the development set are directly applied
on the test set.
The conventional performance metric employed for

assessing speaker diarization systems is the diarization error
rate (DER). DER represents the sum of false alarm speech,
missed speech, and speaker error along time. Since speech
references are used, the rate of false alarms and missed
speech have zero values in the experimental results. Hence,
DER values reported in the following sections correspond
purely to speaker time confusion produced by the diariza-
tion system. We have used a collar of 250 ms around every
speaker segment to discard any inaccuracies in the refer-
ence annotation.1

4.2 Experimental results
As it is shown in Table 1, the baseline system of the test
set has a DER of 23.97%. Note that the baseline system is

based on BIC clustering and static MFCC feature set both
for segmentation and clustering. The table shows that the
addition of long-term features (i.e., voice-quality, pitch, in-
tensity, formants, GNE, and delta) to the static MFCC fea-
tures improves the DER both for GMM- and i-vector-
based speaker diarization systems.
For the GMM-based speaker diarization system, the

table depicts that the fusion of the concatenated or indi-
vidual long-term speech features with the cepstral coeffi-
cients provides better DER compared to using only the
later feature set. For example, the use of formants together
with MFCC provides a DER of 21.11%. This corresponds
to a 11.93% relative DER improvement compared to the
same system using static MFCC feature set. Similarly, the
table shows that the fusion of voice-quality features to-
gether with the cepstral coefficients provides a 4.76% rela-
tive DER improvement compared to the system based
only on cepstral coefficients.
Furthermore, the use of the concatenated long-term fea-

tures (i.e., jitter, shimmer, pitch, intensity, and formants)
together with the static cepstral coefficients improves the
performance of both i-vector-based cosine-distance and
PLDA clustering techniques. The table reports that the
use of these concatenated long-term feature sets with the
MFCC ones provides a DER of 20.13% and 20.03% for
i-vector-based cosine-distance and PLDA clustering tech-
niques, respectively. These represent a 12.33% and 8.75%
relative DER improvement compared to the system based
on GMM-based BIC clustering technique and using the
same feature sets.
The table also shows that the use of delta dynamic fea-

tures only in clustering improves the DER compared to
using the static cepstral coefficients both in segmenta-
tion and clustering. The DER improvements are both for
GMM- and i-vector-based speaker diarization systems.
Hence, the use of delta dynamic features in

GMM-based BIC clustering reduces the DER to 21.57%.
This represents a 10.01% relative DER improvement

Fig. 6 DER and cosine-distance score per iteration for selected shows from the development set
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compared to the baseline system. Similarly, the use of
delta dynamic features in clustering improves the DER
both for i-vector-based cosine-distance and PLDA cluster-
ing techniques. It provides a DER of 19.34% and 19.47%.
These results correspond to a 15.77% and 11.3% relative
DER improvement compared to the system using the
same clustering technique and apply static cepstral coeffi-
cients both for segmentation and clustering.
Note that the delta features are used only in speaker

clustering. The motivation for using deltas only in cluster-
ing is because they capture the transitional characteristics
of the speech signal which contains speaker-specific infor-
mation. Since they don’t have temporal resolution, they
are not used in speaker segmentation. In our work,
i-vectors are also applied only on the clustering stage.
They are not applied in speaker segmentation since it is
difficult to reliably estimate i-vectors from segments of
short duration [21].
We have carried out some experiments on subset of

AMI shows to explore the impact of applying deltas and
i-vectors both in segmentation and clustering. The experi-
mental results show that the use of delta and i-vectors in
segmentation degrades the performance of speaker diari-
zation system (i.e., the DER values are high).
Table 1 reveals that the best results are found when

i-vector-based cosine-distance clustering is used together
with the short- and long-term speech features (i.e., MFCC,

delta, voice-quality, pitch, intensity, and formants). It pro-
vides a DER of 18.2%. This provides a 24.07% relative DER
improvement compared to the baseline system. It also
corresponds to a 9.59% relative DER improvement com-
pared to the system that uses the same clustering tech-
nique and uses static MFCC, voice-quality, pitch,
intensity, and formant feature sets. It also represents a
5.89% relative DER improvement compared to the system
that uses the same clustering technique and uses only the
static and delta dynamic features.
We have also carried out experiments using speech ac-

tivity detector (SAD) for the baseline (i.e., GMM-based
speaker diarization system using only static MFCC fea-
ture set) and the best performing system (i-vector-based
cosine-distance system using MFCC, delta, jitter, shim-
mer, pitch, intensity, and formants). Table 2 shows that
the use of SAD on these experiments also exhibit the
use of long-term features improves the performance of
speaker diarization system both for the GMM- and
i-vector-based speaker diarization systems. While the
DER of the baseline system using SAD is 48.91% (miss
speech = 19.7%, false alarm = 11.5%, and speaker error =
17.7%), the DER of the best performing system is 44.2%
(miss speech = 19.7%, false alarm = 11.5%, and speaker
error = 13%). The best performing system provides a
9.63% relative DER improvement compared to the base-
line system. If we compare only the speaker errors of the

Table 1 DER of the test set using the proposed long-term speech features and proposed speaker diarization systems

Features for segmentation Features for clustering Speaker diarization system

GMM/BIC i-Vector/
CD

i-Vector/
PLDA

MFCC MFCC 23.97 22.96 21.05

MFCC MFCC + delta 21.57 19.34 19.47

MFCC + JS MFCC + JS 22.83 – –

MFCC + formants MFCC + formants 21.11 20.26 20.71

MFCC + (formants + pitch + intensity) MFCC + (formants + pitch + intensity) 23.45 – –

MFCC + (JS + formants + pitch + intensity) MFCC + (JS + formants + pitch + intensity) 21.68 20.13 20.03

MFCC + (JS + formants + pitch + intensity + GNE) MFCC + (JS + formants + pitch + intensity + GNE) 21.91 20.44 19.46

MFCC + (JS + formants + pitch + intensity) MFCC + delta + (JS + formants + pitch + intensity) 21.76 18.2 19.37

MFCC + (JS + formants + GNE) MFCC + delta + (JS + formants + GNE) 21.52 18.87 19.2

MFCC + (JS + formants + pitch + intensity + GNE) MFCC + delta + (JS + formants + pitch + intensity + GNE) 22.68 18.68 18.95

JS jitter and shimmer, CD cosine-distance

Table 2 Speech activity detector (SAD) experiments for the baseline and the best performing system

Features Speaker diarization system

GMM/BIC i-Vector/CD

MFCC 48.91 –

MFCC + delta + (JS + formants + pitch + intensity) – 44.2
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two systems, the best performing system provides a
26.55% relative speaker error improvement compared to
the baseline system.
Since we have used a simple SAD based on energy

thresholding and the AMI database corresponds to a
complex scenario (i.e., there are reverberations, back-
ground noises, echos), the percentage of miss speech is
relatively high.

5 Discussion
The box plots in Fig. 7 depict the DER distribution of
the different recordings for the test set. It shows the
minimum, lower quartile, median, upper quartile, and
maximum DER performed by the GMM and i-vector
clustering techniques. The figure shows that the pro-
posed i-vector-based clustering technique using short-
and long-term features provides the minimum variance
among all clustering techniques in terms of DER. As it is
also shown in Fig. 6, the DER values increase with the
number of iterations because of over-clustering.
Although the use of long-term features in GMM- and

i-vector-based systems reduces the DER for most of the
recordings, the DER values increase for few of them
compared to the baseline system. One of the possible
reasons is the threshold value used for the stopping cri-
terion. In this work, we have proposed the same thresh-
old value for all shows. It is also worth to investigate the
impact of an automatic threshold value that varies per it-
erations and recordings in the proposed systems.
Overall, our experimental results validate the useful-

ness of the proposed methodology. The use of the
i-vector-based clustering technique based on short- and

long-term speech features increases the robustness and
reliability of speaker diarization systems.

6 Conclusions
This work has proposed the use of voice-quality features
for GMM- and i-vector-based speaker diarization sys-
tems. The proposed voice-quality features are used to-
gether with the short-term cepstral and other long-term
features (i.e., pitch, intensity, formants, and GNE).
The work has also analyzed the use of delta dynamic

features for speaker clustering since they capture the tran-
sitional characteristics of the speech signal which contains
speaker-specific information. The delta dynamic features
are not used in speaker segmentation because of their lim-
ited temporal resolution in segmentation. But, they are
used in speaker clustering since they capture the transi-
tional characteristics of the speech signal which contains
speaker-specific information. The delta features are used
together with the short-term static cepstral coefficients
and other long-term speech features (i.e., voice-quality,
pitch, intensity, formants, and GNE) for GMM- and
i-vector-based speaker clustering techniques.
The experimental results show that the use of

voice-quality features together with the other long-term
and short-term spectral features improves the performance
of both GMM- and i-vector-based speaker diarization sys-
tems. The experimental results also show that i-vector clus-
tering techniques based on short- and long-term features
provides better DER compared to the same clustering tech-
nique using only short-term features. Moreover, the results
show that i-vector-based cosine-distance and PLDA cluster-
ing techniques provide a substantial relative DER improve-
ment compared to GMM-based BIC clustering. Finally, the
experimental results manifest that the use of delta dynamic
features in clustering improves the DER both for GMM-
and i-vector-based speaker diarization systems.
The results of our work manifest the usefulness of

long-term speech features both for GMM- and i-vector-
based speaker diarization systems.

7 Endnotes
1The scoring tool is the NIST RT scoring used as ./md-

eval-v21.pl -1 -nafc -c 0.25 -o -R reference.rttm-S
hypothesis.rttm
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