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Abstract

decoded with a RNN language model.

A transfer learning-based end-to-end speech recognition approach is presented in two levels in our framework.
Firstly, a feature extraction approach combining multilingual deep neural network (DNN) training with matrix
factorization algorithm is introduced to extract high-level features. Secondly, the advantage of connectionist
temporal classification (CTC) is transferred to the target attention-based model through a joint CTC-attention
model composed of shallow recurrent neural networks (RNNs) on top of the proposed features. The experimental
results show that the proposed transfer learning approach achieved the best performance among all end-to-end
methods and could be comparable to the state-of-the-art speech recognition system for TIMIT when further jointly
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1 Introduction

A traditional speech recognition system can be divided
into several modules such as acoustic models, language
models, and decoding. The design of modularization re-
lies on many independent assumptions, and even a trad-
itional acoustic model is trained in a frame-wise way
which depends on Markov assumptions. To eliminate all
potential assumptions from an entire speech recognition
system and to build a single model optimized in a se-
quence level, the end-to-end method was introduced in
the area and has become popular recently [1-3]. With
the booming development of deep learning methods and
under the help of high-performance graphic processing
units, end-to-end approaches have been successfully im-
plemented in speech recognition. Multiple convolutional
and recurrent layers are added in to build an integrated
network which acts both as an acoustic model and a lan-
guage model, directly mapping speech inputs to tran-
scriptions. Specifically, there are two major end-to-end
methods for speech recognition, namely connectionist
temporal classification (CTC) and attention-based
model.
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In most speech recognition tasks, performance of trad-
itional systems still triumph end-to-end approaches [4—
7]. Many published results have shown that the perform-
ance gap between them shrinks with greater amount of
training data. For example, success of Baidu’s Deep
Speech [4, 8] and Google’s Listen, Attend, and Spell
models [9, 10] demonstrated that an end-to-end system
benefits in high-resource conditions. A key reason be-
hind this conclusion is that current end-to-end models
are trained in a data-driven way. All parameters in
end-to-end models are updated by computations of gra-
dients which are easily affected by structures of net-
works, so theoretically there is no expert knowledge
involved during training. However, end-to-end systems
still fail to reach to a state-of-the-art performance even
when they are trained with large corpora such as LibriS-
peech and Switchboard which have thousands of hours
of training data. We assume that end-to-end models suf-
fer insufficient training in most cases. In order to
neutralize the problem, different variants of networks
have been introduced into both CTC and attention-
based models. Complex encoders composed of convolu-
tional neural networks (CNN) are introduced in order to
exploit local correlations in speech signals [11-13]. Also
joint architectures such as recurrent neural networks
(RNNs) combined with conditional random field (CRF)
[14], and joint CTC-attention systems [15] are proposed.
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They both take advantages of each sub-model and bring
more explicit and strict constraints to the whole model.
Although such researches above do improve automatic
speech recognition (ASR) performances of end-to-end
speech recognition systems, we believe it is hard to find
a trade-off strategy between improving complexities of
networks and solving low-resource limitations. Though
introducing complex computational layers into the
model could exploit better correlations in both time and
frequency domain, a model with much more parameters
would also be harder to train. For end-to-end models,
the way of data-driven training without expert know-
ledge involved becomes a bottleneck.

We propose a transfer learning-based approach that
aims to solve the problem with limited speech resource
under end-to-end architecture. Previous work has demon-
strated that deep learning models across different lan-
guages are transferable [16, 17], and multi-task learning
(MTL) is helpful for end-to-end training [14, 15]. In our
research, transfer learning is implemented in two levels.
Firstly, we extract high-level representations of target
speech leveraging a multilingual pre-trained network. We
then use nonnegative matrix factorization (NMF) instead
of a bottleneck layer to extract high-level speech features,
expecting to make the most of nonlinearities of deep
neural network (DNN) without breaking their structures
during training. Secondly, we build a joint CTC-attention
end-to-end model on top of the extracted high-level fea-
tures in order to improve robustness through shared
training and joint decoding. We use only a shallow
bi-directional RNN instead of a complex encoder in [18].
To exploit as much similarities from multiple data sources
as possible, both the end-to-end models and multilingual
DNN:s are trained in a phone level.

Our paper is organized as follows. We describe out
method in Section 2 and Section 3. In Section 2, we de-
scribe our high-level feature extraction approach with
data augmentation. In Section 3, we introduce the joint
CTC-attention model. We introduce our experimental
setup and analyze our experimental results in Section 4.
At the last section, we provide our conclusions.

2 High-level feature extractions with data
augmentation

Although an ideal end-to-end ASR system aims to build a
model mapping from raw inputs to phone/character se-
quences, systems using transformed features like fMLLR
(feature-space maximum linear logistic regression) fea-
tures or introducing complex encoders before RNN tend
to perform better compared with those using raw waves
or classical features in many tasks [6, 11, 13, 19]. We as-
sume that transformation in frequency domain could
make up for some shortages of limited resource.
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Classical features such as MFCC or filterbank are only
low-level phonetic representations. It requires deep non-
linear transformations for such features in end-to-end
models. Unlike classical acoustic features, high-level fea-
tures are often extracted through DNN and are demon-
strated to be high-level semantic representations.

2.1 Multilingual training with maxout and dropout

In order to further alleviate the problem caused by lim-
ited training resource, we use multilingual training in
feature extraction as data augmentation. Although
multilingual training is trivial to directly apply on RNNs,
it is useful to exploit acoustic similarities from shared
layers. We believe that extracting multilingual-based
high-level features is an effective way to embed general
acoustic knowledge into end-to-end models. Inspired by
[15, 18] and our previous work [20], we propose two
types of feature extractors for end-to-end systems.

We first train several target independent DNNs with
shared hidden layers using multiple language resources.
An example for DNN with multilingual training is
shown in Fig. 1. Instead of restricted Boltzmann ma-
chine (RBM), we use maxout activation with dropout
training to avoid over-fitting problem and to capture
better generalities. Three different languages are trained
simultaneously, and their senones corresponding to in-
puts are considered as supervisions. Two different sche-
matic structures of hidden layers are shown in Fig. 2.
Figure 2a shows a maxout-dropout hidden structure
with a bottleneck layer, and Fig. 2b shows a maxout-
dropout hidden structure without a bottleneck layer.

For each hidden layer except for the bottleneck layer,
activation outputs are described as follows:

X =u @D, 1<i<L,1<t<T (1)

where u! is the activation outputs of layer [ for ¢th frame.
D, is the same sized vector filled with binary elements
each of which represents whether the corresponding

Senones A Senones B Senones C
| SoftmaxA | | SoftmaxB | | SoftmaxC |
Shared

hidden layers

| - |

Language C

nputs || |

Language A Language B

Fig. 1 An example for DNN with shared multilingual training
.
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unit stays non-updated or not. ® stands for the dot
product operation.

Denote I as actual output number of units in each hid-
den layer and suppose the pooling size is 3 with no over-
lapping, then there are 3/ units before max pooling.
Denote those units as a vector v/, vl = [vi(1),...,v.(i), ...

,VvL(3D)](1 < i < 3I). The actual maxout outputs are cal-
culated as follows:

w (i) = max(vi(3i-2),vi(3i-1),vi(3i)), 1<i<]  (2)

For the first type, we set bottleneck layers to obtain
traditional bottleneck features for end-to-end multilin-
gual training. We do not apply dropout for the bottle-
neck layer, considering that dropout could do harm to a
layer which does not have too many units. Besides,
DNNs are supervised by tied triphone units that are gen-
erated by Gaussian mixture models (GMM) while inputs
are classical low-level acoustic features.

It has been demonstrated that lower layers of a DNN
are transferable to new classification tasks. For the
multilingual pre-trained network that includes a bottle-
neck layer, we transfer all layers below the bottleneck
layer to the target bottleneck DNN. Then, we stack a
hidden layer and a softmax layer on top of them to build
the target DNN. For the pre-trained network without
setting a bottleneck layer, we propose a very different ap-
proach. This is motivated by a hypothesis that setting a
bottleneck layer degrades the classification accuracy of a
DNN, which is also harmful to the bottleneck features
themselves. Therefore, we would like to extract
low-dimensional features from DNN without bottleneck
layers. We first transfer all parameters below the last
hidden layer from Fig. 2b and add a new softmax layer
with random parameters to initialize the target DNN,
and then we fine-tune the whole target DNN. Such
adapt training without breaking the structure during
training enables us keep maximum nonlinearity for later
processing.

2.2 High-level feature extractions using NMF
We need to do dimensionality reduction to extract fea-
tures since a high-dimensional vector output from a hid-
den layer contains many redundant values. Although
this approach is in a two-step fashion, it would be better
if the dimension-reduction were associated closely with
the DNN so that the features could benefit most from
supervision of phone/state indirectly. Since it is obvious
that weight matrices in DNN determine how vectors of
hidden representations are formed, we apply matrix
factorization algorithms on weight matrix of DNN in-
stead of directly implementing naive dimensionality re-
duction algorithms on hidden outputs.

In this paper, we adopt convex nonnegative matrix
factorization (CNMEF) to extract high-level features.

NMF has advantages over singularly valuable decompos-
ition (SVD) and principal components analysis (PCA) in
this problem. SVD and PCA are mathematically equivalent
when dealing with the dimensionality reduction problem
[21]. When using SVD to compact networks [22], we only
select a certain amount of singular values. Both
left-singular matrix and right-singular matrix contain much
nonlinearities of the target weight matrix. Therefore
through ignoring some component from matrices to form
a linear project layer would cause certain losses. Compared
with SVD, almost all NMF algorithms require at least one
matrix to be nonnegative. Therefore, the target matrix
could be defined as weighted sum of columns in the base
matrix. Note that this is a very important constraint be-
cause this makes the coefficient matrix much less import-
ant when we only want to keep the basic part of the
original matrix. This explains why NMF is more interpret-
able than SVD and PCA when dealing with our problem.
NMEF is demonstrated to discover base features embedded
in matrices [23] which we believe would be useful for
limited-resource condition. Additionally, we do not use ori-
ginal NMF because it only deals with nonnegative values
which are not the case for weight matrices of DNN.

As a variant of NMF, CNMF not only has no hard
bound for values, but also restrict the base matrix to be
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convex combinations of columns in the target matrix.
Assuming the target weight matrix X has a size of N x
M, it is factorized into a base matrix F (with a size of
N x R) and a coefficient matrix G (with a size of R x M).
We first use K-means to initialize CNME, as described in
[23], to obtain cluster indicators H = (hy, ..., hy). hy, ...,
h; are vectors containing binary values. Then, we
initialize G with

G = H + 0.2E, (3)

where E is an identity matrix. F is initialized as cluster
centroids:

F = XHD;', (4)

where D,, = diag(ny, ..., nx) and n, ..., n; are numbers of
classes. CNMF defines F to be linear combinations of
columns of X, which is F = XW. Therefore we get W(©
= HD;1 according to this constraint and (4). Then G
and W are updated as follows until convergence:

[(X7X) W]+ [GWT (X7X) W],

i [(XTX) W], + [GWT (X7X) W] )
[(X"X)"6] +[(X"X)"WG'a],

Wik K Wik
[(X7X) 6], + [ (xx) 'WaT6|

(5)

where (-)” and (-)" denotes generalized {1}-inverse and
Moore—Penrose pseudoinverse respectively. After train-
ing, the base matrix F and the coefficient matrix G are
obtained.

Figure 3 shows high-level feature extraction through
applying CNMF on a specific hidden layer. Weights
matrix of a certain hidden layer is factorized into two
matrices following the above process. We abandon G
and set F to be the weight matrix of the new feature ex-
traction layer. The new layer is functionally similar to
bottleneck layer, except that we calculate the features
without the bias variable:

Hidden layer(M units) Feature layer

OO0 OO0] O O pitpatd features]

Weights \ Base Coefficient
matrix CNMF ) | matrix |ix  matrix
NxM V NxR (abandon)

N

OO OO
Hidden layer(N units)

OO0 00|

Hidden layer(N units)

Fig. 3 High-level features extraction using CNMF
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f=Fu=wW'X"u (6)

We can see from (6) that the features are transformed
on original hidden outputs X"u via W”. Note that W is
trained with original weight matrix X involved and act
as a matrix for dimensionality reduction; therefore, we
believe that our high-level features could capture
multi-lingual acoustic similarities and at the mean time
alleviate sparse problem caused by limited resource.

3 Joint CTC-attention

In this section, we will describe the end-to-end model of our
transfer learning approach on top of our high-level features.
Following the structure in [18], our end-to-end architecture
is a joint CTC-attention model which consists of a shared
encoder and a joint decoder. Our design is to transfer mono-
tonic constraint from CTC to the target attention-based
model to improve accuracy through joint modeling.

3.1 Joint training with shared encoder

The network for feature extraction could also be consid-
ered as intermediate supervision for our end-to-end
models. Therefore, we believe that our features already
contain high-level speech information so that it is not
necessary to build a deep VGG encoder which maps
from raw inputs to phones. In this paper, we only build
a shallow RNN with bi-directional long short-term
memory (BLSTM) cells instead.

In this section, we stack joint CTC-attention model on
top of our high-level features to build an end-to-end
model which is shown in Fig. 4.

In shared encoder, the posteriors of a symbol 7, at
time ¢ are computed over all high-level inputs X:

p(m:|X) = Softmax(BLSTM(X)) (7)

Then the probability distribution p(S| X) over all pos-
sible phone sequence S is modeled under conditional in-
dependent assumptions:

St-1
Joint —
CTC Attention decoder
decoder | - | | al |
Shared

BLSTM layers

: !
el - |

Fig. 4 Joint CTC-attention model with a shallow encoder on

high-level features
- J
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percSX)= Y p@EX) = Y []p0mx)

med(s) red(s') =1
(8)

For the attention-based part, the model is composed
of three components. The encoder is the shared BLSTM.
The attention layer is location based. Denote ay, ; as the
attention weights connecting kth encoder outputs and
tth decoder inputs. ay, , are calculated using the previous
weights ax_, , the hidden outputs for decoder q;_1,
and the encoder outputs h;:

fn =Fx 0,1 (9)
el = wl tanh(VSs,, + Vi, + VkaJ + b) (10)

exp (cxek,t)
Zthl exp(cxek,t)

T
=y a
k o Ckth

p(sk|sk7 ooy Sk-1, X) = DeCOder<rk7 9k-1> ht)

(11)

Akt =

(12)
(13)

F is a convolution filter and «,, is a T-dimensional at-
tention weight vector. w, V%, V¥, and V* are trainable
weight matrices of multilayer perceptron (MLP). ry is a
context vector that integrates all encoder outputs using
attention weights.

The posteriors p(S| X) of attention-based model are
estimated without any conditional assumptions:

Paa(SIX) = T ] p(sls, -veys6-1,X) (14)
k

The loss functions of CTC and attention-based models

to be optimized are defined as:

{ Zcrc = - Inperc(SIX) (15)
P = — Inp,(S|X)

The total loss function to be optimized is calculated as
a combination of logarithmic linear function of CTC
and attention:

gt = /LQCTC + (1_/1)gattention/Ae[07 1] (16)

where 1 is the linear weight of CTC loss.

3.2 Joint decoder
In the previous subsection, we incorporate CTC object-
ive into joint training to enhance the attention-based
model. In this subsection, we will describe details of the
joint decoder of our model.

For the attention decoder, it computes the score of hy-
pothesis in the beam search recursively:
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Qatt (gz) = att (gl—l) + logp(s|g171,X) (17)
where g; is a hypothesis with length /, and s is the last
character of g;.

It is known that the attention-based model decodes
phone/character synchronously while CTC does it in a
frame-wise way. We use CTC prefix probability and ob-
tain the CTC score as:

acrc(g) = logp(g,--X) (18)

We combine CTC score and attention score together
using one-pass decoding following the method in [24],
then acrc(gy) can be combined with a,(g) using A. The
joint decoder gives the most probable phone sequence §
following:

S= argSmaX{MCTc (&) + (1-V)etae (g) } (19)

After CTC-attention multi-task learning, the part of
attention-based model is used as the target model for
recognition, and the part of CTC model helps the target
attention-based model in the decoding stage.

Note that although joint CTC-attention models are
already proposed, it has not been proved to be effective
either with transformed features or under limited condi-
tions. Also, different from the deep structures in the ori-
ginal design, the encoders of our joint models are only
composed of shallow RNNs.

4 Experiments and results

4.1 Data and experimental setup

We evaluate and train our end-to-end models on TIMIT
dataset, and we use several language resources of Vox-
forge dataset to do multilingual training. The augment-
ing resources we use are listed in Table 1.

All of our end-to-end models are trained with 48 pho-
nemes, and there predictions are converted to 39 pho-
nemes for scoring. All SA sentences are removed. We
followed the common setup of TIMIT. Four hundred
sixty-two speakers are selected for train set, 50 speakers
are selected for dev set, and 24 speakers are selected for
core test set. Durations of them are listed in Table 2.

We first train a CTC and an attention-based model
separately. Forty mel-scale filterbank coefficients and

Table 1 Information of Voxforge multilingual resources

No. Language Duration (h)
1 Italian 13.720

2 German 43.173

3 French 25.165

4 Spanish 7.785
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Table 2 Durations of TIMIT dataset

Set Duration (h)
train 3.145
dev 0.342
test 0.162

their delta and delta-delta features are concatenated as
their input features.

The baseline CTC model is a five-layer BLSTM with
256 cells in each layer and direction. Dropout rate of 0.2
and 0.5 are applied on inputs and BLSTM separately.
For the attention-based model, the encoder is a
four-layer BLSTM with 256 cells in each layer and direc-
tion. The attention layer is location-based and has 160
cells. The decoder is a one-layer LSTM with 256 cells.
Dropout rates for the inputs, the encoder, the attention
layer, and the decoder are 0.2, 0.5, 0.1, and 0.1 respect-
ively. The optimizer is Adam [25] for both models.

For all end-to-end models, gradient clipping [26] is
used for all end-to-end training, and the gradient norm
threshold to clip is set to be 5.0. Also, the batch sizes
during training are all set to be 32.

4.2 Evaluation measurement

Phone error rate (PER) is adopted to measure the per-
formance of speech recognition systems. This score is
calculated with the following equation:

Mns + 7Del + Hsub

PER =
N

x 100% (20)
where ny,,, npel, and ngy, are number of insert errors,
delete errors, and substitute errors, respectively. N is the

total number of phones in the ground truth labels.

4.3 Transfer learning based experiments

We then evaluate on our proposed methods. Firstly, a
joint CTC-attention model is trained with the same fil-
terbank features. We compare two structures according
to our experience. For CTC4 + att4, the CTC part is a
four-layer BLSTM with 256 cells and the attention-
model has a four-layer BLSTM encoder with 256 cells in
each layer and direction, an attention layer with 128
cells, and a one-layer LSTM decoder with 256 cells. The
CTC5 +att4d only has more layers of BLSTM for the
CTC part, and the rests are the same. For the rest of the
joint models in our experiments, they are named by the
same manner. For all joint end-to-end models, we set
most of the configurations to be the same. The
optimizer is AdaDelta [27] function with a learning rate
of 10-3. Dropout rate of 0.2 is applied to all BLSTM
layers. The MTL weight and the decoding weight for
CTC are both 0.3. The width for beam research in de-
coding stage is 20. The model which has the best
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accuracy evaluated by dev set is chosen to be the final
model after 30 epochs of training.

We then experiment with our multilingual methods.
We note that TIMIT is evaluated by phones instead of
characters. Therefore, each pronunciation dictionary of
Voxforge resources is generated using G2P toolkit [28]
respectively under the help of CMU dictionary [29]. This
allows DNNSs to capture enough acoustic similarities.

To train multilingual DNNs, we first build their own
GMMs. Each GMM is trained using linear discriminative
analysis (LDA), maximum linear logistic transformation
(MLLT), and speaker adaptive training (SAT) with 13
MECC features. Then multilingual DNNs are trained
with 40 filterbank features of four Voxforge languages
simultaneously and are all supervised by alignments of
senones generated by each GMM. Numbers of senones
for four languages are listed in Table 3.

We train our end-to-end models with two types of
high-level features as described in Section 2, 4langA-
daptBN and 4langAdaptCNME. For the 4langAdaptBN
system, a multilingual bottleneck DNN is trained by four
language resources in Voxforge dataset. Each hidden
layer has 1026 units (342 units after max pooling) and
the bottleneck layer has 120 units (40 units after max
pooling). For the 4langAdaptCNMF system, a multilin-
gual DNN without bottleneck layers is trained with
1026 units (342 units after max pooling) in each hidden
layer.

All DNNs are trained with a dropout rate of 0.2 for
other hidden layers. All maxout groups have a pooling
size of 3. The Initial learning rate is kept 0.2 for the first
8 epochs and after which is decayed by half when valid-
ation error does not decline. The training stops when
the validation error finally increases.

For the next step, all parameters below the last shared
hidden layer of the multilingual DNN are transferred to
a new DNN which is then also re-trained by TIMIT (For
the bottleneck multilingual DNN, all parameters below
shared bottleneck layer are transferred to a new bottle-
neck DNN which is then also re-trained by TIMIT). For
the bottleneck features, they are extracted from the
re-trained bottleneck layer by feed forward inputs. For
the CNMF-based features, we follow exactly the same
settings in [20] in our experiments since the approach is
sensible to layers and dimensions accorded from the

Table 3 Numbers of senones for four languages

No. Language Number of
senones in GMM

1 [talian 1528

2 German 1544

3 French 1400

4 Spanish 1568
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experience of our prior work. CNMF is applied on the
weight matrix from the second last hidden layer, and the
dimension for factorization is 40 with 5000 iterations of
training. The CNMF-based features are extracted follow-
ing the steps described in Section 2.

Our high-level features are then sent into joint
CTC-attention models for end-to-end training. Unlike a
baseline setup, only shallow RNN networks are built for
the models. Here we experiment on two structures,
namely CTC2 +att2 and CTC3 + att2. We also adjust
configurations for these shallow joint models in order to
achieve the best performances. Besides different types of
input features and number of layers, BLSTM and LSTM
are both set to have 320 cells for each layer and direc-
tion, and the location-based attention layer has 160 cells.

4.4 Results and discussions

Table 4 shows PERs of all referenced methods and our
methods on TIMIT core test set. Below the first line, the
first block and the second block shows performances of
referenced traditional systems and end-to-end systems
respectively. The performances of our results are sum-
marized in the last block. We can see that performances
of our baseline systems (filterbank + CTC, filterbank +
att) cannot compare with referenced methods which use
transformed features such as fMLLRs and complex net-
works. This is much due to the fact that TIMIT provides
a limited resource condition in which purely data-driven
training could not satisfied.

Table 4 PERs of different speech recognition systems on TIMIT

core set

System PER (%)
Kaldi's DNN-HMM 18.5
Hierarchical maxout CNN [30] 16.5
Raw speech + WaveNet [19] 188
filterbank + CTC + weight noise [31] 184
hierarchical CNNs with CTC [32] 182
Raw speech + complex ConvNets [33] 18.0
RNN transducer initialized with CTC + weight noise [31] 17.7
fMLLR + Attention + weight noise [6] 17.6
fMLLR + RNN + CRF [14] 17.3
filterbank + CTC5 18.66
filterbank + att4 2049
filterbank + CTC4 + att4 19.85
filterbank + CTC5 + att4 19.14
4langAdaptBN + CTC2 + att2 18.63
4langAdaptBN + CTC3 + att2 18.28
4langAdaptCNMF + CTC2 + att2 17.70
4langAdaptCNMF + CTC3 + att2 16.96
4langAdaptCNMF + CTC3 + att2 + RNN-LM 16.59
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For baseline systems, the joint models (filterbank +
CTC4 + att4, filterbank + CTC5 + att4d) perform better
than baseline systems. This demonstrates that joint
training and decoder benefits for end-to-end models.
We can also conclude from results of filterbank-based
systems (filterbank + CTC4 + att4, filterbank + CTC5 +
att4), bottleneck-based systems (4langAdaptBN + CTC2
+att2, 4langAdaptBN + CTC3 + att2), and NMF-based
systems  (4langAdaptCNMF + CTC2 + att2,  4langA-
daptCNMF + CTC3 + att2) that a joint model perform
better when CTC has one more BLSTM layer than en-
coder of attention-based model.

However, performances of filterbank-based systems are
still inferior to listed methods due to the lack of trans-
formations and regularizations under limited resource
condition. The fact that the filterbank-based joint
models even perform worse than the CTC baseline sys-
tem demonstrates that joint modeling is not enough for
solving problem with limited resource.

When multilingual pre-trained bottleneck features are
brought in, our systems (4langAdaptBN + CTC2 + att2,
4langAdaptBN + CTC3 + att2) achieve 18.63% and
18.28% on PERs which are comparable to some refer-
enced results but are still no better than best end-to-end
results. We believe that the disadvantage of setting a
bottleneck layer which is analyzed in Section 2 is re-
sponsible for this.

When using CNMF to extract features, our best sys-
tem (4langAdaptCNMEF + CTC3 + att2) obtains a PER of
16.96%. This is superior to all published end-to-end
methods in Table 4. Also the fact that NMF approach
performs better than bottleneck approach supports our
hypothesis (in Section 2.1) that the existence of bottle-
neck layers degrades the classification accuracies and
could not fully exploit deep transformation of the
pre-trained network. These results also strongly support
the effectiveness of our CNMF-based approach in
end-to-end models.

Although our transfer learning approach requires extra
training procedures to extract features, it performs bet-
ter with less RNN layers for the end-to-end part.

We also list PERs of some representative traditional
methods and notice that published end-to-end models
could not beat traditional speech recognition systems.
To further compare with the best traditional system
which has a language model (LM), we add a small
RNN-LM to decode jointly following the method in
[18]. The RNN is a two-layer LSTM with 256 cells in
each layer and is trained using all transcriptions from
the TIMIT train set with a batch size of 32. The LM
weight for decoding is 0.2. The result in the last line of
Table 4 shows that PER further decreased to 16.59%,
which is not only the best among all listed end-to-end
results but also is comparable to the state-of-the-art
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performance in TIMIT. Note that our end-to-end
models are trained without any regularization except for
dropout on BLSTM layers. We believe that our models
would benefit more if they were trained with designed
regularizations and bigger RNN-LM.

5 Conclusions

A novel transfer learning-based approach is proposed
for end-to-end speech recognition. For the first stage,
NMF together with multilingual training are used to ex-
tract high-level features. For the second stage, joint
CTC-attention models are trained on top of the
high-level features. Transfer learning is applied through
multilingual training and multi-task learning in two
levels. Experiments on TIMIT show that our model per-
forms the best among all end-to-end models and
achieves an extremely close performance compared with
the state-of-the-art speech recognition system.

Although our transfer learning approach improves per-
formances of end-to-end speech recognition models in
TIMIT, it needs to be tested whether this approach also
works for relatively high-resource (more than thousands
of hour’s data) end-to-end training. What is more is this
approach remains a two-stage training fashion which is
not a standard end-to-end way. Therefore optimizing fea-
ture extraction and RNN training with only one objective
function is another job to do. This would require proper
tasks separation and intermediate supervisions.
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