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Abstract

This paper proposes two novel linguistic features extracted from text input for prosody generation in a Mandarin
text-to-speech system. The first feature is the punctuation confidence (PC), which measures the likelihood that a
major punctuation mark (MPM) can be inserted at a word boundary. The second feature is the quotation
confidence (QC), which measures the likelihood that a word string is quoted as a meaningful or emphasized unit.
The proposed PC and QC features are influenced by the properties of automatic Chinese punctuation generation
and linguistic characteristic of the Chinese punctuation system. Because MPMs are highly correlated with prosodic—
acoustic features and quoted word strings serve crucial roles in human language understanding, the two features
could potentially provide useful information for prosody generation. This idea was realized by employing
conditional random-field-based models for predicting MPMs, quoted word string locations, and their associated
confidences—that is, PC and QC—for each word boundary. The predicted punctuations and their confidences were
then combined with traditional linguistic features to predict prosodic—acoustic features for performing speech
synthesis using multilayer perceptrons. Both objective and subjective tests demonstrated that the prosody
generated with the proposed linguistic features was superior to that generated without the proposed features.
Therefore, the proposed PC and QC are identified as promising features for Mandarin prosody generation.
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1 Introduction

Prosody generation serves a crucial role in a text-to-s-
peech system (TTS). Prosody generation can be regarded
as a function mapping from linguistic features to prosodic
structures or prosodic—acoustic features. In a practical im-
plementation of an unlimited-text Mandarin TTS
(MTTS), the availability and reliability of linguistic fea-
tures are highly dependent on the performance of the text
analyzer employed. A basic text analyzer comprises a
Chinese word segmenter, grapheme-to-phone (G2P) con-
verter, and part-of-speech (POS) tagger. Prosodic struc-
tures are abstract descriptions of speech prosody and are
usually categorically represented using prosodic break
tags, such as nonbreak and minor or major break. A Man-
darin prosody hierarchy that is commonly agreed upon is
a four-layer prosodic structure. The four layers are, from
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the lowest to the highest, the syllable (SYL) layer, prosodic
word (PW) layer, intermediate phrase (or prosodic phrase;
PPh) layer, and intonation phrase (IP) layer, which are
demarked by nonbreaks, minor breaks, major breaks, and
utterance boundaries, respectively [1-3]. Prosodic—acous-
tic features are prosodic information that is numerically
represented by values or vectors of the log-FO contour,
duration, and the energy of any linguistic domain, for ex-
ample, a phone, syllable, initial or final, or word. The rep-
resentative prosodic—acoustic features for Mandarin
speech are the syllable log-FO contour, syllable duration,
pause duration, and syllable energy level [4—6]. In hidden
Markov model (HMM)-based synthesis, the most popular
speech synthesis method [7-10], prosodic—acoustic fea-
tures are modeled at the HMM state level, that is, mod-
eled using the state duration, state log-FO value, and
energy contour enclosed by the spectral parameters.
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Irrespective of the target (prosodic structure or pros-
odic—acoustic features) of prosody generation, studies on
prosody generation have focused on the following two
problems: (1) design or utilization of a prediction model
and (2) utilization of features. For the first problem, the
prediction methods popularly used for generating a
prosodic structure are the hierarchical stochastic model
[11], the N-gram model [12], classification and regres-
sion tree (CART) [13, 14], bottom-up/sifting hierarchical
CART [13], the Markov model [15], artificial neural net-
works [16], and the maximum entropy model [17].
Moreover, the popular pattern recognition tools for gen-
erating prosodic—acoustic features are a multilayer per-
ceptron (MLP) [18-23], a recurrent neural network [4],
CART [7-10, 24], and a decision tree with the hidden
Markov model with multispace distribution modeling of
the FO contour [7-10]. For the second problem, conven-
tional linguistic features, such as POSs, word length,
sentence length, and position of a word in a sentence,
are widely used in many existing MTTSs [4, 12-14, 17,
22, 24-27]. Some studies have improved the accuracy of
prosodic structure prediction or prosodic—acoustic fea-
ture prediction by incorporating higher-level syntactic
features, such as word chunks [16] and syntactic trees
[16, 26, 27]. Moreover, statistical linguistic features such
as connective degree [14], punctuation confidence (PC)
[28-31], and quotation confidence (QC) [30, 31] have
been proposed to neglect complex syntactic tree parsing
and manual word chunking that is impractical when
constructing an unlimited-text MTTS.

This paper focuses on the second problem to extend
and elaborate on our previous research pertaining to PC
[28-31] and QC [30, 31] features. A more substantial
analysis and modeling details are provided in this paper
to provide readers with an insight into the proposed PC
and QC features, the design of which is influenced by
automatic Chinese punctuation generation [32] and the
linguistic characteristic of the Chinese punctuation sys-
tem [33]. PC measures the likelihood of inserting a
major punctuation mark (MPM) at a word boundary,
whereas QC measures the likelihood of using a word
string that is quoted by Chinese quotation marks (or
brackets) to emphasize the meaning of the quoted word
string. In [32], a maximum-entropy-based automatic
Chinese punctuation generation method was proposed
to insert 16 types of PMs into unpunctuated text by
using word features and lexical-functional grammar fea-
tures. The results in [32] indicated that the punctuation
generation model could generate alternative or accept-
able insertions, deletions, or substitutions of PMs. A
successful outcome was also obtained in a punctuation
experiment involving human readers, as reported by
Tseng [33], in which the alternative punctuation strat-
egies of different native Mandarin Chinese speakers were
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found. These observations reflect that Chinese PMs
serve as a loose reference to the syntactic structure and
semantic domain. Therefore, native Chinese writers can
freely utilize PMs to delimit written Chinese into various
linguistic elements, such as sentences, phrases, and
clauses, for clearly expressing the meaning of text. Fur-
thermore, the punctuation generation of a speaker when
reading written Chinese reflects the speaker’s prosodic
phrasing strategy because pause breaks are highly corre-
lated with some MPMs, such as the period, comma, ex-
clamatory mark, question mark, semicolon, and colon.
Therefore, an automatic punctuation generation model
that predicts MPMs and is trained by using a large text
corpus can learn punctuation strategies for predicting
MPMs from various contributors for providing useful
cues for predictions of both prosodic breaks [28, 31] and
prosodic—acoustic features [29-31].

Word strings enclosed by brackets or quotes have es-
sential or unique meanings in sentences. In our analysis
of a large text corpus, the Academia Sinica Balanced
Corpus of Modern Chinese (ASBC) 4.0 [34], which con-
tains 9,454,734 words (31,126 paragraphs), we discov-
ered that the functions of quoted word strings can be
classified into several cases: (1) adding supplementary
information to the proceeding words; (2) representing
the name of a particular person, place, or institution; (3)
emphasizing the meaning of a word string; and (4) indi-
cating a newly derived compound word or word chunk
that has a complex meaning. In cases (3) and (4), the
quoted word strings, which are named quoted phrases
in this paper, from small to large linguistic units, may
form newly derived words, compound words, base
phrases, word chunks, syntactic phrases, or sentences.
The aforementioned linguistic units are usually larger
than common words, contain more complex meanings
than a word or may even have new meanings, and may
be a higher-level unit in terms of the syntax compared
with the POSs of words. Because a quoted phrase ex-
hibits richer linguistic information than only words, it
plays a crucial role in human language understanding
during the reading of a text. Moreover, it is generally
agreed that a speaker can generate good prosody if they
understand the meaning of a text. Thus, adding quota-
tions to plain Chinese text and then regarding the added
brackets as linguistic features may enable a system to
generate prosody that sounds natural. Note that in writ-
ten Chinese, the use of quotations by adding brackets
depends on the writing style or habit of the text con-
tributor. Chinese input texts may thus already contain
some brackets for the four functions indicated previ-
ously. However, the remaining unquoted words may also
be emphasized and be regarded as larger syntactic units
if they share similar contextual POSs or word structures
with the quoted phrases. For Chinese texts containing
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no quotations, if quotations can be labeled with brackets
automatically by a machine when the word and POS in-
formation are given, then the features associated with
the labeled brackets could provide richer linguistic infor-
mation and thus enhance the performance of prosodic—
acoustic feature prediction.

To realize the use of automatic MPMs and for quota-
tion predictions, we constructed two types of conditional
random field [35, 36] (CRF)-based automatic punctu-
ation generation models: the CRF-based MPM gener-
ation model and CRF-based quotation generation model.
The CRF-based MPM generation model predicts MPMs
and generates the associated confidence measures, which
are referred to as the PC, through MPM-removed word
or POS sequences. The PC can be regarded as a statis-
tical linguistic feature measuring the likelihood of cor-
rectly inserting an MPM into a text. Word junctures in
which MPMs are more likely to be inserted are, it is rea-
sonable to assume, junctures in which pause breaks are
more likely. We could, therefore, expect that the
utilization of PC in prosody generation would improve
the performance of prosodic—acoustic feature gener-
ation. The CRF-based quotation generation model pre-
dicts the structure of a quoted word string (hereafter
referred to as the quoted phrase, or QP) from the
bracket-removed word or POS sequences and calculates
the associated confidence, which is referred to as the
QC. The QC can also be considered a statistical linguis-
tic feature used for measuring the likelihood of word
strings that are quoted using left and right brackets. Be-
cause words in brackets constitute meaning, it is reason-
able to assume that fewer prosodic breaks are inserted
within quoted text and that quoted text may be empha-
sized using some variation in prosodic—acoustic features.
Therefore, we inferred that the use of QC may assist in
prosody generation.

To evaluate the usefulness of the proposed PC and
QC in Mandarin prosody generation, experiments of
prosodic—acoustic feature prediction were conducted,
and the corresponding objective and subjective tests
were evaluated. The experimental database used was a
Mandarin speech corpus, the Treebank speech corpus,
which contains 425 utterances with 56,237 syllables
uttered by a professional female announcer. The corpus
is further divided into three parts: a training set of 301
utterances with 41,317 syllables, a development set of 75
utterances with 10,551 syllables, and a test set of 44 ut-
terances with 3898 syllables. The corpus used for train-
ing the CRF-based punctuation generator was the ASBC
4.0 [34] (hereafter denoted as the ASBC text corpus).
For the prosodic—acoustic feature prediction, the pro-
posed linguistic features combined with conventional
linguistic features were employed as the input to directly
predict four prosodic—acoustic features of the syllable
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log-FO contour, syllable duration, syllable energy level,
and intersyllable pause duration. Objective tests were
evaluated using the root-mean-square error (RMSE).
Subjective  tests  were then  conducted on
speech-synthesized utterances by using the predicted
prosodic—acoustic features.

Several advantages of the approach were discovered.
First, the PC and QC were conveniently determined
from the features of word or POS sequences robustly
obtained by performing segmentation of the current
word and employing POS-tagging technologies without
using complicated statistical syntactic parsing. This ad-
vantage makes the proposed approach suitable for prac-
tical online unlimited TTS. Second, because the
CRF-based punctuation generation models were trained
by using a large text corpus, the models could learn al-
ternative punctuation strategies from numerous para-
graphs by various writers to generate more reliable PCs
and QCs. Third, compared with the size of an available
text corpus for constructing a statistical syntactic
parser, the size of the corpus used to train the
CRF-based punctuation generator was considerably lar-
ger. Therefore, we infer that the obtained PC and QC
are more robust than the syntactic features derived
from an automatic syntactic parser.

The research process and corresponding section
organization of this paper are summarized as follows:

e Section 2: Analysis of punctuations

We demonstrate the relationship between punctua-
tions and prosodic structures by analyzing the Treebank
speech corpus, which is labeled with prosodic break tags.
The analyses that motivated our use of the proposed PC
are explained. This section also analyzes the quoted
phrases in the ASBC text corpus, thus identifying pos-
sible QC candidates for the training of the CRF-based
quotation model.

e Section 3: Construction of the CRF-based MPM
generation model

The CRF-based MPM generation model was trained
by using the ASBC text corpus. The precision and recall
of the MPM insertions are examined on the test dataset
of the ASBC text corpus. The feasibility of using the
proposed PC in prosody generation was examined by
analyzing the relationship between the prosodic—acous-
tic features of the training dataset of the Treebank
speech corpus and the associated PC generated using
the CRF-based MPM generation model.

e Section 4: Construction of the CRF-based quotation
generation model
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The model was trained and examined using the
ASBC text corpus. The feasibility of using the QC for
prosody generation was determined using the Treebank
speech corpus.

e Section 5: Prosody generation experiments

The prosody generation experiments were conducted
on the Treebank speech corpus. The PC and QC features
generated by the proposed automatic punctuation gener-
ation models by using the Treebank text corpus were
combined with the conventional linguistic features to pre-
dict the prosodic—acoustic features of the syllable pitch
contour, syllable duration, syllable energy level, and pause
duration. Objective and subjective tests were conducted to
verify the usefulness of the proposed PC and QC features.

e Section 6: Conclusions and future work

2 Analysis of punctuations

Because prosodic—acoustic features are highly dependent
on Mandarin’s prosodic structure and the prosodic struc-
ture is categorically represented by a finite set of prosodic
break tags, it is more convenient to analyze the relation-
ship between prosodic break types and PMs than to
analyze the relationship between numerical prosodic—
acoustic features and PMs. Therefore, the relationship be-
tween Chinese PMs and Mandarin prosodic structure is
analyzed in this section. The following subsections present
the analyses that provided the motivations and rationality
for using the proposed PC and QC features. The prosody
labeling system for determining the prosodic structures of
utterances is introduced in Section 2.1. The relationship
between the labeled prosodic break types and PM types is
discussed in Section 2.2. Section 2.3 presents the experi-
mental process wherein native Mandarin speakers were
allowed to manually insert MPMs in PM-removed texts
excerpted from the Treebank speech corpus. The relation-
ships between the manually inserted MPMs by the native
Mandarin speakers and the associated prosodic break
types are analyzed, thus providing evidence for the pro-
posed PC. An analysis of the quoted phrases in the ASBC
text corpus is presented in Section 2.4, identifying the pos-
sible QC candidates for the training of the CRF-based
quotation generation model.
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2.1 Prosody labeling system

The widely used prosody labeling systems are ToBI [37],
TILT [38], and C-ToBI [39]. These prosody labeling sys-
tems require manual labeling by humans with linguistic
expertise. To reduce the human labor required and to
increase the consistency of prosody labeling, Chiang et
al. [40, 41] proposed an unsupervised joint prosody la-
beling and modeling (PLM) method for constructing a
speaker-dependent  statistical hierarchical prosodic
model and labeling prosody tags for Mandarin speech.
The PLM method was then successfully applied to con-
struct a speaker-independent hierarchical prosodic
model for use in a large vocabulary speech recognition
task [42]. Hence, in this study, to avoid the need for in-
tensive human labeling and inconsistent labeling results,
the corpus was labeled with seven break types using the
PLM method [40, 41] proposed by Chiang et al. As illus-
trated in Fig. 1, the seven break types—BO0, Bl, B2-1,
B2-2, B2-3, B3, and B4—delimit an utterance into four
types of prosodic units: a SYL, PW, PPh, and breathe
group or prosodic phrase group (BG/PG).

In the labeling system, each defined break type is char-
acterized by its specific juncture’s prosodic—acoustic fea-
tures. B4 is defined as a major break and contains a long
pause and apparent FO reset across adjacent syllables. B3
is a major break with a medium pause and medium FO
reset. BO and B1 are nonbreaks of a tightly coupled syl-
lable juncture and a normal syllable boundary within a
PW, respectively, which have no identifiable pauses be-
tween SYLs. Moreover, B2 is a minor break with three
variants—an FOQ reset (B2-1), short pause (B2-2), and
preboundary syllable duration lengthening (B2-3).

Among the various types of prosodic—acoustic fea-
tures, pause duration is the most salient cue for specify-
ing the boundaries of prosodic units. Figure 2 shows
probability density functions (pdfs) of Gamma distribu-
tions for the seven break types and reveals that the
higher-level break types were generally associated with
longer pause durations. According to the pdfs of pause
durations for each of the break type shown in Fig. 2, the
long pause of B4 has pause duration >=400ms, the
medium pause of B3 has the pause duration in the inter-
val of 200 ~ 400 ms, and the short pause of B2-2 has the
pause duration in the interval of 30-200ms. On the
other hand, B0, Bl, B2-1, and B2-3 have very short

BG/PG B4 ‘

BG/PG

‘ B4 ‘ BG PG

PPh | PPh |33

PPh ‘ B3 ‘ PPh ‘ P

PW ‘ ggzé PW

SYL |B1/BO | SYL

Fig. 1 Hierarchical prosodic model of Mandarin speech used in this study [42]
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pause durations (<30 ms). Specifically, on the basis of
this analysis of the pause duration of the seven break
types, this study defined four break classes for conveni-
ently conducting the analysis presented in Section 2.2:
(i) B4, (ii) B3, (iii) B2-2, and (iv) the nonpause break
(NPB) type that comprises B0, B1, B2-1, and B2-3.

2.2 Relationship between the labeled break types and PM
types
In general, pause breaks are considered to co-occur with
PMs. Most TTSs cautiously insert pauses only for
MPMs, such as commas and periods. This cautious
strategy of pause insertion can make synthesized speech
very clear but may sound unnatural because the input
sentence can be very long and contain complicated syn-
tactic structures. Table 1 displays the co-occurrence
matrix of the four break classes and three syllable junc-
ture types, calculated using the training dataset of the
Treebank speech corpus. The table reveals that most
PM locations co-occur with breaks of the pause-related
type (B2-2, B3, and B4), whereas most intraword loca-
tions map to NPBs. Non-PM interword locations
co-occur with NPBs, B2-2, and B3. Approximately 40%
of prosodic phrase boundaries (B3s) and more than 94%
of B2-2s occur at non-PM interword junctures. By con-
ducting a more detailed analysis, we found that 60% of
non-PM B3s coincide with the depth-1 node boundary
of a fully parsed syntactic tree. These results imply that
inserting pauses only at PM locations would be
unsatisfactory.

Table 2 displays the co-occurrence matrix of the four
break classes and eight PM types that exist in the

Table 1 Co-occurrence matrix of four target break types and
three syllable juncture types

NPB B2-2 B3 B4
Intraword 21,970 14 2 0
Non-PM interword 20,288 3148 1391 30
PM 30 169 2130 2320

Treebank speech corpus. The PM types in the MPM set
with sufficient samples—that is, {comma “,”, period “, 7,
semicolon “”, question mark “?”, exclamation mark
“"}—are highly correlated with the major breaks of B3s
and B4s. This implies that a word juncture that inserts
an MPM in a text is more likely to be a major break in
an utterance. This motivated us to propose a CRF-based
automatic MPM generator in this study to predict the
insertion of MPM and its likelihood (i.e., PC) for each
word juncture and to use the predicted MPMs and PC
for prosody generation.

In the texts of the training dataset, the Treebank
speech corpus, no word strings were quoted in Chinese
brackets. Thus, we could not directly analyze the rela-
tionship between Chinese brackets and labeled break
types. In this study, we directly analyzed the characteris-
tics of the brackets and their associated quoted phrases
from the ASBC text corpus, as presented in Section 2.4.

2.3 Human-labeled PMs versus prosodic break types

From the results displayed in Table 2, we concluded that
occurrences of B3s and B4s are highly correlated with
periods, exclamation marks, question marks, semicolons,
colons, and commas. Therefore, we assumed that auto-
matic punctuation generation models that predict MPMs
and are trained using a large text corpus can learn strat-
egies for inserting MPMs from texts by various contribu-
tors to provide informative cues for prosodic—acoustic
feature prediction. To access the feasibility of this idea, we
conducted an experiment in which 10 native Mandarin
speakers were asked to insert periods and commas in the
same 30 PM-deleted short paragraphs. These 30 para-
graphs were chosen from the Treebank speech corpus
texts labeled with prosodic breaks, as stated in Section 2.1.
The longest and shortest paragraphs were 270 and 80
characters, respectively, and the average length was 138
characters. The frequencies (or probabilities) of word
junctures that were added with periods or commas
were regarded as PCs labeled manually by humans
(or text contributors). An analysis of the relationship
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Table 2 Correlation matrix of the four break types and the eight PM types

Comma Period Semicolon Question mark Exclamation mark Colon Chinese back-sloping comma Chinese back-sloping comma  Partition sign
NPB 4 1 0 0 0 0 25 25 1
B2-2 88 2 0 1 1 1 75 75 1
B3 1901 42 9 7 1 2 168 168 0
B4 1523 606 63 58 39 0 30 30 1

between these frequencies (PCs labeled by humans)
and labeled prosodic breaks provided some evidence
that the proposed method is feasible.

Figures 3 a—c display the average percentage for each
prosodic break type with respect to the number of times
that a word juncture was inserted with a comma, period,
and comma or period, respectively. Here, the number of
times that a comma or period was inserted is analogous
to the proposed PC. The percentage of NPBs decreased
considerably when the frequency of MPM insertions in-
creased. Figure 3a displays that the percentage for B4 in-
creased as the frequency of comma insertion increased.
The percentage for B3 was highest when two or three
commas were inserted and then decreased and main-
tained a constant level for when more than four commas
were inserted. The percentage for B2-2 exhibited a simi-
lar trend to that for B3 but at a lower magnitude.
Figure 3b displays that B4 dominated when more than
three insertions of periods were observed for each word
juncture. These results indicate that a word juncture was
more likely to be inserted with pause-related break

types—B2-2, B3, and B4—when the PC was larger.
Moreover, the break types of the higher prosodic units
(i.e., larger break types) were associated with a larger PC.
Figure 3c can be viewed as the combined result of Fig. 3a
and b. Because commas and periods are major constitu-
ents of the MPM set, the result displayed in Fig. 3c is
analogous to the distributions of the prosodic break
types pertaining to the PC values. We observed more
evident trends for the percentages of the four break clas-
ses in Fig. 3c than the trends shown in Fig. 3a and b and
found that these trends were informative for prosody
generation.

2.4 Analysis of quotations

Table 3 displays the 26 Chinese quotation mark pairs
that are used in the ASBC text corpus [34]. We catego-
rized these quotation mark pairs into ten types accord-
ing to the functions of the enclosed words, i.e., QPs.
Table 4 lists the types of the quotation mark pairs, their
statistics, and the associated exemplar QPs in sentences
with word-by-word Chinese—English translations. The

100 100 —
{ —e—NPB ——B22 —6—B3 —o— B4
g =0 g
& - AT o & 3 " —&— NPB
g ;—G}\ o o 4 g &— B2
3 o ] il \d —o—B3
2 “~o—4 2 . —=s—B4 | ]
;. y 3 Mf &4 %— \\G
5 g
g o P 1 2 2 / /\ i
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0 2 4 ] 8 10 0 2 4 b 8 10
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100
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[
3
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©
Fig. 3 Average percentage of prosodic break types dependent on the number of times that a word juncture was inserted with a comma (a),
period (b), and comma or period (c)
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Table 3 Types of Chinese quotation marks
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No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Quotes ( ) ( ) { y ¢ 3y C ) ()
Type 1 2 3 4

characteristics of the types of QPs are introduced as
follows:

Type 1 (): They are mostly used for enumeration.
Therefore, we did not regard Type 1 as prediction
targets for QPs.

Type 2 {}: They are mostly used for titles of books or
articles; thus, we regarded this type as a prediction
target.

Type 3 () : They mostly function as captions of
articles. This type was not included in our prediction
target.

Types 4and 5 [ ] and [] : These types contributed
most samples (68%) for the QP predictions because
they generally enclosed word chunks or base phrases.
Single-word QPs of these types are usually emphasized
nouns, verbs, or idioms. Most two- to four-word QPs
are noun phrases. QPs that are longer than four words
are generally long noun phrases or sentences.

Types 6,7, and 8 () [1 () : These types are similar
to Type 2 and thus were included in the QP prediction.
Type 9 “”: We included the samples of this type in the
QP prediction. In this type, single-word QPs are gener-
ally proper nouns. The two- to four-word QPs are

frequently used phrases, and five- to six-word QPs are
similar to sentences.

Type 10 “” : This type is similar to types 4 and 5. We
employed this type as a QP prediction target, although
the sample size was very small.

Table 5 displays statistics on the numbers of words in
QPs. Most QPs were found to be single- to four-word
QPs. Single-word QPs are usually emphasized nouns or
verbs. Two- to four-word QPs are mostly base phrases
such as word strings (or word chunks). QPs longer than
four words are mostly sentence-like units.

3 Proposed PC

3.1 CRF-based MPM generator

PC [28] is obtained by a CRF-based MPM generator.
The CRF-based MPM generator overcomes the
label-tagging problem because it labels each lexical
word juncture with a sequence of types of PMs—for
example, presence or absence of an MPM Y by using
some linguistic feature sequence X. The function of
the CRF-based MPM generator is formulated as
follows:

Table 4 Types of QPs, their statistics, and examples in sentences. Note that words in the examples are delimited by slashes and

word-by-word English translations of Chinese words are provided

Type Count (%) Examples of QPs in sentences
10 14131 (25.13%) (AR« WA,
(1)/no/smoking/,/(2)/no/staying up night/,
2 0 34(006%) THEA IR RCY A2/ B R W/ 13 A
{Tao-Hua-Yuan-Ji}/is/Mr. Yuan-Ming Tao/possession indicator/work/,
300 101(017%) (ARG 143 /R R SRR IR /Y B 3R/ T/,
(News) /whole province/football/ championship contest/soon/start/modal particle/,
4 1 37197 (66.17%) [ )\BRIMIIEIE | 15&/20024/ 688/ (F/— /A8 1551,
[ Eighteen years old/possession indicator/commitment | /is/year 2002/Taiwan/possession indicator/one/idol drama/,
5 11 1223217%)  IEIE/EUR/RR/ TEYRBNE D 18 40/B B/ E/,Chung-Yao/grief-stricken/write/ [ to/husband/farewell/letter] /
announce/shut down/Facebook account/,
6 O 562 (099%) CBRERS LITAR RO/ #AR W/ S/ (K /NG oo /g R R (K — R o
(silver whisker/upon/possession indicator/spring)/is/Mr. Chueng-Ming Huang/possession indicator/novel/among/more/
special/possession indicator/one piece/.
7 L1 314 (055%) e /B SO A TR A AR ] 1A R85/,
[ ethnic group/and/culture/policy/principle] /already/online/publish/,
8 ) 2523(448%)  (JRTH/ L/ /N AR IS/ 1/ W T /4R,
{Roof/top/possession indicator/child)/among/deep/possession indicator/southern/atmosphere/,
9 105 (0.18%) S B/AE M R ATHE R/ e R/ Y
American/composer/Cowell/take/“new/music”/as/title/,
10 "7 22(0.04%) Al /AT AR RN IR/ E R ERY,

Recently/there/one/so-called/ “first/lady” /possessive indicator/movie/be on/,
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Table 5 Statistics on the lengths of QPs

No. of words No. of example Percentage
1 26,791 41%

2 16,749 25%

3 10933 17%

4 5847 9%

5 3415 5%

6 or larger 1988 3%

P(Y|X) = ]\ﬁ exp (Z Z)w‘fi(Yt = Ytl,x)> (1)

t=1 i=1

where N(X) is the normalization factor ensuring that
YyP(Y| X) =1; t represents the lexical word index; Y;
represents the prediction target, that is, the type of PM
between the ¢-th and (£ + 1)-th lexical words; I represents
the number of feature functions; and f(Y;=y,Y;_1,X) is
a feature function defined by

1,if X = A; is satisfied and y = y;
0, otherwise

fi(Yt = Yt*hx) = {
(2)

where /; represents the j-th possible linguistic feature
context and y is the k-th possible tag (i.e., PM type) to
be predicted. Feature contexts are generally organized
into several groups, referred to as “feature templates.”
The predicted PM sequence can be obtained by the
Viterbi search as follows:

Y1, Y5, Y= arg ~ max TP(Y|X) (3)

1Yo,

The PC is obtained through forward or backward cal-
culation and is equal to the marginal probability of the
k-th type of PM for the ¢-th word:

$0x(X) = P(Y; = y,[X) (4)

3.2 Design of the prediction targets
Two types of prediction targets were designed—the basic
PC (bPC) and improved PC (iPC). The bPC is generated
by considering two prediction targets—the presence of
an MPM, y;, and the absence of an MPM, y,. The iPC is
produced by considering the structures of sentences ac-
companied by MPMs. For the bPC, the MPMs include
“o 7, 7, 7, and ). The PC, ¢, ((X), generated
by the target setting {y;, yo} is known as bPC. Figure 4a
displays the original text with word or PM tokens, and
Fig. 4b presents the corresponding target-labeling ex-
ample for the training of the bPC.

Note that the bPC only considers modeling the inser-
tion of MPMs, and the MPMs serve as delimiters for
sentences, phrases, or clauses for Chinese. For
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convenience’s sake, a linguistic unit between the two
closest MPMs is defined as a sentence-like unit in this
study. Therefore, modeling structures of sentence-like
units could be equivalent to modeling insertions of
MPMs and could even provide superior prediction of
MPM insertion. We proposed the iPC to model struc-
tures of sentence-like units and optional MPMs in a
sentence-like unit. The two types of iPCs are improved
PC with structure of sentence-like unit (iPCst) and im-
proved PC with enforced major punctuation mark inser-
tion (iPCef). Here, iPCst is designed for modeling
structures of sentence-like units, whereas iPCef is de-
fined for modeling enforced MPM insertion into a
sentence-like unit. For the prediction of iPCst, the pre-
diction targets for the CRF-based MPM generator were
labeled for each word and designed to represent struc-
tures of sentence-like units regarding word position in a
sentence-like unit. The targets “B,” “I,” “M,” “S,” and “E”
represent beginning, intermediate, middle, single, and
ending words, respectively, in a sentence-like unit. To
further precisely label the word order information in a
sentence-like unit, numbers 1 to 4 were added to the
targets “B” and “E” for indicating forward and backward
word order, e.g., B2 for the second word from the begin-
ning of a sentence-like unit, and B3 for the third last
word from the end of a sentence-like unit. On the basis
of the statistics pertaining to the length of sentence-like
unit (unit: words) for the ASBC text corpus, the length
of sentence-like units is mostly (84%) between four and
nine words. Therefore, the target-labeling schemes were
designed differently for sentence-like units with <9 and
<9 words. The complete targets for iPCst are listed in
Table 6. Specifically, four rules were employed to guide
target tagging:

1. “Bl) “B2) “B3; and “B4” represent the first, second,
third, and fourth word in a sentence-like unit, re-
spectively, whereas “E1,” “E2,” “E3,” and “E4” repre-
sent the last, penultimate, antepenultimate, and
preantepenultimate word in a sentence-like unit,
respectively.

2. If the length of a sentence-like unit was <9 words,
then we used “B1"-“B4” and “E4”-“E1” to tag tar-
gets from the beginning and end of a sentence-like
unit and used “M” to tag the other intermediate
words in the sentence-like unit.

3. If the length of a sentence-like unit was <9 words
and even, we used “B1”-“Bk” and “E1”-“EK” to tag
targets from the beginning and end of a sentence-
like unit for k= 1-4 and k = length of sentence-like
unit in words/2.

4. If the length of a sentence-like unit was <9 words
and odd, we employed “B1”"-“Bk” and “E1”-“Ek” to
tag targets from the beginning and end of a
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(@) Z®sr Tox AR & R £ A% P 69 22 > S2 K o9 %6 b T AR
oA
A telescope can be used to observe shining stars in the sky, or wild birds in the waterside, alsg
can be used to observe humans.
(b) =g Tutho RAho Ao Ko Lo BE MEE 3/ 8 BEm &
Ao Ko ve BB dlyve T R Re Hho A
(c) ¥m4/Bl T/B2 AAMB3 A/B4 X/M LE/M ¥E/E4 PI/E3 #9/E2 2 2/EL
LAE/BL KE/B2 BY/E2 ¥ E/EL 4£/Bl TeA/B2 A R/A A/E2 A/EL
(d) Instance 1: ¥4 /El T/E2 M A/E3 A/E4 XM LM 9 35/FE4 PIH/E3 &
/E2 R Z/El sa&/bl KEMDL2 #y/e2 ¥ 5lel
Instance 2: = %/Bl 7K%/B2 #/E2 ¥ &/El 4/bl =Tu/b2 B kA Fle2 Alel
Fig. 4 Example of tag labeling for PC training: a original word or PM sequence, b tag label for the training of the bPC, ¢ iPCst, and d iPCef. Note
that each sentence-like unit is in a different color and each word is delimited by spaces

sentence-like unit for k = 1-4 and k = length of
sentence-like unit in words/2. The remaining words
were labeled with “I” to indicate that they are inter-
mediate words in the sentence-like unit.

Figure 4c displays an example of tag labeling for the
iPCst training.

The prediction of iPCef is to enforce the insertion of
an MPM in a sentence-like unit. This idea is motivated
by the observation of the ASBC text corpus [34] that op-
tional MPMs could be inserted into some long
sentence-like units without a loss of understanding. In
the training of iPCef, two consecutive sentence-like units
were considered as one training instance for an enforced
MPM insertion. The target set for iPCef is similar to that
for iPCst, as shown in Table 6. However, the target set
for iPCef uses upper- and lower-case letters for the dis-
tinction between tags for the first and second
sentence-like units, respectively. Figure 4d shows two
training instances, i.e., Instance 1 and Instance 2, ex-
tracted from the text displayed in Fig. 4a. Instance 1 of
Fig. 4d is made of the first and the second sentence-like
units of Fig. 4a while Instance 2 of Fig. 4d is made of the
second and the third ones of Fig. 4a. In the testing phase

Table 6 Targets for iPCst

that generates the PM type labels and the iPCefs for
prosody prediction, i.e., ¢, «(X), each sentence-like unit
is labeled with the sequences of the PM type and the as-
sociated iPCefs by the CRF-based punctuation generator
and the given linguistic features of each sentence-like
unit. The CRF-based punctuation generator surely in-
serts an MPM into each sentence-like unit. Therefore,
we call this target labeling and testing for generating
iPCef “enforced MPM insertion.” This enforced MPM
may provide informative cues for inserting a pause or
cause preboundary syllable duration lengthening for
word junctures in a long sentence-like unit.

3.3 Design of features and templates
The linguistic features used in the CRF training are lex-
ical words (W), POSs (S,), and word length (L,). There-
fore, the linguistic feature sequence for the CRF model
is.
X:{Xl,Xz"',XT}andXt:{Wt,St,Lt} (5)

The linguistic features are generated by the NCTU
Chinese parser [43, 44]. The significance of these lin-
guistic features is summarized in Table 7.

Target tag: position in a sentence-like unit

B1: 1st word I intermediate word if length of sentence-like
B2: 2nd word M: intermediate word if length of sentence-lik
B3: 3rd word
B4: 4th word,

E4: 4th last word
E3: 3rd last word
E2: 2nd last word
E1: 1st last word

S: single word

unit in word is odd and less than 9
e unit in word is equal or more than 9
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Table 7 Significance of the linguistic features
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Feature Definition Description

W, t-th lexical word The smallest meaningful linguistic unit

Se Part of speech (POS) of t-th lexical word Basic syntactic role of t-th lexical word; 47 categories [45]
L Length of t-th lexical word in syllable Longer words are more likely to be followed by PMs

The feature templates for the training of the
CRF-based MPM generator for PCs considered the con-
textual word, POSs, length of the word, and combina-
tions of these features. We designed four templates for
PC generation, as shown in Table 8. All the templates
consider the same POSs, lexical word POSs, and word
length contexts. The difference between templates 1 and
2 is that template 2 considers more varied word con-
texts. Templates 3 and 4 are similar to templates 1 and 2
but templates 3 and 4 add a combination of the previous
target Y;_; (ie., bigram templates) and the POS of the
current word S,. The reason for this combination is that
the type of current PM, Y;, depends on the joint factors of
the previous PM type, Y;_ 1, and the current POS, S,.

3.4 Experiment of PC generation
The CRF models were trained using the ASBC text cor-
pus [34] training dataset containing 6,625,277 words,
and the optimal feature templates were then tuned by
the results obtained using the training set with 2,817,785
words. The tool used for the training was CRF++, a CRF
toolkit [36]. Table 9 displays the precision and recall of
the predicted MPM insertions trained by setting the
prediction targets bPC, iPCst, and iPCef using templates
1-4. The optimal precision and recall are achieved using
template 4, followed by templates 3, 2, and 1. This
indicates that wider feature contexts and joint factors of
(Y;_1,S;) improve MPM prediction. The optimal preci-
sion and recall of MPM generations in the test set for
bPC, iPCst, and iPCef were 94.1% and 93.1%, 96.9% and
96.1%, and 95.7% and 95.5%, respectively. We selected
the results obtained using template 4 for the following
analysis and prosody generation experiments. The values
were reasonably high and thus suitable for modeling the
characteristics of MPM insertion and structures of
sentence-like units.

We then examined the interplay between the proposed
PC values—that is, ¢, ((X)—and the distributions of

prosodic—acoustic features in the training set of the
Treebank speech corpus, as displayed in Figs. 5, 6, and 7.
Figure 5 displays the average syllable log-FO corresponding
to the prediction targets for (a) bPC, (b) iPCst, and (c)
iPCef in different levels of PC values. Note that the PC
values are divided into 10 equal-width intervals from O to
1 for bPC in Fig. 5a. As can be seen from Fig. 5, the aver-
age syllable log-FO decreases as the bPC for MPM—that
is, ¢, x(X)—for the prediction target y; increases, whereas
the bPC for y, exhibits a contrary trend. This indicates
that a syllable had a lower log-FO value because the syl-
lable was more likely to be followed by an MPM. Figure 5b
displays the average syllable log-FO of the prediction tar-
gets in the three representative levels of iPCst values—the
high level: iPCst = 0.9-1.0; median level: iPCst = 0.5-0.6;
and low level: iPCst = 0.0-0.1. Note that the prediction
targets are listed in a forward position order in the
sentence-like unit on the x-axis; that is, “B1,” “B2,” “B3,”
“B4,” “I"/*M,” “E4,” “E3,” “E2,” and “E1.” A clear declining
trend of log-FO was found for the high-level iPCst. By con-
trast, the average syllable log-FO is flat for the low-level
iPCst. The average syllable log-FO for the median-level
iPCst displays a moderate log-FO declining trend.
Figure 5c displays the average syllable log-FO of the
prediction targets in the three representative levels of
iPCef values. The prediction targets in Fig. 5¢ are also
listed in a forward position order in a sentence-like
unit on the x-axis. The log-FO declination is also
clearly observed for the cases of the high and median
levels of iPCef values. These findings may indicate
that the proposed PCs provided informative cues for
modeling the decrease in log-FO during prosody gen-
eration. Furthermore, iPCst and iPCef (especially
iPCef) exhibited a higher and lower log-FO at the be-
ginning and end of a sentence-like unit, respectively,
indicating that the proposed iPCst and iPCef may
provide more useful cues for prosody generation than
those provided by bPC.

Table 8 Feature templates for PC. The notation represents a sequence: W, _, Wy _joq.. We . Wiy Wity

Template 1 Template 2

Template 3 Template 4

Lexical word context W,
POS context

Lexical word and POS context
Lexical word length

{Lr+r}rz —1~+1

Previous Target & POS context Yy Yy

t- t+1
{WHT}T: 71~+1'{Wrﬂ+r}r:o,1wt: W,
t+T t+T T+T 14T 4241
{Sr + T}T: —3~+3 {Stfl +r}r:0.] ’{St72+r }T:O~2'{St73+r}r:0~3’{5[73+r r:ONS’{Sl‘*?HrT =0,1

{(Wﬁ SI+ T)}T: —3~+ 3'{(WT7 StrlrJrT)}T:oj ' {(va Str;ﬂ)}r:owzl {(Wf7 St;rr)}r:owy {(Wh S;jgirr)}rzow3

{Wr+r}1: —1~+1r{WT+T

t+1
r—1+r}1:o,1 Wi

(Y1, 50 (Ye—1,5)
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Table 9 Precision and recall of the MPM generations, as obtained
using target-labeling methods for bPC, iPCst, and iPCef

bPC iPCst iPCef

Precision  Recall Precision Recall Precision Recall
Template 1 0.902 0867 0961 0949 0940 0.937
Template 2 0919 0890  0.962 0951 0942 0.938
Template 3 0.905 0869 0967 0959 0955 0.953
Template 4 0.941 0931 0.969 0961 0957 0.955

Figure 6 displays the average syllable duration corre-
sponding to the prediction targets for (a) bPC, (b) iPCst,
and (c) iPCef in different levels of PC values. Figure 6a
reveals that the average syllable duration was shorter for
the two extreme cases—bPC for y; <0.1 and bPC for
90>0.9. This indicated that bPC provides cues to
shorten (lengthen) syllable durations when it is very un-
likely (likely) that an MPM will be inserted after the tar-
get syllable. Figure 6b displays the average syllable
durations of the prediction targets in the high, median,
and low levels of iPCst. Note that the prediction targets
are also listed in a forward position order in a
sentence-like unit on the x-axis. Significantly long aver-
age syllable durations were found for the high and me-
dian iPCst levels at the prediction target of “E1,” which
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represents a syllable followed by an MPM. A slightly
longer average syllable duration was observed for the
target “M” because this target represents an intermediate
location in a long sentence-like unit and “M” is more
likely to be inserted with a prosodic break in a long
sentence-like unit. The average syllable durations for the
predictions of the low-level iPCst are almost in the same
level. These results indicate that the proposed iPCst
models the preboundary syllable duration lengthening
effect with various iPCst values. Moreover, for the pre-
diction target “S,” which represents a word enclosed by
preceding and following MPMs, the syllable is length-
ened because iPCst is high. The prediction targets “B1”
(the first syllable in a sentence-like unit) and “I” (the
intermediate syllable in a short sentence-like unit) have
shortened average syllable durations compared with
their nearby syllables in a sentence-like unit. These re-
sults are in agreement with the findings of a previous
study [46] concerning syllable durations in a PPh. In the
study [46], the first syllable in a PPh and the intermedi-
ate syllable in a short PPh were found to be shortened.
The shortened syllable duration for the target “E2” (the
second last syllable in a sentence-like unit) significantly
contradicted the following preboundary syllable duration
lengthening cue for the prediction target “E1.” Figure 6¢

Average syllable logFO
o (4] o
o I o w o '
N (&2} w o B o

o
o

o

00 01 02 03 04 05 06 07 08 09 1.0
bPC

(a)

Average syllable logFO

—o—iPCst=0.9~1.0
—=—iPCst = 0.5~0.6
—e—iPCst = 0.0~0.1

5151

Bl B2 B3 B4 | M E4 E3 E2 E1 S
Prediction Targets

(b)

Average sylable logFO

—&—iPCel=09-1.0
1PCel=05-06
—6—iPCet=00-0.1

B1 B2 B3 B4 | M E4 E3 E2 EY bl b2 b3 b4 |

Prediction Targets.

Fig. 5 Average syllable log-FO corresponding to the prediction targets for a bPC, b iPCst, and ¢ iPCef in different levels of PC values

m e4 63 62 e1 S s

(©)
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0.23

0.22r

021

0.2r

0.19r

Average syllable duration (sec)

7L . . . . . . . . . .
00 0.1 02 03 04 05 06 0.7 0.8 09 1.0
bPC

(a)

0.23

——iPCst=0.9~1.0
—<—iPCst=0.5~0.6
——iPCst = 0.0~0.1

0.22r

Average syllable duration (sec)

B1 B2 B3 B4 | M E4 E3 E2 E1 S
Prediction targets

(b)

—&—iPCef=09-1.0
1PCel=05-06
—©—PCef=00-01

B1 B2 B3 B4 | M E4 E3 E2 E1 bl b2 b3 b4 i
Prediction target

(c)

Fig. 6 Average syllable durations corresponding to the prediction targets for a bPC, b iPCst, and ¢ iPCef in different levels of PC values

m et o3 62 e1 S s

demonstrates that the trends in average syllable duration
for the prediction targets for the first sentence-like unit
and those for the second sentence-like unit are similar.
Slightly longer average syllable durations for the targets
“B4,” “M,” “b4,” and “m” were observed, which was rea-
sonable because these targets were distant from the be-
ginning and the end of sentence-like units, resulting in a
more probable prosodic break insertion. Note that the
CRF-based MPM generator for iPCef predicts an
enforced MPM for each sentence-like unit. Words of
each sentence-like unit are therefore labeled with the
prediction targets of {“B1,” “B2,”...“E2,” “E1,” “S,” “bl,”
“b2,”...“e2,” “el,” “s”} to represent the delimitation of
one sentence-like unit into two (the first and second
sentence-like units). The prediction target “E1” in this
case indicates that there exists an enforced inserted
MPM in a sentence-like unit. The similar trends in the
average syllable durations of the first and second
sentence-like units indicated that the proposed iPCef
could sophisticatedly model syllable duration patterns
for a long sentence-like unit that may be delimited into
two PPhs. As stated in Section 2.2, 40% of prosodic
phrase boundaries (B3s) occur from non-PM interword
junctures. Therefore, it was encouraging to observe
these syllable duration patterns caused by the enforced
insertion of MPMs through modeling of iPCef. The

superiority of the proposed iPCef over the proposed
iPCst and bPC for the prediction of syllable duration
was partially confirmed by the prosody generation ex-
periment presented in Section 5.3.

Figure 7 displays the pause duration corresponding to
the prediction targets for (a) bPC, (b) iPCst, and (c)
iPCef in different levels of PC values. Figure 7a illus-
trates that the average pause duration increases as bPC
for MPM—that is, ¢, ((X)—for the prediction target y;
increases, whereas bPC for y, exhibits a contrary trend.
Long pause durations were found for the prediction tar-
gets of “E1” and “S” for the high and median levels of
iPCst. We may conclude from these observations that
higher bPC or iPCst results in longer pause durations
for the predicted MPM locations. The pause duration
trend in Fig. 7c for the prediction targets of the second
sentence-like unit is similar to the trend of pause dura-
tions in Fig. 7b. The prediction target “E1” for the first
sentence-like unit only displays a slightly longer pause
duration compared with the nearby targets. The pause
durations for “E1” are at the same level as the pause du-
rations for the prediction targets that represent inter-
mediate locations in a long sentence-like unit, that is,
“B4,” “M,” and “m.” This result indicates that the iPCef
features cannot be used as salient cues for pause dur-
ation prediction, unlike the iPCst features. The objective
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Fig. 7 Average pause durations corresponding to the prediction targets for a bPC, b iPCst, and ¢ iPCef in different levels of PC values
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evaluations of the prosody generation experiment pre-
sented in Section 5.3 partially confirmed this indication.

4 QC

4.1 Design of prediction targets

The prediction of QPs was also conducted using the
CRF model, as described in Section 3. The target, yy, is
the k-th possible tag representing the word position in a
QP. The optimal QPs, Y7, ..., Y7, can be predicted using
Eq. (3), and the marginal probability of the k-th tag of
the t-th word, ¢, «(X), is known as the QC and is gener-
ated using Eq. (4). Two types of QCs were designed in
this study: basic QC (bQC) and sentence-like unit struc-
ture QC (sQC). The bQC is generated by predicting
structures of QPs, whereas sQC is generated by predict-
ing both structures of QPs and their position in a
sentence-like unit. As shown in Table 10, an eight-tag
set was designed for modeling bQC. An additional tag
“O” was used to represent non-QP words. Figure 8b dis-
plays a target-labeling example for the training of bQC,
and the original word or PM tokens of bQC are pre-
sented in Fig. 8a. Moreover, sQC can be regarded as an
improved version of bQC that uses additional tags to
represent the positions of non-QP words in
sentence-like unit. These additional tags have a

two-character format: xy. Herex € {B, M, F} represents a
word string before a QP (“B”), in-between two QPs
(“M”), or following a QP (“F”), and y € {b, m, e, s} repre-
sents the beginning (b), intermediate (m), last (e), or a
single word in a word string (s). Figure 8c displays a tag
example used in the sQC training. The complete set of
the prediction target for sQC is shown in Table 11.

4.2 Design of features and templates

As shown in Table 12, the features used for the prediction
of QPs are similar to those ones used for the prediction of
PC. The newly added PM features are used to indicate in-
formation concerning boundaries of sentence-like units.
Table 13 presents the five templates for the QP prediction
in this study. In template 1, we employed a three-POS
context, that is, from (¢ - 1)-th to (¢+ I)-th in the POS
field. The word-and-POS field contains the combined fea-
tures of a three-POS context and the current word (W,).
Templates 2 and 3 use a five-POS and seven-POS context,

Table 10 Tag format for the labeling of target QPs for bQC

Length in word Tag format Length in word Tag format

1 S 4 BB2ME

2 BE 5 BB2MME

3 BIE 6 BB2B3MME
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(a) £%  +8 2% ) ¥ % A

( #8 2 R ) %A

A fra

(b) £%/0 ¥ B/BE%/E ¥/0 &/0 #/0 #%&/B 2/I R/E 3#%~/0 £/0 f7/0

(c) £%/Ps + B /B 2 3R/E ¥ /Mb & /Mm % /Me 45 & /B 2 /I & /E 3% /Fb £ /Fm 47 [Fe

Fig. 8 a Original word or PM tokens, b example of tag labeling for the bQC training, and ¢ example for the sQC training

respectively, and the combination of this context and the
current word comprises the word-and-POS field.
Templates 4 and 5 are identical to templates 2 and 3,
respectively, in all feature fields except for the lexical word
context field. We use a five-lexical word context for
templates 4 and 5.

4.3 Experiment of QC generation

Only 0.69% of the ASBC text corpus contributes in-
stances of QPs, that is, it includes only 65,723 QP token
examples. To ensure that the CRF models for QC focus
on predicting QPs, we only selected the sentence-like
units with QPs for training and testing. The numbers of
QP tokens for training and testing were 57,824 and
8439, respectively. Table 14 displays the precision and
recall for bQC and sQC. Table 14 reveals that the five

Table 11 Tag format for labeling of target QPs for sQC

Target Description

Pb Presence the first word in a word string which is before
a quoted phrase

Pm Presence of the middle word in a word string which
is before a quoted phrase

Pe Presence of the end word in a word string which
is before a quoted phrase

Ps Presence of the single word in a word string which
is before a quoted phrase

Mb Presence of the first word in a word string which
is between two quoted phrases

Mm Presence of the middle word in a word string which
is between two quoted phrases

Me Presence of the end word in a word string which
is between two quoted phrases

Ms Presence of the single word in a word string which
is between two quoted phrases

Fb Presence of the first word in a word string which
is after a quoted phrase

Fm Presence of the middle word in a word string which
is after a quoted phrase

Fe Presence of the end word in a word in the word
string which is after a quoted phrase

Fs Presence of the single word in a word string which

is after a quoted phrase
B/B2/B3/I/M/E/S The same definitions as shown in Table 10

templates resulted in similar precision and recall. The
optimal results were achieved using template 5 for bPC
and template 4 for sQC. Therefore, we selected the opti-
mal models trained using templates 4 and 5 for the fol-
lowing analysis and prosody generation experiments.
The precision and recall for predicting bQC were ap-
proximately 60.7% and 39.0%, respectively, whereas the
precision and recall for sQC were approximately 55.6%
and 52.2%. These results demonstrate that modeling both
structures of QPs and their position in a sentence-like unit
improved the prediction of QPs. Although the precision
and recall for predicting QP were considerably lower than
those for predicting PC, QC enables more interesting ana-
lysis of the interplay between the prosodic—acoustic fea-
tures and QC values—that is, ¢, «(X).

Figure 9a displays the average syllable log-FO of the
prediction targets in the three representative levels of
bQC values—the high level: bQC = 0.9-1.0; median
level: bQC = 0.4-0.5; and low level: bQC = 0.0-0.1. Note
that the prediction targets are positioned in a forward
order in a quoted phrase on the x-axis—“B,” “B2,” “B3,”
“I”“M,” and “E.” We can observe a clear log-FO declin-
ing trend for the high and median bQC levels within a
QP. The average log-FO for the single-word QPs and
non-QPs are at around the medium levels. By contrast,
the average syllable log-FO is flat for the low-level iPCst.
Thus, we conclude that a string of words may have
log-FO reset at the beginning of the string and then de-
cline gradually as the string is more likely to be labeled
as a QP. The log-FO declination within a QP can also be
observed in Fig. 9b for the median and high levels of
sQC values. Note that some values of the average log-FO
of the prediction targets for the high-level sQC—that is,
“Mb,” “Mm,” “Me,” “B3,” and “Ms”—are missing because
high sQC values were not generated by the CRF-based
quotation generator for these prediction targets. Add-
itionally, log-FO declination can also be observed for the
word string preceding (“Pb,” “Pm,” and “Pe”) and follow-
ing (“Fb,” “Fm,” and “Fe”) a QP. Therefore, we expect
that the sQC features provide more informative cues for
log-FO generation than the cues provided by the bQC
features. The objective evaluations of the log-FO gener-
ation experiment presented in Section 5.3 partially meet
this expectation.
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Table 12 Significance of the linguistic features

Feature Definition Description

W, t-th lexical word The smallest meaningful linguistic unit

Se Part of speech of t-th lexical word Basic syntactic role of t-th lexical word; 47 categories [45]

P; Major PM following t-th lexical word Major PM as boundary of sentence-like units

L Length of t-th lexical word in syllable The structure of a QP is related to word length combinations

Figure 10 displays the average syllable duration of the
prediction targets in the three representative levels of
bQC values. The prediction targets are also positioned
in a forward order in a quoted phrase on the x-axis. The
pre- or postboundary duration lengthening effect may be
modeled by the trend in the QCs that is shown in Fig. 10
a and b because the average syllable duration for predict-
ing targets “B,” “B2,” and “E” increased as QCs increased.
Moreover, the syllable duration for the target “S,” which
represents a single-word QP, became longer as the corre-
sponding QC increased. Note that some of the average syl-
lable durations of the prediction targets for the high- and
median-level QCs are missing because we did not have syl-
lable duration samples corresponding to those cases. For
the non-QP cases, significant syllable shortening and
lengthening are observed for the first (“Fb”) and last words
(“Fe”) in a word string that is followed by a QP, respect-
ively. The objective evaluations of the syllable duration
generation experiment presented in Section 5.3 indicate
that these QC features can cause the RMSE of the synthe-
sized prosody to be lower than the RMSE when the con-
ventional linguistic features are used, thus confirming that
the QC features are useful in prosody generation.

Figure 11a and b show that a word that is more likely
to be at the end of QPs—that is, with the tags “E” and
“S”—was more likely to be followed by a long pause.

Table 13 Feature templates for bQC and sQC

However, the other tags, except for the tag “Fe,” exhib-
ited a contrary trend. Because the sQC features provide
more sophisticated structures of QPs and their contexts,
we inferred that the sQC features generate pause dura-
tions with lower RMSEs than the durations generated by
the bQC features.

5 Prosody generation experiments

Figure 12 displays the flowchart of the prosody gener-
ation experiments. First, the texts were fed into the text
analysis modules to generate the linguistic feature sets
for the following prosody generation and speech synthe-
sis. Here, the text analysis modules included the conven-
tional linguistic processors commonly used in an MTTS
and the proposed advanced PC and QC generators.
Next, the four independent MLPs were trained using the
conventional linguistic feature sets and the proposed PC
and QC features for predicting the syllable log-FO
contour (If0), syllable duration (Dur), syllable energy
level (Eng), and intersyllable pause duration (Pau).
Subsequently, we conducted an objective test to cal-
culate the RMSEs between the predicted and true
prosodic—acoustic features. Here, the predicted pros-
odic—acoustic features were generated using the given dif-
ferent settings of linguistic features to prove the usefulness
of the proposed PC and QC features. Finally, we utilized an

Template 1 Template 2 Template 3 Template 4 Template 5
Lexical word context Werde= 1o AWET g WEH Wesdrz om o IWE Yo WS o
POS context Staodie —1ear, Siidie —omin Siidre —3-43 The same as template 2 The same as template 3
{Stf“}r:ow {1 et emo {S vt im0
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(S o {55 }rmons
st {55 s
{554 o
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Table 14 QC model prediction results

bQC sQC

Precision Recall Precision Recall
Template 1 0603 0369 0.557 0.520
Template 2 0.603 0.380 0.552 0.520
Template 3 0.597 0389 0.548 0518
Template 4 0.606 0.384 0.556 0.522
Template 5 0.607 0.390 0.551 0518

HMM-based speech synthesizer and the predicted pros-
odic—acoustic features to generate synthesized speeches.
These synthesized speeches were used to conduct subject-
ive tests and demonstrate that the proposed PC and QC
features improved the naturalness of the synthesized
speeches.

5.1 Text analysis and linguistic feature sets

Figure 12 also displays the linguistic processors used and
the associated linguistic features generated in this study.
To perform experiments with various settings, the pro-
cessors were categorized into two classes: the baseline
processor and proposed advanced processor. The base-
line processor performed the functions of word segmen-
tation, POS tagging, and G2P conversion. The features
generated by the baseline processor were linguistic infor-
mation of phonetics, lexical words, and POSs. Because
the features extracted by the baseline processor are
prevalent in most MTTSs [4, 12-14, 17, 22, 24-27], we
regarded them as the base linguistic features for prosody
generation. In this study, we adopted the NCTU Speech
Lab Traditional Chinese Parser [43, 44] as the baseline
processor. The parser is an online CRF-based word tag-
ger and generates information concerning word bound-
aries and the associated categories of POSs. An
F-measure of 96.72% for the word segmentation and an
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accuracy of 94.16% for the POS tagging were reported
[44]. This study employed two advanced processors—the
CRF-based MPM generator and CRF-based quotation
generator, described in Sections 3 and 4, respectively.
These two advanced processors were cascaded after the
baseline processor. The features used in the prosody
generation experiments were organized into several sets
according to the corresponding linguistic processors.
They are summarized as follows.

5.1.1 Raw

The features in subset Raw can be simply extracted from
raw texts. The most obvious feature in a raw text is the
type of PM. PMs are the most salient feature for predict-
ing pause break because PMs serve as delimiters for
both syntax and intonation in Mandarin Chinese. Be-
cause boundaries of sentence-like units of Chinese can
be identified by the type of PM, a contextual feature of
syllable position in a sentence-like unit can also be ex-
tracted from the raw text. The positional features are
highly related to rhythmic patterns of the syllable dur-
ation and syllable FO contour; for example, syllables at
the end of a sentence-like unit usually exhibit both syl-
lable duration lengthening and FO declination. Therefore,
the features in the subset Raw include the types of PMs
and syllable position in a sentence-like unit.

5.1.2 WordSeg

The features in the subset WordSeg are extracted after
the word segmentation and include word length, syl-
lable position in a word, and word position in a
sentence-like unit. Regarding word length, the lengths
of neighboring words are conventionally included be-
cause PWs are usually composed of several words
with some length constraints. Most studies consider a
window of five words [16, 25]; thus, the current word,
two words to the left, and two words to the right, are
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included. In this study, we extended the window to
seven words; thus, the current word, three words to
the left, and three words to the right were included.
The positional features in this subset are also essen-
tial to syllable duration patterns. The most significant
evidence for this is that syllable position in a word af-
fects the degree of syllable duration lengthening [4].

5.1.3 WordPos

The features in the subset WordPos are POS tags for
the associated words and are obtained after the
POS-tagging process. PWs are generally composed of
one to three words with some POS combinations [12,
13, 38] based on the word length constraints. More-
over, prosodic breaks and pause insertions are gener-
ally agreed to be related to some POS pairs at word
junctures [12, 13, 38]. Therefore, POS and word
length are the most frequently used and crucial fea-
tures for predicting prosody structures from texts. In
this study, we adopted a 47-POS tag set [45] that is
used by the NCTU Speech Lab Traditional Chinese

Parser. Similar to the usage of word length, the ana-
lysis window for POSs is set to seven words or fewer;
this involves the current word, three words to the
left, and three words to the right.

5.1.4 G2p

The G2P set comprises important features characterizing
properties of Mandarin prosody: tone, base-syllable type,
and initial-final type. There are five tones in Mandarin
Chinese. To account for a high amount of prosodic vari-
ation resulting from contextual tones, the tones of the
current, following, and previous syllables are considered
for prosody generation. There are approximately 411
base-syllable types in Mandarin Chinese, and a base syl-
lable can be further decomposed into two parts—an ini-
tial and a final. To reduce the number of features, we
consider initial and final types as features to account for
the information of the base-syllable type. In this study,
we define 23 initial types and 40 final types. The initial
and final types of the current syllable, initial type of the
following syllable, and final type of the previous syllable
are also considered for prosody generation.
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5.1.5 Advanced feature set—PCs and QCs

The set comprises PCs and QCs generated using the
proposed CRF-based MPM generator and the proposed
CRF-based quotation generator, respectively. The subset
PC consists of the predicted punctuation sequence given
in Eq. (3)— Y7,Y;,--, Y —and the PC given in
Eq. (4)—that is, ¢, (X)—with target settings of bPC,
iPCst, and iPCef. The subset QC consists of the predicted
quotation label sequence, Y7,Y3, Y}, and the QC—
that is,¢;, ((X)—with target settings of bQC and sQC.

5.2 MLP-based prosody generation

The prosody generation experiments were conducted
using four independent MLPs to train prediction models
for syllable log-FO contours (If0) represented by
four-dimensional discrete orthogonal expansion coeffi-
cients [47], the syllable duration (Dur) in seconds, the syl-
lable energy level (Eng) in dB, and the intersyllable pause
duration (Pau) in seconds. The feature vectors for the in-
put layer of the MLPs were categorized as follows for
comparison: (1) baseline (BSL); (2) the proposed bPC,
iPCst, and iPCef (PCset); and (3) the proposed bQC and
sQC (QCset). BSL contained the most basic linguistic fea-
ture sets: Raw, G2P, WordSeg, and WordPos. It is noted
that the features for predicting PC and QC include the
POS (the subset of WordPos), word length (the subset of
WordSeg), major PM features (the subset of Raw), and lex-
ical word features. The lexical word features are not used
in BSL because it is very hard for an MLP to capture the
input information formed by high-dimensional categorical
features of lexical words with limited input—output pairs
(linguistic feature-prosodic feature pairs). The CRF-based
MPM generator and the CRF-based quotation generator,
however, potentially can be robustly trained by using a
large text corpus to provide useful prosodic information

that is highly correlated with major punctuations and
quoted phrases. The G2P features and the syllable position
in a word features in WordSeg are not included in the fea-
tures for predicting PC/QC because these features are not
related to the occurrence of punctuation marks. The word
position in a sentence-like unit features in WordSeg are
not included in the features for predicting PC because the
word position in a sentence-like unit features themselves
are the prediction targets in the PC prediction task. For
the prediction of QC, the word position in a sentence-like
unit features are implicitly represented by the features of
major PMs following lexical words. Therefore, the results
of prosody generation experiments using the feature vec-
tors formed by PCset and QCset may show the effect of
using predicted PC and QC for prosody generation.

There were 28 and 67 features in the set Raw and
G2P, respectively. The feature sets bPC, iPCst, iPCef,
bQC, and sQC were respectively composed of 4, 22, 44,
16, and 38 numerical features representing the marginal
probabilities ¢, ((X) and the predicted MPMs/quota-
tions for some k-th target tags of PC or QC at the ¢-th
word. The optimal numbers of nodes in the hidden layer
of the MLPs and contextual analysis windows for the
features of WordSeg or WordPos were tuned using the
development set.

5.3 Objective tests

Table 15 displays the calculated RMSEs for the pros-
odic—acoustic features obtained using various linguistic
feature sets. In general, the proposed PCSet and QCset
improved the RMSEs with respect to BSL. For the 1f0
prediction, the feature sets with the proposed PCs or
QCs generally performed better than those without the
PCs or QCs. The optimal RMSE for 1f0 was achieved by
using the set QC2=BSL3 +sQC. This may have been
due to sQC modeling the syntactic structures of base
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Table 15 RMSEs for the four prosodic—acoustic features
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Feature set combinations If0 (logHz) Dur (ms) Eng (dB) Pau (ms)
BSL BSLT =Raw + G2P 191 43.77 3.72 71.73
BSL2 = BSL1 + WordSeg 182 39.93 3.53 64.62
BSL3 =BSL2 + WordPos 186 39.23 350 59.56
PCset PC1 =BSL3+ bPC 185 38.33 348 5829
PC2 = BSL3 + iPCst 175 37.82 343 57.29
PC3 = BSL3 + iPCef 174 3734 347 58.72
PC4 = BSL2 + iPCst 173 38.39 346 63.93
PC5 =BSL2 + iPCef 174 38.05 348 62.56
QCset QCT =BSL3+bQC 170 37.70 352 5866
QC2 =BSL3 +sQC 169 37.83 3.52 57.95
QC3 =BSL2+bQC 176 39.83 344 64.50
QC4 =BSL2 +sQC 172 39.30 354 63.33

phrases or word chunks that are highly correlated with
the structures of PWs. The feature sets with sQC re-
sulted in a larger RMSE improvement than for the fea-
ture sets with bQC because sQC describes not only the
structures of QPs but also the structures of their con-
texts. The proposed iPCst and iPCef generally outper-
formed the proposed bPC because they could model the
structures of sentences that are highly correlated with
the structures of PPhs or IPs.

For the predictions of Dur and Pau, the feature sets
containing WordPos generally outperformed those not
containing WordPos. This partially confirms that the
POS combination features are essential for prediction of
the structures of PWs, PPh, and IPs. When the proposed
QCs and PCs were added, further improvements were
achieved because the QCs and PCs provided information
that may have correlated with the structures of PWs,
PPh, and IPs. The iPCef performed slightly better than
the iPCst, bQC, and sQC in the prediction of Dur. This
was perhaps because the iPCef models the forced inser-
tion of an MPM in a sentence-like unit to provide more
information for preboundary syllable duration lengthen-
ing. That iPCst resulted in the optimal performance in
the prediction of Pau is reasonable because iPCst models
the structures of sentence-like units that highly correlate
with PPhs or IPs.

5.4 Subjective tests

The mean opinion score (MOS) test and preference test
were performed simultaneously by 15 participants by
using 15 synthesized long utterances with lengths in the
range of 64 to 125 syllables (99 on average) for each
prosody generation method. The feature combinations
resulting in the smallest RMSEs for BSL, QCset, or
PCset, as shown in Table 15, were selected to generate
prosodic—acoustic features for speech synthesis by an

HMM-based synthesizer [7-10]. Three types of pro-
posed feature sets were compared with BSL: QCset,
PCset, and QCset + PCset. As shown in Table 15, the op-
timal feature combination for BSL was the combination
of BSL2 for 1f0 and BSL3 for Dur, Eng, and Pau. The op-
timal combination for QCset was the combination of
QC2 for If0 and Pau, QCI for Dur, and QC3 for Eng.
Moreover, the optimal combination for PCset was the
combination of PC4 for 1f0, PC3 for Dur, and PC2 for
Eng and Pau. The feature sets for QCset + PCset were
QC2 for 1f0, PC3 for Dur, and PC2 for Eng and Pau. Be-
fore listening to the utterances synthesized using BSL
and those using the proposed method, the participants
were asked to listen to the true utterances in the test
speech corpus corresponding to the synthesized
speeches for reference. The order of the synthesized ut-
terances in the preference test was randomly set.
Table 16 reveals that the proposed QCset, PCset, and
QCset + PCset generally yielded slightly more natural
speech than that yielded by BSL. The synthesized utter-
ances with prosody generated using QCset + PCset
achieved the most significant difference in MOS from
BSL. These results again confirm the usefulness of the
proposed PC and QC features.

6 Conclusions and future work
This paper proposed two fully automatic machine-ex-
tracted linguistic features from an unlimited-text input

Table 16 Preferences (%) and MOSs (numbers in brackets +
standard deviation) for the two subjective tests

Pairs The proposed BSL No prefer.
QCset vs. BSL 34% (345+042) 25% (340+045) 41%
PCset vs. BSL 37% (355+041) 21% (3.34+£048) 42%
QCset + PCset vs. BSL ~ 38% (3.57 £041)  22% (329+048) 40%
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for Mandarin prosody generation. The first feature is
PC, which measures the likelihood that an MPM can be
inserted at a word boundary. The second feature is QC,
which measures the likelihood that a word string is quoted
as a meaningful or emphasized unit in text. The rationale
of these proposed punctuation-generation-inspired lin-
guistic features was illustrated by analyses of the relation-
ship of the prosodic structures and PM types with the
structures of QPs. The usefulness of the proposed PC and
QC features in Mandarin prosody generation was proved
by both objective and subjective tests. The proposed fea-
tures improved the performance of Mandarin prosody
generation. The PC and QC features have the following
advantages over the conventional linguistic features:

1. The features for predicting the PC include the POS
(the subset of WordPos), word length (the subset of
WordSeg), and lexical word features while the
features for predicting the QC include the POS, word
length, MPM (the subset of Raw), and lexical word
features. The lexical word features, which inherently
provide much richer linguistic information than
word length and POS, however, are not used in the
baseline prosody generation system because it is hard
for an MLP to capture the input information formed
by high-dimensional categorical features of lexical
words with limited input-output pairs (linguistic
feature-prosodic feature pairs). The CRF-based MPM
generator and the CRF-based quotation generator,
however, potentially can be robustly trained by using
a large text corpus to provide useful prosodic infor-
mation that is highly correlated with major punctua-
tions and quoted phrases.

2. The PC and QC features are numerical features in a
range of [0 1] while most of the conventional
linguistic features are categorical and represented by
the values of 0 or 1 in high-dimensional vectors. The
numerical features inherently are more suitable than
the categorical features in regression tasks. The rela-
tionship between the numerical prosodic features and
the values of the PC and QC are easy to be analyzed
as shown in Section 3.3 (Experiment of PC gener-
ation) and Section 4.3 (Experiment of QC generation).
These analyses showed that the proposed PC and QC
values are correlated with the prosodic features.

3. Most of the QPs were found to be single- to four-
word QPs. Single-word QPs are usually emphasized
nouns or verbs. Two- to four-word QPs are mostly
base phrases such as word strings (or word chunks).
The QPs longer than four words are mostly
sentence-like units. Since the QC is a measure to
show how likely a word string to be quoted as a
word chunk or a base phrase and word chunks and
base phases are larger and more meaningful
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linguistic units than words are, prosody generation
with the QC is inherently advantageous over pros-
ody generation with the baseline features, i.e., word
lengths and POSs.

4. In this study, the PC not only models the
likelihoods of word boundaries to be inserted with
major punctuation marks but also models
structures of sentence-like units. These sentence-
like units can be sentences, phrases, or clauses, and
they are larger linguistic units than words are.
These properties infer that the PC features are in-
herently more powerful than the conventional word
length and POS features in prosody generation.

In summary, the PC and QC features provide richer
syntactic and partially semantic information than the
conventional baseline linguistic features to prosody
generation.

It is known that prosody is affected by linguistic,
para-linguistic, and non-linguistic features [48]. Linguistic
features include lexical, syntactic, semantic, and pragmatic
features. Para-linguistic features include intentional, attitu-
dinal, and stylistic features. Non-linguistic features include
physical and emotional features. It is generally agreed that
speaker styles are associated with para-linguistic (stylistic)
and non-linguistic (physical) features while utterance
styles (spoken words) are not only affected by para-lin-
guistic and non-linguistic features but also biased by text
content (represented by linguistic features). The proposed
PC and QC features can provide syntactic and partially se-
mantic information, i.e., linguistic features, to prosody. In
this study, we utilize the conventional linguistic features
(baseline features) and the proposed PC and QC to pre-
dict prosody of read speech style. To predict prosody of
other speaker or utterance styles, recording speech utter-
ances of various speakers and utterance styles are neces-
sary while retraining of new text may be unnecessary
because PC and QC features are trained by large text cor-
pus with various text styles. Investigating the use of PC
and QC for prosody generation of various speaker and ut-
terance styles is beyond the scope of this study, but is
worth doing in the future.

With the fast growth of deep learning technologies, it
will be worthwhile to incorporate CRF-based punctuation
generation models into neural network models; for
example, the long short-term memory recurrent
neural network [49]. Neural-network-based punctu-
ation models can be easily integrated with the related
neural-network-based prosody generator or speech
synthesizer in the training phase. Under this integrated
framework, the transfer learning technique can also be
applied [50] to enable a neural network to learn prosody
generation based on a different neural network that gener-
ates punctuations.
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Abbreviations

ASBC: Academia Sinica Balanced Corpus of Modern Chinese; BG/PG: Breathe
group or prosodic phrase group; bPC: Basic punctuation confidence;

bQC: Basic quotation confidence; BSL: Baseline linguistic features;

CART: Classification and regression tree; CKIP: Chinese knowledge and
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