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Abstract

In response to renewed interest in virtual and augmented reality, the need for high-quality spatial audio systems has
emerged. The reproduction of immersive and realistic virtual sound requires high resolution individualized
head-related transfer function (HRTF) sets. In order to acquire an individualized HRTF, a large number of spatial
measurements are needed. However, such a measurement process requires expensive and specialized equipment,
which motivates the use of sparsely measured HRTFs. Previous studies have demonstrated that spherical harmonics
(SH) can be used to reconstruct the HRTFs from a relatively small number of spatial samples, but reducing the number
of samples may produce spatial aliasing error. Furthermore, by measuring the HRTF on a sparse grid the SH
representation will be order-limited, leading to constrained spatial resolution. In this paper, the effect of sparse
measurement grids on the reproduced binaural signal is studied by analyzing both aliasing and truncation errors. The
expected effect of these errors on the perceived loudness stability of the virtual sound source is studied theoretically,
as well as perceptually by an experimental investigation. Results indicate a substantial effect of truncation error on the
loudness stability, while the added aliasing seems to significantly reduce this effect.
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1 Introduction
Binaural technology aims to reproduce 3D auditory scenes
with a high level of realism by endowing the auditory
display with spatial hearing information [1, 2]. With the
increased popularity of virtual reality and the advent of
head-mounted displays with low-latency head tracking
[3], the need has emerged for methods of audio recording,
processing, and reproduction, that support high-quality
spatial audio. Spatial audio gives the listener the sensa-
tion that sound is reproduced in 3D space, leading to
immersive virtual soundscapes.
A key component of spatial audio is the head-related

transfer function (HRTF) [4]. An HRTF is a filter that
describes how listener’s head, ears, and torso affect the
acoustic path from sound sources arriving from all direc-
tions into the ear canal [5]. AnHRTF is typically measured
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for an individual in an anechoic chamber using an HRTF
measurement system [6–8]. Alternatively, a generic HRTF
is measured using a manikin. Prior studies have shown
that personalized HRTF sets yield substantially better per-
formance in both localization and externalization of a
sound source, compared to a generic HRTF [9, 10].
A typical HRTF is composed from signals from sev-

eral hundreds to thousands of directions measured on a
sphere around a listener, using a procedure which requires
expensive and specialized equipment and can take a
long time to complete. This motivates the development
of methods that require fewer spatial samples, but still
enable the estimation of HRTF sets at high spatial reso-
lution. Although advanced signal processing techniques
can reduce the measurement time [11], specialized equip-
ment is still needed. Together with reducing the measure-
ment time, methods with fewer samples may be devised
with relatively simple measurement systems. For exam-
ple, while a system for measuring an HRTF with hundreds
of measurement points may require a loudspeaker system
with expensive mechanical scanning [12], and when many
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fewer samples are required, the scanning system could be
abandoned, and one loudspeaker could be placed at each
desired direction, leading to a simpler and more afford-
able system. In addition, a small number of spatial samples
may be efficacious in real-time applications, which require
computational efficiency for real-time implementation
[13, 14]. Notwithstanding, reproduction of high-quality
spatial audio requires an HRTF with high resolution.
Given only sparse measurements, it will be necessary to
spatially interpolate the HRTF, which introduces errors
that may lead to poor quality reproduction [15, 16]. It is
therefore important to better understand this interpola-
tion error and its effect on spatial perception. If the error is
too high, then a generic HRTF may even be the preferred
option over a sparse, individual HRTF. Prior studies sug-
gested the use of spherical harmonic (SH) decomposition
to spatially interpolate the HRTF from its samples [17, 18].
The error in this type of interpolation can be the result of
spatial aliasing and/or of SH series truncation [18–20].
The spatial aliasing error of a function sampled over a

sphere was previously investigated in the context of spher-
ical microphone arrays [19]; there, it was shown that the
aliasing error, which depends on the SH order of the func-
tion and on the spatial sampling scheme being used, may
lead to spatial distortions in the reconstructed function.
Avni et al. [20] demonstrated that perceptual artifacts
result from spatial aliasing caused by recording a sound
field using a spherical microphone array with a finite num-
ber of sensors. These spatial distortions and artifacts may
lead to a corruption of the binaural and monaural cues,
which are important for the spatialization of a virtual
sound source [5].
A further issue to address when using SH decomposi-

tion and interpolation is series truncation. By measuring
the HRTF over a finite number of directions, the compu-
tation of the spherical Fourier transform (SFT) will only
be possible for a finite number of coefficients [21]. This
will lead to a limited SH order representation of the HRTF.
On the one hand, using a truncated version of a high reso-
lution, HRTF may be beneficial, for example, for reducing
memory usage and computational complexity, especially
for real-time binaural reproduction systems [14]. On the
other hand, a limited SH order will result in a constrained
spatial resolution [22] that directly affects the perception
of sound localization, externalization, source width, and
timbre [18, 20, 23, 24].
Although aliasing and truncation errors have been

widely studied, their effect on the specific attribute of
perceived acoustic scene stability have not been studied
in a comprehensive manner. Acoustic scene stability is
very important for high fidelity spatial audio reproduc-
tion [25, 26], i.e., for creating a realistic virtual scene in
dynamic binaural reproduction. It was defined by Rum-
sey [25] as the degree to which the entire scene remains

stable in space over time. More specifically, for headphone
reproduction, an acoustic scene may be defined as unsta-
ble if it appears to unnaturally change location, loudness,
or timbre while rotating the head. A similar definition
was used by Guastavino and Katz [26] to evaluate the
quality of spatial audio reproduction. This paper focuses
on the loudness stability of the virtual scene, which can
be defined as how stable the loudness of the scene is
perceived over different head orientations [25].
In this paper, the effect of spatial aliasing and SH order

on HRTF representation is investigated in the context
of perceived spatial loudness stability. The paper extends
previous studies presented by the authors at conferences
[27, 28]. These studies examined the aliasing and trun-
cation errors, leading to a formulation for the sparsity
error, followed by preliminary numerical analysis. The
current study extends themathematical formulation of the
sparsity error, by showing analytically the separate con-
tribution of each error, and presents a detailed numerical
analysis of the effects of this error on the reproduced
binaural signal. Furthermore, to evaluate the effects of
these errors on the perception of the reproduced signals,
a listening experiment was performed. The aim of the
experiment was to study the effect of a sparsely measured
HRTF on spatial perception, focusing on the attribute of
loudness stability. The results of the listening experiment
indicate a substantial effect of truncation errors on per-
ceived loudness stability, while the added aliasing seems to
significantly reduce this effect. Note that although some
pre- or post-processing methods, such as aliasing can-
celation [28], high-frequency equalization [24], or time-
alignment [29], may affect the results presented in this
study, here, unprocessed signals have been investigated
with the aims of better understanding the fundamental
effects of the different errors and gaining insight into the
possible effects of sparse HRTF measurements.

2 Background
This section presents the HRTF representation in the SH
domain. Subsequently, HRTF interpolation in the spatial
domain is formally described, and, finally, spatial aliasing
error is quantified in the SH domain.

2.1 HRTF representation in SH
The SH representation of the HRTF has been used in sev-
eral recent studies [17, 18, 30–32], taking advantage of the
spatial continuity and orthonormality properties of the SH
basis functions. This representation is beneficial in terms
of several aspects related to binaural reproduction, such as
efficient measurements [33], interpolation [34], rendering
[22, 35], and spatial coding [17].
The SH decomposition, also referred to as the inverse

spherical Fourier transform (ISFT), of the HRTF is
given by:
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hl,r(k,�) =
∞∑

n=0

n∑

m=−n
hl,rnm(k)Ym

n (�), (1)

where hl,r(k,�) is the HRTF for the left, l, and right, r,
listener’s ear; k = 2π f /c is the wave number, f is the fre-
quency; c is the speed of sound; and � ≡ (θ ,φ) ∈ S

2 is
the spherical angle, represented by the elevation angle θ ,
which is measured downward from the Cartesian z-axis,
and the azimuth angle φ, which is measured counterclock-
wise from the Cartesian x-axis. Ym

n (�) is the complex
SH basis function of order n and degree m [36], and
hl,rnm(k) are the SH coefficients, which can be derived from
hl,r(k,�) by the spherical Fourier transform (SFT):

hl,rnm(k) =
∫

�∈S2
hl,r(k,�)[Ym

n (�)]∗ d�, (2)

where
∫
�∈S2(·)d� ≡ ∫ 2π

0
∫ π

0 (·) sin(θ)dθdφ.
Now, let us assume that the HRTF is order-limited to

order N and that it is sampled at Q directions. The infi-
nite summation in Eq. (1) can then be truncated and
reformulated in matrix form as:

h = Yhnm, (3)

where the Q × 1 vector h =[ h(k,�1), . . . , h(k,�Q)]T
holds the HRTF measurements over Q directions (i.e., in
the space domain). The superscript (l, r) was omitted for
simplicity. TheQ× (N +1)2 SH transformation matrix, Y,
is given by:

Y =

⎡

⎢⎢⎢⎣

Y 0
0 (�1) Y−1

1 (�1) · · · YN
N (�1)

Y 0
0 (�2) Y−1

1 (�2) · · · YN
N (�2)

...
...

. . .
...

Y 0
0 (�Q) Y−1

1 (�Q) · · · YN
N (�Q)

⎤

⎥⎥⎥⎦ , (4)

and hnm =[ h00(k), h0(−1)(k), . . . , hNN (k)]T is an
(N + 1)2 × 1 vector of the HRTF SH coefficients.
Given a set of HRTF measurements over a sufficient

number of directions, Q ≥ (N + 1)2, the HRTF coeffi-
cients in the SH domain can be calculated from the HRTF
measurements, by using the discrete representation of the
SFT [21]:

hnm = Y†h, (5)

where Y† = (YHY)−1YH is the pseudo inverse of the
SH transformation matrix. Such representation in the SH
domain allows for interpolation, i.e., for the calculation
of the HRTF at any of the L desired directions using the
discrete ISFT:

hL = YLhnm, (6)

where YL is the SH transformation matrix, as in
Eq. (4), calculated at the L desired directions, and

hL =[ h(k,�1), . . . , h(k,�L)]T is the HRTF at the L
desired directions.

2.2 Spatial aliasing in HRTFmeasurement
The number of HRTF coefficients that can be estimated
using the SFT in Eq. (5) is limited and determined by
the spatial sampling scheme of the HRTF measurements.
Given the sampling scheme, the number of HRTF coeffi-
cients that can be estimated is limited by the number of
measurement points, following Q ≥ λ(Ñ + 1)2, where
Ñ represents the measurement scheme order, and λ ≥ 1
is a scheme-dependent coefficient representing the over-
sampling factor, which can be derived from the selected
sampling scheme [37]. As long as theHRTF order,N, is not
larger than the measurement scheme order Ñ , i.e., Ñ ≥ N
is satisfied, the HRTF coefficients can be accurately calcu-
lated from the Q measurements using Eq. (5). HRTFs can
be considered order-limited in practice at low frequen-
cies [31]. However, as the frequency increases, the HRTF
order, N, increases as well, roughly following the relation
kr ∼ N [35], where r is the radius of the smallest sphere
surrounding an average head. A commonly used average
radius is r = 8.75 cm [38, 39]. For this radius, the SH order
required theoretically for a correct HRTF up to 16 kHz
is N = 26. However, at high frequencies, the number of
measurements may be insufficient, i.e., Q < (N + 1)2, and
Eq. (5) can no longer be used as a solution to Eq. (3). In
this case, the SFT is reformulated to estimate only the first
(Ñ + 1)2 coefficients according to the sampling scheme
order:

ĥnm = Ỹ†h = (ỸH Ỹ)−1ỸHh, (7)

whereQ× (Ñ + 1)2 matrix Ỹ is defined as the first (Ñ +
1)2 columns of matrix Y in Eq. (4).
The attempt to compute the HRTF coefficients up to

order Ñ with an insufficient number of measurements
(Q < (N + 1)2) leads to the spatial aliasing error. The lat-
ter can be explicitly expressed by splitting matrix Y and
the HRTF coefficients vector into two parts, Y = [

Ỹ,Y�

]

and hnm =
[
h̃Tnm,hTnm�

]T
, where Y� and hnm� represent

the elements of order higher than Ñ . Substituting these
expressions into Eq. (3) and then into Eq. (7) leads to

ĥnm = Ỹ†h = Ỹ†[ Ỹ,Y�]
[

h̃nm
hnm�

]
(8)

= h̃nm︸︷︷︸
desired

+ �εhnm�︸ ︷︷ ︸
aliasing

,

where �ε = Ỹ†Y� is the aliasing error matrix [21].
Eq. (8) shows the behavior of the aliasing error, where
high-order coefficients in the vector hnm� are aliased and
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added to the desired low-order coefficients h̃nm. The pat-
tern of this error is defined by the aliasing error matrix.
Using these distorted coefficients to calculate the HRTF at
some L desired directions using the ISFT leads to an error
in the space domain:

ĥL = ỸLĥnm = ỸLh̃nm︸ ︷︷ ︸
desired

+ ỸL�εhnm�︸ ︷︷ ︸
aliasing

, (9)

where ỸL is defined as the first (Ñ+1)2 columns of matrix
YL.
Note that the aliasing error matrix, �ε , is dependent

only on the measurement scheme. Generally, for com-
monly used sampling configurations [21], the aliasing
matrix has a clearly structured pattern, where the error
increases asN increases and Ñ decreases, withmore high-
order coefficients being aliased to low-order ones. Exam-
ples of aliasing patterns for different sampling schemes
and detailed discussion about the aliasing matrix can
be found in Refs. [19, 21, 40]. Note, further, that �ε is
frequency independent; therefore, the aliasing error is
expected to increase when the magnitude of high-order
coefficients of the HRTF increases, which happens at high
frequencies.

3 Sparsity, aliasing, and truncation errors
The estimated SH coefficients, as found in Eq. (8), were
calculated up to order Ñ , while the true HRTF is of order
N. By calculating the total mean square error between the
low-order estimation of the HRTF and the true high-order
HRTF, it can be shown that the total reconstruction error,
which can be defined as the sparsity error, is comprised
of two types of error, namely aliasing and truncation.
This section presents a mathematical formulation for the
sparsity error.
The total error, defined as the sparsity error, which is

normalized by the norm of the true HRTF coefficients,
h̃nm, can be defined as:

ε̃ =

∥∥∥∥hnm −
[
ĥnm
0

]∥∥∥∥
2

‖hnm‖2 , (10)

where || · ||2 is the 2-norm. Now, substituting the rep-
resentations of hnm and ĥnm, as described by Eq. (8),
leads to

ε̃ =

∥∥∥∥

[
h̃nm
hnm�

]
−

[
h̃nm + �εhnm�

0

]∥∥∥∥
2

‖hnm‖2 (11)

= ‖�εhnm�‖2
‖hnm‖2︸ ︷︷ ︸

aliasing error

+ ‖hnm�‖2
‖hnm‖2︸ ︷︷ ︸

truncation error
︸ ︷︷ ︸

sparsity error

.

This final formulation shows that the aliasing error
depends on the elements of the error vector �εhnm�; the
truncation error depends on the elements of the vector
hnm�, which contains the missing high-order coefficients;
and the sparsity error is the sum of both errors, which rep-
resents the total reconstruction error due to the limited
number of spatial samples of the HRTF.

4 Objective analysis of the errors
To evaluate the effect of the sparsity, aliasing, and trunca-
tion errors on the interpolated HRTF, a numerical analysis
of these errors is presented for the representative case
of KEMAR’s HRTF [41]. Note that although the HRTF
of KEMAR was used for all the numerical analysis pre-
sented in this section and in Section 5, similar results were
obtained using the HRTFs of two other manikins: Neu-
mann KU-100 [42] and FABIAN [43], although these are
not presented here due to space constraints. The HRTF
of KEMAR was simulated using the boundary element
method, implemented by OwnSurround Ltd. [44], based
on a 3D scan of the head and torso of a KEMAR. The 3D
scan was acquired using Artec Eva and Artec Spider scan-
ners, with a precision of 0.5mm for the head and torso and
0.1mm for the pinna. The simulated frequencies were in
the range of 50Hz to 24 kHz with a resolution of 50Hz. A
total ofQ = 2030 directions were simulated in accordance
with a Lebedev sampling scheme [45], which can provide
HRTFs up to a spatial order of 38. Subsets from this simu-
lation, chosen according to nearly uniform [46] (λ = 1.5)
and extremal [47] (λ = 1) sampling schemes, were used
as the sparse HRTF sets. All sampling schemes lead to a
SH matrix Y with a condition number below 3.5, which
means that no ill-conditioning problems were introduced
in the matrix inversion operation that is presented as part
of Eq. (5).
In order to quantify the sparsity, aliasing, and truncation

errors, the original 2030 HRTF directions can be interpo-
lated from each HRTF subset using Eqs. (7) and (9). The
reconstruction error can now be defined as:

εL = 10 log10

∥∥∥hL − ĥL
∥∥∥
2

‖hL‖2 , (12)

where hL is the original, high-density simulation of the
HRTF, and ĥL is the interpolated HRTF. Figure 1 shows
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Fig. 1 Reconstruction error, εL , for left ear HRTF, computed using Eq. (12), with different numbers of measurement points and different SH orders

the reconstruction error, εL, for different subsets of mea-
surement points and different SH orders, averaged across
39 auditory filters [48] between frequencies 100Hz and
16 kHz. The average across directions was calculated
using the Lebedev sampling weights. Note that for each
number of points, the reconstruction error was calculated
up to the available SH order.
By looking, for example, at Q = 2030, it can be seen

that the reconstruction error decreases as the SH order
increases, as a result of the smaller truncation error. To
emphasize the effect of the truncation error, Fig. 2a shows
the error as presented in Eq. (11). The figure shows the
nature of the truncation error, which increases as the SH
order decreases and as the frequency increases.
Interestingly, for a small number of points, the recon-

struction error in Fig. 1 increases when a higher SH rep-
resentation is used. This can be explained by investigating
the behavior of the aliasing error, as in Eq. (11). Figure 2b
shows an example of this behavior for Q = 49 and dif-
ferent SH orders. It illustrates how, unlike the truncation
error, the aliasing error is reduced for lower SH order rep-
resentations. Furthermore, the effect of the aliasing error
can also be seen by looking at a constant SH order for dif-
ferent numbers of measurement points, where the error
becomes smaller for a larger number of points, as can
be seen in both Figs. 1 and 2c, where an example of the
behavior of the aliasing error for Ñ = 4 is presented.
Finally, the differences between the reconstruction

errors at each of the end points of the lines in Fig. 1
illustrate the total effects of both truncation and alias-
ing, which is the sparsity error. This demonstrates the
negative effect of using a small number of measure-
ment points (in this example, below 50 points). A sim-
ilar effect can be seen in Fig. 2d, where the sparsity
error, computed using Eq. (11), is presented as a function
of frequency.

Figure 3 shows the reconstruction error, εL, calcu-
lated separately for several octave bands. It is evident
that the error is much more significant at high frequen-
cies and that at low frequencies the aliasing errors have
much less effect on the reconstructed HRTF. This can
be seen from the small differences in the reconstruc-
tion error as a function of the number of points in the
1 kHz and 2 kHz octave bands and from the appearance
of the positive slope for a small number of points in
the high frequency bands around 4 kHz and 8 kHz. The
same effects can be seen in Fig. 2. The next section
will investigate in more details the effects of the trunca-
tion and the aliasing errors on the reproduced binaural
signal.

5 Effect of truncation and sparsity errors on the
reconstructed HRTF

Using the error representation shown in Eq. (11), the total
sparsity error can be separated into aliasing and trunca-
tion errors. However, from a practical point of view, the
two more interesting errors are (i) the truncation error,
which represents the case where a high resolution HRTF
is available, but the SH order is constrained by the spe-
cific application, e.g., for fast real-time processing; and (ii)
the sparsity error, representing the case where the con-
straint is on the number of measurement points, e.g., in a
simple individual HRTF measurement system. A numeri-
cal analysis of the effect of each one of these errors on the
reconstructed HRTF is presented in this section, showing
the possible effect on the perceived acoustic scene stability
of a virtual sound source.
In order to analyze the truncation error separately let us

assume that a sufficient number of measurement points
is available, leading to negligible aliasing error over the
entire frequency range of interest. Computing HRTFs
with different SH orders from these measurements can be
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(a)

(b)

(c)

(d)
Fig. 2 Sparsity error, ε̃ , for left ear HRTF, computed as in Eq. (11), with
different numbers of measurement points and different SH orders: a
shows the truncation error, b and c show the aliasing error for a
constant number of measurements and for a constant truncation
order, respectively, and d shows the total sparsity error

used as a method to analyze the effect of the truncation
error.
It is important to note that there are two options for

computing the low-order SH coefficients from a high
number of spatial measurements. One is to compute
directly the low-order representation using Eq. (5) with
a SH transformation matrix up to a low-order Ñ ; this
means that the matrix will have more rows than columns,
i.e., an overdetermined problem. The second option is to
compute the SH representation up to the higher order,
N , and then to truncate the coefficients vector, hnm, to
the desired order Ñ before applying the ISFT. These two
methods are mathematically different and may cause dif-
ferent errors [49]. Interestingly, the HRTF reconstruction
is barely affected by the chosen method. For example,
Fig. 4 shows the interpolation error when using both
methods, with N = 27 and different orders Ñ , using the
left ear HRTF of KEMAR with 2030 measurement points.
The SFT is computed using 974 points, and the recon-
struction error, as defined in Eq. (12), was computed after
ISFT to a different set of 974 points. It can be seen that the
differences between the errors of the two methods are less
than 1 dB for all orders and frequencies. Similar results
were observed for different HRTF sets and measurement
points. In the remainder of this paper, the second method
will be used, i.e., the SH representation is computed up
to the higher order available, and then, the coefficients
vector is truncated to the desired order.
To study the effect of the sparsity error, which includes

both truncation and aliasing errors, HRTF sets with a
varying number of measurement points were used, with
the maximum SH order suitable for each set.

5.1 HRTF magnitude
In this section, the HRTF magnitude over the horizon-
tal plane is investigated in order to analyze the effect of
truncation and sparsity errors. Figure 5 shows the magni-
tude of the left ear HRTF of KEMAR over the horizontal
plane, where Fig. 5a and b present different truncation and
sparsity conditions, respectively. Each plot in the figures
represents a different condition (Q, Ñ). Figure 5a(i) and
b(i) present the reference HRTF with Q = 2030 and
N = 27. This order was chosen as the reference in accor-
dance with the relation N = 	kr
, with r = 8.75 cm, up
to 16 kHz, which gives N ≈ 26. The effect of truncation
error at high frequencies, i.e., above kr = Ñ , indicated
by the vertical white dashed line, is clearly seen. Note
that for the computation of the dashed line r = 8.75 cm
was chosen (in accordance with the standard head radius
used in spherical head models [50]), while the real radius
may be slightly larger (especially if one takes into account
KEMAR’s torso), as is evident from the slight errors that
can be seen to the left of the dashed lines. An interesting
effect, which can be seen in Fig. 5a(i), a(ii), and a(iii), is
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Fig. 3 Error, εL , for left ear HRTF, computed using Eq. (12) for each octave band, with different numbers of measurement points and different SH
orders

that the high magnitude area around the ipsilateral direc-
tion (90◦) becomes narrow in the azimuthal direction as
the order decreases, together with the appearance of a
clear oscillatory pattern, or ripples, along the azimuth.
This behavior may lead to unnatural sound level changes
while rotating the head.
Figure 5b shows the HRTF magnitude for the same SH

orders as in 5a, but with different numbers of measure-
ment points, demonstrating the effect of sparsity error. It
is important to note that the sparsity errors present in 5b
contain the same truncation errors as in 5a, with the addi-
tion of aliasing errors. The effect of sparsity error on the
reconstructed HRTF can be seen as spatial distortion in
the HRTF pattern at high frequencies. More dominant
distortions appear in Fig. 5b(iii) and b(iv), which contain
higher sparsity error due to the lower number of points.
Comparing Fig. 5a and b can provide insight into the addi-
tional effect of the aliasing error. It is clear that aliasing

adds more distortion to the HRTF. However, a break of the
ripples pattern, generated by the truncation, is observed.
It is important to note that the spatial pattern of the alias-
ing depends on the spatial sampling scheme of the HRTF,
as was described in Section 2.2. Nevertheless, for relatively
uniform sampling schemes, the aliasing pattern has simi-
lar behavior. Figure 5b illustrates an example of the effect
of a uniform sparse measurement scheme.

5.2 Predicted loudness
In the space domain, spatial aliasing, and truncation
errors introduce distortions to the HRTF magnitude and,
therefore, increase the objective HRTF error. To show
the potential effect of these magnitude changes on per-
ception, the predicted loudness [51] was computed after
convolving the HRTFs with low-pass filtered white noise
with a cutoff frequency of 15 kHz. Figure 6 shows the
predicted loudness at the left ear over the horizontal

Fig. 4 Reconstruction error, using methods of truncation and direct low-order reconstruction. Computed using Eq. (12), for ĥL = h1,h2
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(a) (b)
Fig. 5Magnitude of KEMAR HRTF over the horizontal plane for different truncation (Fig. 5a) and sparsity (Fig. 5b) conditions. Each plot represents a
different (Q, Ñ) condition. The dashed white line indicates the frequency where kr = Ñ, for r = 8.75 cm

plane for different truncation orders (6a) and numbers
of measurement points (6b). It can be seen that as the
truncation order decreases, the loudness pattern becomes
narrower in azimuth, with high values to the side of
the listener (90◦) and low values in front of the listener
(0◦). In addition, the loudness pattern also becomes less

smooth compared to the original, high-order signal. Fur-
thermore, for low orders, unusually high loudness is also
observed for sources coming from the contralateral direc-
tions, as seen by relatively high back-lobes (at − 90◦) in
the loudness pattern. Note that the overall loudness is also
reduced for low orders; this is due to the known low-

(a) (b)
Fig. 6 Loudness over the horizontal plane of KEMAR left ear HRTF, for different truncation and sparsity conditions, convolved with low-pass filtered
white noise up to 15 kHz. Each line represents a different (Q, Ñ) condition. a Truncation conditions. b Sparsity conditions
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pass filter effect due to the truncation [24]. These effects
may cause significant loudness differences when listen-
ing while rotating the head, which may be perceived as
instability of the virtual sound scene.
Figure 6b shows the loudness pattern calculated for dif-

ferent numbers of measurement points. Looking at the
differences between the loudness patterns of the ideal
condition, (Q,N) = (2030, 27), and the sparse conditions,
(Q, Ñ) = (25, 4) and (12, 2), it can be seen that, in contrast
to the effect of the truncation error, the sparsity some-
what “fixes” the narrow pattern of the loudness. This can
be explained by the fact that in these cases, as can be seen
in Fig. 5b(iii, iv), the sparsity error leads to spatial smooth-
ing of the HRTF, which may explain the smooth loudness
pattern. However, the loudness pattern with increased
sparsity error still suffers from some distortions—it has
more artifacts at the contralateral directions, and is less
symmetric than the ideal condition. A possible expla-
nation for this is that, because aliasing depends on
the spatial sampling scheme, it may be expected that
for different sampling configurations, the aliasing pat-
tern will be different and the loudness pattern will
also change.
The discussed artifact, spatial loudness stability, is fur-

ther evaluated in the listening study in Section 6.

6 Perceptual evaluation of loudness stability
As shown in the previous section, using a sparsely mea-
sured HRTF will lead to objective errors in the recon-
structed HRTF that will increase as the number of spatial
samples decreases. Furthermore, analysis based on dis-
tortions in magnitude and loudness leads to insights into
the potential effect on perception. Nevertheless, to study
directly the effect of these errors on perception, an exper-
imental evaluation is necessary. Section 5 presented an
objective measure concerning the perceived loudness; it
was suggested that changes in loudness while rotating
the head could be perceived as loudness instability of
the acoustic scene, which is an important attribute of
high-quality dynamic spatial audio [25, 26]. This moti-
vated the development of a listening experiment that
quantifies the effect of a sparsely sampled HRTF on the
perceived loudness stability. Moreover, this choice aims
to validate the results of the objective analysis, which
implied that there is a large effect on loudness insta-
bility due to truncation errors, while a smaller effect is
expected due to sparsity error. The definition of loud-
ness stability used in this experiment was derived from
the definition of Rumsey [25] for acoustic scene stabil-
ity, where an acoustic scene may be defined as unstable
if it appears to unnaturally change location, loudness, or
timbre while rotating the head. This experiment focuses
only on the loudness property of the acoustic scene
stability.

6.1 Methodology
The HRTF sets used in this experiment are the same as
those used in Section 4. Depending on the experimen-
tal conditions, the original HRTF was sub-sampled to the
desired number of measurement points and truncated in
the SH domain to the desired order Ñ .
For horizontal head tracking (which is required for

achieving effective spatial realism), a pair of AKG-K701
headphones were fitted with a high precision Polhemus
Patriot head tracker (which has an accuracy of 0.4◦ with
latency of less than 18.5 msec). Free-field binaural signals
were generated for each test condition and for each head
rotation angle (− 180◦ to 180◦ with a 1◦ resolution) by
rotating the HRTFs, thus keeping the reproduced source
direction constant and independent of the head move-
ments. The HRTFs’ rotation was performed by multiply-
ing hl,rnm(k) by the respective Wigner-D functions [52].
White noise, band pass filtered between 0.1–11 kHz,

was convolved with the appropriate HRTF, thus simulat-
ing an anechoic environment. The frequency range was
limited to 11 kHz because of the use of non-individual
HRTF sets and the fact that at higher frequencies the
differences between individuals are much greater [4]. In
addition, both the HRTF and headphone transfer func-
tions might be unreliable above 11 kHz, with regard to the
acoustic coupling between the headphone and the par-
ticipant’s ear [53, 54]. Although limiting the frequency
bandwidth may restrict the validity of any conclusions
drawn from this listening test to a limited range of audio
content, it may still be relevant for a wide range of
common audio signals (e.g., speech and various types of
music). The resultant signal was played-back to the sub-
jects using the Soundscape Renderer auralization engine
[55], implementing segmented convolution in real-time
with a latency of ∼17.5msec (with a buffer size of 256
samples at a sample rate of 48 kHz). Together with the
latency of the head tracker, the overall latency of the
reproduction system is ∼ 36msec, which is well below
the perceptual threshold of detection in head tracked
binaural rendering [56, 57]. All signals were convolved
with a matching headphone compensation filter, which
was measured for the AKG-K701 headphones on KEMAR
using a method described in [58] with regularization
parameter β = 0.33 and a high-pass cutoff frequency
of 15 kHz.
Twenty-seven normal hearing subjects (8 females, 19

males, aged 20–35), without previous experience in spatial
audio, participated in a multiple stimuli with hidden ref-
erence and anchor (MUSHRA)-like listening experiment
[59], which is an appropriate test for the assessment of
medium to large audible differences. The difference from
a standardMUSHRA test is that no anchor was used. This
was chosen due to the absence of a well-defined anchor
for this test and to avoid the consequences of using an
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inappropriate anchor that may widen the ranking range,
thus unnecessarily compressing the differences between
test signals.
The experiment comprised five separate tests, with

three or four conditions in each test (including the
hidden reference), as presented in Table 1. The refer-
ence signals (both labeled and hidden) in all tests were
based on an HRTF with Q = 2030 measurements and
SH order N = 27, as presented in Section 5.1. Two
tests (#1 and #2) were designed to evaluate the trunca-
tion and sparsity errors separately, with the conditions
(Q, Ñ) = (2030, 10), (2030, 4), (2030, 2) and (Q, Ñ) =
(240, 10), (25, 4), (12, 2), respectively. These conditions
were chosen in accordance with the objective analysis,
in order to reflect different extents of error. In addition,
orders 2 and 4 are practical cases for rendering binaural
signals using microphone array recordings, and order 10
was selected to cover the range where differences between
the order truncated and high-order reference signals tend
to become less perceptually relevant. Three additional
tests (#3, #4, and #5) are compared between cases with
truncation and sparsity errors for HRTFs with the same
SH order and a different number of HRTF measurements.
These tests were designed to evaluate the perceived effect
of the aliasing error that is added to the truncation error
when calculating the sparsity error (as shown in Eq. (11)).
The overall experiment duration was about 45 min, and
the experiment was conducted in two sessions. The first
session included tests #1 and #2. The second session
included tests #3–#5. In each session, test conditions were
randomly ordered.
All tests included a static sound source with a direction

of azimuth φ = 30◦ on the horizontal plane. Listeners
were instructed to move their head freely while listening
(with the specific instruction of rotating their head from
left to right (180◦) and then back again, for each signal, at
least once) and pay attention to changes in loudness. For
each test, the listeners were asked to rank all conditions
relative to the reference, with respect to the scene loudness
stability. This was described to the subjects as how stable
the loudness of the source is perceived over different head
orientations. An acoustic scene is considered unstable in

loudness if it appears to unnaturally change the loudness
while turning the head. A ranking scale of 0–100 was
used, with 100 implying that the ranked sample is at least
as stable as the reference. The scale was labeled as rec-
ommended in [59] (Fig. 1), as follows: 80–100 Excellent,
60–80 Good, 40–60 Fair, 20–40 Poor, and 0–20 Bad.
At the beginning of the experiment, a training ses-

sion was conducted to familiarize the subjects with the
GUI and the test procedure and to better understand
the attribute description. The session included a refer-
ence signal with the same parameters as the reference
that was later used in the experiment. To create varia-
tions in scene stability, the training signals were generated
by applying spatial (frequency independent) filters on the
original HRTF. Different sets of filters were used in order
to expose the subjects to the full range of loudness sta-
bility variations that will be experienced during the test,
similar to the loudness patterns presented in Fig. 6. A
total of four training screens, with two or three signals in
each screen, demonstrating different levels of instability,
were presented. During the training, subjects were asked
to rate signals following the MUSHRA protocol. In cases
where the ranking was not according to the designed level
of distortion or error of the training conditions, the sub-
jects received a warning message asking them to repeat
this training session. The subjects were also given general
instructions during the training phase to help them notice
differences between the signals.

6.2 Results
Figure 7 shows the results for the truncation and spar-
sity conditions. A two-factorial ANOVA with the factors
“SH order” (Ñ = 27, 10, 4, 2) and “SH processing” (trun-
cation, sparsity) paired with a Tukey-Kramer post hoc
test at a confidence level of 95% was used to determine
the statistical significance of the results [60, 61]. A Lil-
liefors test showed that the requirement of normally dis-
tributed model residuals was met for all conditions (with
pval > 0.1). The main effect for SH order is significant
(F(3,198) = 100.79, p < 0.001), while for SH processing
the effect is not significant (F(1,198) = 2.48, p = 0.11).
However, the interaction effect is significant (F(3,198) =

Table 1 The listening experiments test conditions

Test 1 2 3 4 5

Truncation Sparsity Truncation vs. sparsity Truncation vs. sparsity Truncation vs. sparsity

Ñ = 10 Ñ = 4 Ñ = 2

Condition (Q, Ñ) Reference (2030, 27) (2030, 27) (2030, 27) (2030, 27) (2030, 27)

Condition 1 (2030, 10) (240, 10) (2030, 10) (2030, 4) (2030, 2)

Condition 2 (2030, 4) (25, 4) (240, 10) (25, 4) (12, 2)

Condition 3 (2030, 2) (12, 2)

Each column presents a test that was performed in one MUSHRA screen



Ben-Hur et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:5 Page 11 of 14

(a) (b)
Fig. 7 Box plot of scores under truncation (a) and sparsity (b) conditions for loudness stability evaluation. Each box represents a different (Q, Ñ)

condition. The box bounds the interquartile range (IQR) divided by the median, and Tukey-style whiskers extend to a maximum of 1.5 × IQR beyond
the box. The notches refer to a 95% confidence interval [63]

12.29, p < 0.001), which means that the effect of SH order
under different SH processing is significantly different. As
expected, a significant effect of the truncation order on
the perceived loudness stability can be seen in Fig. 7a,
where the acoustic scene becomes less stable as the order
decreases (median scores are 100, 68, 27, and 14). Signif-
icant differences are observed between all pair conditions
(p < 0.001), except between orders 4 and 2 (p = 0.85).
The sparsity conditions (Fig. 7b) yields no signifi-

cant differences between the low-order conditions, i.e.,
between Q = 12, 25, and 240, and the ratings have rela-
tively large confidence intervals, which may indicate that
the subjects were not consistent with their rating scores.
This implies that the task of rating the perceived loudness
stability between these conditions might be somewhat
ambiguous and challenging, due to the many artifacts
introduced by the added aliasing error. It can be seen in
Fig. 5 that the distortion in the HRTF magnitude due to
aliasing has a stronger frequency dependency than the
distortion due to truncation. This might make it more
difficult to arrive at a frequency-integrated loudness judg-
ment and may lead to variance in the scores depending on
the frequency range that the subject was focused on. Nev-
ertheless, these results are in agreement with the objective
analysis, as presented in Section 5, where the distortions
in the predicted loudness patterns are smaller between the
sparsity conditions (Fig. 6b) than between the truncation
conditions (Fig. 6a).
In order to highlight the perceived differences between

truncation and sparsity conditions and to further evaluate
the added effect of the aliasing error, pairwise compar-
isons of the truncation and sparsity conditions were per-
formed. Comparing between order Ñ = 10 conditions
shows that reducing the number of measurement points

(i.e., adding aliasing), significantly reduces the perceived
stability (p = 0.002, with median score reduced from 65.5
to 31.5), while for orders Ñ = 4 and 2, adding aliasing
significantly improved the perceived stability (p = 0.003,
with median scores increasing from 26.5 to 53.5, for Ñ =
4, and p = 0.04, with median scores increasing from 14.5
to 39.5, for Ñ = 2). In addition to the statistical results
from tests #1 and #2, a direct comparison between trun-
cation and sparsity has been performed in tests #3–#5.
Figure 8 presents the results for these experiments, show-
ing similar results to those obtained from the statistical
analysis of tests #1–#2, where at low orders, the loudness
stability improves when aliasing is introduced1. These
results can be explained by the fact that, although reduc-
ing the number of measurements increases the HRTF
reconstruction error due to aliasing, this aliasing error
adds energy to the HRTF, which partially accounts for the
energy being lost by truncation [62]. This, in some cases,
may lead to a virtual scene that is perceived as being more
stable.
The results of this experiment corroborate the results of

the objective analysis, which suggested that the distortion
in the predicted loudness pattern and the appearance of
“ripples” in the HRTF magnitude will affect the perceived
acoustic scene stability. The results demonstrate the large
detrimental effect of the truncation error on the acoustic
scene stability. This result is also in agreement with pre-
vious studies [23, 24], which showed that there are large
timbre variations as a function of direction due to trunca-
tion errors, which may affect the perceived scene stability.
However, the effect of aliasing error is less obvious. The
subjective results (Fig. 8) reveal that from a certain point
(below 240 measurement points), the aliasing improved
the perceived stability of the scene. These results can also
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(a) (b) (c)
Fig. 8 Box plot of scores showing truncation and sparsity conditions at different SH orders, for loudness stability evaluation. Each box represents a
different (Q, Ñ) condition. The box bounds the IQR divided by the median, and Tukey-style whiskers extend to a maximum of 1.5 × IQR beyond the
box. The notches refer to a 95% confidence interval. a Test #3: Ñ = 10. b Test #4: Ñ = 4. c Test #5: Ñ = 2

be observed from the objective analysis (Figs. 5 and 6),
where for condition (Q, Ñ) = (240, 10), the loudness pat-
tern has visible ripples that are not visible in the (2030, 10)
condition (for example, 2 dB peak-to-peak changes in the
predicted loudness are observed around − 30◦), which
adds to the instability perception. On the other hand, for
the low-order conditions, Ñ = 4 and 2, the differences
between the truncated conditions and the sparse con-
ditions are opposite, where the loudness pattern of the
sparse conditions is much more similar to the ideal condi-
tion, and the ripples in theHRTFmagnitude are smoothed
out. This may imply that, for a sufficiently low order,
the distortion caused by the aliasing error may result in
a more stable scene, as demonstrated in the subjective
evaluation. Notwithstanding, it is important to note that
the aliasing may cause other perceptual artifacts, such as
inaccurate source position and reduced localizability per-
formance. The study of these artifacts is suggested for
future research.
Additionally, it is important to note that the aim of

this study is to evaluate the sole effect of the sparsity
errors, i.e., without any pre- or post-processing meth-
ods that aim to reduce some of the artifacts caused by
limited SH representation. For example, high-frequency
equalization [24], was shown to improve the overall spa-
tial perception of order-limited binaural signals. However,
the fact that this equalization filter is not direction-
dependent suggests that it will not affect the loudness
stability results. On the other hand, aliasing cancelation,
developed in [28] and shown to reduce the reconstruc-
tion error due to sparse HRTF measurements, may affect
some of the artifacts presented in this paper. Addition-
ally, a recent study by Brinkmann and Weinzierl [29]
showed a significant effect of HRTF pre-processing on the
reconstruction errors, which may also affect the loudness

stability results. Nonetheless, the current research focuses
on better understanding loudness stability and on gain-
ing insight into the possible effects of sparse HRTF
measurements. The study of the effect of the different
pre- and post-processing methods on loudness stability
is outside the scope of this study and is suggested for
future work.

7 Conclusion
This paper studied errors in the SH representation of
sparsely measured HRTFs, providing insight into the pos-
sible effect of these errors on the reconstructed binaural
signal. The study focused on the perceived loudness stabil-
ity of the virtual acoustic scene. A significant effect of the
truncation error on loudness stability was observed; this
can be explained by distortions in the loudness and in the
HRTF magnitude. These results suggest that a high-order
HRTF (above 10) is required to facilitate high-quality
dynamic virtual audio scenes. However, it is important
to note that no specific SH order can be recommended
from the current study, and further investigation should
be conducted to provide more specific recommendations
for specific scenarios, taking into consideration a wider
range of SH orders, other perceptual attributes, more
complex acoustic scenes, individual HRTFs, and a wider
frequency bandwidth. The aliasing error showed less obvi-
ous effects on the acoustic scene stability, while, in some
cases, increasing the aliasing error even improved the
acoustic scene stability. These cases can be explained, to
a certain degree, by the smoothing effect that the aliasing
has on the HRTFmagnitude and on the modeled loudness
pattern.
It is important to note that the results presented in

this paper apply to anechoic environments. Informal lis-
tening tests suggest that with realistic environments that
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incorporate reverberation, source instability may be less
affected by truncation. Investigation of this topic is pro-
posed for future work, in addition to more comprehensive
localization and externalization tests.

Endnote
1Note that for some conditions in tests #3–#5, the rat-

ings may seem different from the ratings of the same
conditions in tests #1 and #2. This can be explained by
the fact that the tests were performed using different
MUSHRA screens, which means that subjects rated them
separately, comparing each signal to other signals in the
same screen. Nevertheless, the statistical results are in
agreement between these tests.
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