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Abstract

baseline feature and other combination methods.

There are many studies on detecting human speech from artificially generated speech and automatic speaker
verification (ASV) that aim to detect and identify whether the given speech belongs to a given speaker. Recent studies
demonstrate the success of the relative phase (RP) feature in speaker recognition/verification and the detection of
synthesized speech and converted speech. However, there are few studies that focus on the RP feature for replay
attack detection. In this paper, we improve the discriminating ability of the RP feature by proposing two new auditory
filter-based RP features for replay attack detection. The key idea is to integrate the advantage of RP-based features in
signal representation with the advantage of two auditory filter-based RP features. For the first proposed feature, we
apply a Mel-filter bank to convert the signal representation of conventional RP information from a linear scale to a Mel
scale, where the modified representation is called the Mel-scale RP feature. For the other proposed feature, a
gammatone filter bank is applied to scale the RP information, where the scaled RP feature is called the
gammatone-scale RP feature. These two proposed phase-based features are implemented to achieve better
performance than a conventional RP feature because of the scale resolution and. In addition to the use of individual
Mel/gammatone-scale RP features, a combination of the scores of these proposed RP features and a standard
magnitude-based feature, that is, the constant Q transform cepstral coefficient (CQCC), is also applied to further
improve the reliable detection decision. The effectiveness of the proposed Mel-scale RP feature, gammatone-scale RP
feature, and their combination are evaluated using the ASVspoof 2017 dataset. On the evaluation dataset, our
proposed methods demonstrate significant improvement over the existing feature and baseline CQCC feature. The
combination of the CQCC and gammatone-scale RP provides the best performance compared with an individual
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1 Introduction

Automatic speaker verification (ASV) aims to determine
whether the given speech belongs to a given speaker [1].
Recently, much progress has been made in the field of
speaker recognition and verification [2—4]. There is great
interest in the reliability and security of these ASV systems
[5-7]. Many methods can deceive systems by imitating
the property of speech, and most biometric security sys-
tems [8, 9] are sometimes prone to deception. Countering
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this deception has been one of the challenges in the field
of speech processing. At present, increasing numbers of
researchers are beginning to pay attention to the vulner-
ability of ASV systems. These above mentioned attacks
which area called spoofing attacks can be divided into
four types: impersonation, replay, text-to-speech (TTS)
synthesis, and speech conversion [10]. In this paper, we
focus on replay attack detection, which is a task that
determines whether a speech sample contains genuine
or replayed speech. The replayed speech is the speech
recorded using the recording device and replayed using a
loud speaker. Countermeasures on replayed speech have
not been thoroughly researched because of the lack of
publicly available databases and standardized benchmarks
prior to ASVspoof 2017 challenge.
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To detect replayed speech from genuine speech, there
are several approaches. Some research has focused on
tuning the classifier [11-14], whereas other research has
focused on feature extraction [15, 16]. As an anti-spoofing
task mainly focuses on the characteristics of the given
speech, in this paper, we focus on a new feature extrac-
tion method that provides better discrimination between
replayed speech and genuine speech. Most of the meth-
ods used in previous studies have focused on ampli-
tude information. The Mel-frequency cepstral coefficient
(MFCCs), inverse MFCC, and linear frequency cepstral
coefficients (LFCC) were used in [10]. High-frequency
cepstral coefficients, single frequency filtering cepstral
coefficients (SFFCC), and constant Q cepstral coefficients
(CQCC) were proposed in [17]. The novel variable length
Teager energy separation-based instantaneous frequency
feature (VESA-IFCC) was proposed in [18]. In addition
to the aforementioned single features, fusion systems
[19, 20] have also been proposed for combining scores
from different feature/classifier-based replay attack detec-
tion. A combination of the voice source, instantaneous
frequency, and cepstral features was implemented in [19].
The fused system of LFCC and rectangular filter cepstral
coefficients (RFCC) was proposed in [20]. In all these
works, the best performing system strongly depends on
an individual amplitude information-based feature and
the score combination, which fuses scores from differ-
ent features/classifiers derived from amplitude informa-
tion. However, there are few studies that have focused on
phase information because of the phase wrapping prob-
lem. Phase wrapping occurs because phase points are
constrained to the range — 180° to + 180°, even when
the actual phase is outside this range; hence, the phase
value outside this range becomes unusable. In previous
work [21, 22], the use of only the magnitude feature was
sometimes not sufficient for the discrimination task. This
is because phase information, which is half of the origi-
nal speech, is ignored when discriminating between replay
and genuine speech.

Phase-based features have also been successfully used
for synthesized and converted speech detection [23, 24].
One of the most commonly used phase feature is the
modified group delay (MGD)-based feature [11]. Typi-
cally, the feature is defined as the negative derivative of
the phase information of the Fourier transform based on
a signal. In fact, the MGD feature is not extracted using
only phase information, but uses both phase and magni-
tude information. Thus, the MGD feature contains both
phase and magnitude information, which may make the
detection unable to discriminate between genuine speech
and replayed speech. The MGD feature enhances impor-
tant sections of the envelop of the short time speech
spectrum which may lose representation in vocal source
information of the given speech [25, 26]. In [12], the
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cosine phase feature was proposed and outperformed the
MGD feature. Unlike the MGD feature, the phase infor-
mation of the cosine phase feature is computed using only
phase information. However, the cosine phase does not
normalize the phase variation by cutting positions and
the sine function is not applied to the unwrapped phase
spectrum; thus, the cosine phase may lose some infor-
mation, which can reduce the performance of detecting
replayed speech. In our previous work, to overcome the
problems of cosine phase feature extraction, we proposed
a phase-based feature called the relative phase (RP) fea-
ture. A widely used merit associated with the RP feature
is that it extracts precise phase information from speech
because the phase variation is significantly reduced by
cutting positions, and both the cosine function and
sine function are applied to the normalized phase spec-
trum. RP information that is directly extracted from the
Fourier transform of the speech wave has been proposed
for speaker recognition/verification in various conditions
[27, 28]. In [29, 30], the RP was also applied to synthe-
sized and converted speech detection. The results indicate
that the RP significantly outperformed the baseline fea-
ture set, such as the MFCC and MGD. Although the RP
has been successfully applied in many speech applications,
only a few studies have used the RP feature in replay attack
detection. In fact, RP extraction is based on a linear scale
and may not perform well when used to detect replayed
speech. Recent works [1, 17] have shown that features with
a nonlinear scale could provide better performance than
features with a linear scale. Therefore, we expect that the
extraction of the RP feature with the integration of a non-
linear scale may further improve the performance of the
linear-scale-based RP feature.

In this paper, we modify the RP-based spectrum using
two auditory filters, that is, Mel- and gammatone-filter
banks to capture phase information instead of linear scale
in original RP. Mel-filter bank, which is a perceptual scale
that helps to simulate the way that the human ear works,
is applied to capture important information in the full
dimension of the RP-based spectrum, and the RP fea-
ture with the decreasingly captured dimension is called
the Mel-scale RP. Additionally, preliminary experiments
have indicated that the Mel-scale RP provides better per-
formance compared with the MGD cepstral coefficient
(MGDCC) and MFCC, and CQCC. However, the detailed
Mel-scale RP information extraction and analysis were not
described in [31]. In the present study, we extend our pre-
vious paper [31] by performing more experiments and
analysis. The contributions of this study are as follows:
(1) According to [31], the detection model in the previous
work, which used only a training subset of the ASVspoof
2017 database, might not lead to an impressive result on
the evaluation of subset-based testing; hence, we incor-
porate a training subset and development subset to train
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the model in our system. (2) In addition to the Mel-filter
bank represented to scale the RP information in the previ-
ous work, we also apply a gammatone filter bank, thereby
simulating the auditory system of humans to convert the
important information of the full-band RP-based feature
in the gammatone scale, where the RP feature with the
reduced dimension is called the gammatone-scale RP. (3)
To use the classifier-based complementary based on dif-
ferent features to further improve the reliable detection
decision, a combination of the scores of the proposed
gammatone-scale RP feature and the MFCC/standard
CQCC s also applied in this paper.

The remainder of this paper is organized as follows: in
Section 2, related work is described, which includes the
details of the classifier and the baseline features for replay
attack detection. The proposed auditory filter-based RP
information extraction is introduced in Section 3. The
experimental setup and results are reported in Section 4,
and our conclusion is presented in Section 5.

2 Related work

Several methods have been proposed for replay attack
detection in recent years. Techniques have been evalu-
ated on the Automatic Speaker Verification Spoofing and
Countermeasure Challenge dataset (ASVspoof 2017). The
challenge acts as a common baseline by which researchers
can compare their experiments and perform evaluations.
In these works, a Gaussian mixture model (GMM) is
used as a classifier, and two features, that is, the MFCC
and CQCC, are used as baseline features. Moreover, the
MGDCC is also considered in the present paper as a
phase-based feature.

2.1 Classifier for replay attack detection

Several classifiers can be used in replayed speech detec-
tion methods, such as a GMM [32], support vector
machine, and deep neural networks. The implementation
of GMM (33, 34] is one of the easiest and demonstrates
high performance for replayed speech detection. More-
over, the GMM classifier is the baseline classifier for the
ASVspoof 2017 challenge. Hence, we use GMM as the
replayed speech detector in our experiment. Figure 1
shows the process of typical replayed speech detection
system. The decision of whether the given speech is
human or replayed speech is based on the likelihood ratio:

AeMM (0) = logp(OMgenuine) - logP(OMreplay); (1)

where O is the feature vector of the input speech,
and Agenuine and Areplay are the GMMs for genuine
and replayed speech, respectively. The MFCC, CQCC,
MGDCC, conventional RP feature, and proposed RP fea-
ture described in Sections 2.2 and 3 are used as magnitude
features and phase features.

(2019) 2019:8

Page 3 of 11

From [30], we can see that phase and magnitude-based
features may contain different characteristics which can
be complementary to each others. Therefore in this paper,
the likelihood ratios of features are also combined to

n .
produce a new score, Ay, ., as follows:
n — n n
Acomb = ¥ Nmag +(1 - a)/\phase’ (2)
n

_ /\mag

=—

/\mag + /\phase

where Af,, denotes the likelihood ratios of the
magnitude-based features, Ap,, denotes the likelihood
ratios of the phase-based features, and o denotes the
weighting coefficients.

2.2 Baseline features for replay attack detection

2.2.1 MFCC

The MFCC is one of the most popular magnitude-based
features in speech processing. It uses cepstral analysis on
the log magnitude spectrum in the Mel scale. The MFCC
contains vocal tract dynamics and its corresponding pulse
train is related to glottal motor control. This makes the
feature suitable for distinguishing converted speech from
human speech. The MFCC is defined as

C'—\/EN i 05 3)
i = szzlcos(N(] .)),

where N is the number of Mel-frequency bins of log spec-
trum L and i is the number of cepstral coefficients [1]; we
use 13 coefficients in this study.

2.2.2 CQcc

In contrast to the MFCC feature, the CQCC feature [1]
has variable spectrum resolution, and the time-frequency
representation is very effective in replayed speech detec-
tion, which is more suitable for the ASVspoof task. The
CQCC feature is used as a benchmark feature, and it has
been proven to be a good feature in the ASVspoof system.
Therefore, we use the CQCC as the baseline feature in our
experiments for comparison.

The CQCC is an amplitude-based feature that uses the
constant Q transform (CQT) in combination with tradi-
tional cepstral analysis. The frequency bins of X“?(k) are
represented in geometric scale which is different from lin-
ear scale of typical DCT. Therefore, uniform sampling is
applied to the constant Q power spectrum log ( | X (k) |2)
and the resulting log (|X“7(i) |2) can then be applied with
DCT. The extraction of the CQCC features is illustrated
in Fig. 2.

2.2.3 MGDCC

The spectrum X(w) of a signal is obtained by the dis-
crete Fourier transform (DFT) of an input speech signal
sequence xy:
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Fig. 1 Flowchart of a GMM-based detection system
X(w,t) = |X(w, 1)@, (4)  function, the DCT is applied as follows:
. M
where |X(w, t)| and 6(w, t) are the magnitude spectrum i
and phase spectrum at frequency w,time ¢, respectively. Ci= Z ©(m) cos M@m D), 8)
m=0

The group delay [35] is defined as the negative derivative
of the Fourier transform phase for the frequency:
d@(w, 1))
do

The group delay function can also be calculated directly
from the speech signal using

T(w,t) =

(5)

@, t) = XR (@, 1) YR (0, 1) + X] (w0, 1) Y] (0, 1)
T X (o, )

» (6)

where the subscripts R and I denote the real and imag-
inary parts of the Fourier transform, respectively, and
X(w, t) and Y (w, t) are the Fourier transforms of x(#) and
nx(n) , respectively. Several studies have reported that the
MGD is better than the original group delay [26, 36, 37].
The MGD function is defined as

Xp (@, 8) Yp (0, 1) + X[ (0, 1) Y] (0, 1)

Tm(,2) = S(@, O

» (7

where S(w,t) is the cepstrally smoothed spectrum of
X(w, t). To extract the cepstral coefficients from the MGD

where M is the DCT order and T (m) is the group delay
function. In this case, the DCT acts as a linear decorrela-
tor, which means that the diagonal covariance is available
for the human/replayed speech modeling. The resulting C
is the MGDCC feature.

3 Auditory filter-based relative phase features

3.1 Original RP features

The phase varies depending on the framing position
of speech at the same frequency [28]. The method
to eliminate this variation is shown as follows. Let
81,82 - .,8n, (81,41 = §1) be a sampling sequences for
a unit circle function. The wave length in radian is
L, = fjii = ﬁ%” However, the phase difference between

sequences s1, 82, ..., S, and s2, ..., 81, S,,+1 18 %—’; To solve
the problem of phase variation with respect to frame posi-
tion, phase at a base frequency wy for all frames is kept
constant, and the phases of other frequencies are calcu-
lated based on the set frequency. In this paper, the base
frequency wy, is set to 1000 Hz. This base frequency would

Yn x“ (k) Power
cQt > Spectrum

[ xC k[

\ 4

Log

log(Ix° () ")

log(| x“° (k) [*)

\ 4

Uniform

A

CQCC « DCT

Fig. 2 CQCC feature extraction process
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not effect the performance as mentioned in [28]. If we set
the base frequency w to 0, we can achieve

X' (w,8) = | X(w,1)|? @D x e TO@D), 9)

The main difference between the typical expression
of the phase in Egs. (4) and (9) is —6(w) but for
other frequency which are o' = 2nf’ the difference is
(o' /w)(—0(w)) ; therefore, we can obtain the following
spectrum:

X (@, 8) = |X(@, 8)|"@D x TG O@h (10

Thus, the phase can be further normalized as follows:

~ 154
0(, 1) = 0(, 1) + ;(—9(0), £)). (11)

The base frequency is set to 27 x 1000 Hz. Without
performing any modification, the phase is limited by the
phase-wrapping problem. Hence, we modify the phase
into coordinates on a unit circle:

i — |cos(é),sin(§)} ,or — |9~m(k),ésm(k)}. 12)

Using the RP extraction method that normalizes the
phase variation using the cutting position, we can reduce
the phase variation problem. However, the normalization
of the phase variation is still inefficient. The normalized
phase depend on pitch,phonemes,channel etc., even if
the speaker is fixed. Further information for addressing
the variation is obtained using the statistical distribution
model of the GMM.

If we split the utterance by each pitch cycle, the variation
in phase information would be further obviated. There-
fore, we use an extraction method that synchronizes the
splitting section with the pseudo pitch cycle, as described
in [29, 30]. To recombine the cutting section in the time
domain, the method searches for the maximum ampli-
tude at the center around the typical splitting section of
an utterance waveform, and the peak of the utterance
waveform is used as the center of the next corresponding
window (pseudo pitch synchronization). Hence, the cen-
ter of the frame has a similar maximum amplitude in all
frames.

3.2 Mel-scale RP

For the original RP information, the phase information,
which is mapped into coordinates on a unit circle by
applying cosine and sine functions, is computed using
128 components of the sub-band spectrum before reduc-
ing them to the 19 lowest fixed components to minimize
the feature parameters. In previous work, we observed
that the RP feature using a linear scale could provide
promising results in speaker recognition/verification tasks
and spoofing attack detection focused on TTS (text-to-
speech), synthesized speech, and voice conversion. How-
ever, the RP feature with a linear scale may not perform
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well when used to detect replayed speech, as shown
in [1, 17].

In this paper, the RP-based feature and Mel-filter bank
are exploited to propose a new feature extraction used for
replay attack detection. The new proposed feature extrac-
tion is called the Mel-scale RP feature. The key idea is to
integrate the advantage of the RP feature in phase-based
information representation with the advantage of the Mel-
filter in perceptual scaling, covering the range from 60 to
8000 Hz. The Mel-filter bank is a collection of triangular
filters defined by center frequencies f.(m) and is given by

Sk) < fe(m —1)
Sk —fe(m—1)
il my = | Ty for Jeon =D =0 <0 5
Fontdrtls for - fum) < f(6) < fulm +2)
S = fe(m +1).

0 for

Mel-filter bank Hyy is an F x N matrix. It helps to cap-
ture the magnitude-based energy at each critical band and
provides a rough approximation of the spectrum shape.
In this paper, the Mel-filter bank is used to capture the
phase information of the RP-based feature. The process
of Mel-scale RP feature extraction is shown in Fig. 3b.
After the phase information of the original RP feature
is mapped into coordinates on a unit circle by applying
cosine and sine functions, the normalized phase informa-
tion, Geon (k) and gy (k), are scaled logarithmically using
Mel-filter bank H (k, m). Finally, based on the frame level,
the scaled phase information, [6cos (k) % Hmel(k, m)], is
augmented with [ésin (k) % Hmel(k, m)] as follows:

0 for

et = {[feos ) % Hiner s ) |

|Bin (k) 5 Hrmatth, ) [ )] "

where el is the Mel-scale RP feature. By extracting the
phase information using the Mel scale, the performance of
replay attack detection is expected to improve compared
with the linear scale RP-based spectrum.

3.3 Gammatone-scale RP

From the previous subsection, the Mel-filter bank has
been used to capture the phase information from the
linear-scale RP spectrum. However, a gammatone filter
bank has not been applied to improve the performance
of linear scale RP spectrum. The advantage of a gam-
matone filter that is based on the equivalent rectangular
bandwidth (ERB) scale is the finer resolution at low fre-
quencies than Mel scale, as observed in automatic speech
recognition. Therefore we propose a new feature extrac-
tion method by integrating the gammatone filter bank into
our RP feature. The impulse response of a gammatone
filter bank centered at frequency f is

t“’le2”bicos(2nﬁ) , t>0
0, otherwise,

Hgamma(fr t) = { (15)
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Fig. 3 Flowchart of the conventional (original) RP, Mel-scale RP, and gammatone-scale RP feature extraction. a RP feature. b Mel- RP feature.
¢ Gamma-RP feature

where ¢ refers to time, a 4 is the order of to 8000 Hz. These center frequencies are equally dis-

the filter, and b is the rectangular bandwidth, which
increases with center frequency f. We use a bank of
128 filters whose center frequency ranges from 50 Hz

tributed on the ERB scale [38], and the filters with
higher center frequencies respond to wider frequency
ranges.
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In this paper, the gammatone filter bank, which is
able to fine-tune the spectral resolution at a lower
frequency band, is used to capture the phase information
of the original RP spectrum, and the resulting fea-
ture is called the gammatone-scale RP feature. The
process of gammatone-scale RP feature extraction is
shown in Fig. 3c. After the phase information of the
original RP feature is mapped into coordinates on a
unit circle by applying cosine and sine functions, the
two items of normalized phase information, écos(k) and
Ogin (k), are scaled using gammatone filterbank H (k, m).
Finally, based on the frame level, the scaled phase

information, [§COS (k) * Hgamma (k, m)], is augmented with

[ésin (k) * Hgamma (k, m)] as follows:

Ogamma —> { I:écos (k) * Hgamma (k, m)] ’

_ (16)

I:esin (k) * Hgamma (k, Wl)]) } ’
where égamma is the gammatone-scale RP feature. By
extracting the phase information using perceptual scal-
ing, the performance of replay attack detection is expected
to improve compared with the sub-band RP-based spec-
trum.

4 Experiments

4.1 Datasets

The ASVspoof database used in this paper is the part of
ASVspoof 2017 challenge and contains three parts: the
training set, development set, and evaluation set. These
three sets are incoherent in terms of speakers and data
collection locations. The speech in the training set was
recorded at a single location and the development set
was collected at two additional locations together with
the location for the training set. Finally, the evaluation
set was collected at two additional locations together with
the locations of the training and development sets. Differ-
ent recording/replay devices and acoustic conditions were
used for the same location. The training set and develop-
ment set contained 6 and 10 replay session, respectively,
whereas the evaluation set contained the most replay
sessions, at 161 sessions.

The database is mainly based on the recent text-
dependent RedDots corpus [33]. It contains 10 common
phrases that were recorded using different playback and
recording devices as the dataset mainly focuses on replay
attacks, which are the easiest and most common form of
attack for an ASV system. The utterances were recorded
using 16-bit precision and a 16 kHz sampling rate. The
details of the dataset are further illustrated in Table 1.

According to [31], only training data were used to train
the model. In this paper, for results in the development
set, the model was trained using only the training set and
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Table 1 Details of the ASVspoof 2017 database
Subset #Speakers # Utterances
Genuine Replayed
Training (Train) 10 1507 1507
Development (Dev) 8 760 950
Evaluation (Eval) 24 1298 12,008

the classifier was trained using a combination of the train-
ing and development sets when tested on the evaluation
dataset.

4.2 Experimental setup

The MFCCs feature were extracted with 39 dimensions
(13 MFCCs, 13 delta MFCCs, and 13 delta-delta MFCCs)
and calculated using a 25-ms frame length and 10-ms
frame shift. The CQCC had 96 bins-per-octave and 16
uniform samples in the first octave. The RP information
was calculated using a 5-ms frame shift and 12.5-ms frame
length. A spectrum of 128 components that consisted of
the magnitude and phase were calculated using the DFT
for every 256 samples. The MGDCC used a frame length
of 25 ms and frame shift of 10 ms. We computed a spec-
trum of 128 components using the DFT for every 256
samples, and finally, 13 coefficients were computed using
the DCT. Regarding the original RP, we computed 256 RP
features that corresponded to 128 cos and 128 sin com-
ponents. The range for searching the peak amplitude in
the pseudo pitch synchronization was 2.5 ms, which is
half the frame shift. Once pseudo pitch synchronization
was complete, the Mel- and gammatone-filter banks were
applied for the original RP with 128 cos and 128 sin of
the RP to extract 38 dimensions of the Mel-scale RP and
64 dimensions of the gammatone-scale RP, respectively.
The parameters used in the experiments follow our pre-
vious research and experiments [21, 22, 27-31]. From our
experiments, the set parameter for baseline features such
as MFCC,CQCC, and MGDCC has provided good results
for spoofing attack detection. We did not use the same
dimension as the Mel scale because the authors showed
in [39] that decreasing the number of frequency bands in
the gammatone filter bank decreases performance. Anal-
ysis conditions for features in this paper are described
in Table 2.

Regarding classification, two GMMs for genuine and
replayed speech models estimated by using maximum
likelihood estimation had two 512-component models,
which were trained using the expectation maximization
algorithm with random initialization on genuine and
replayed utterances, respectively. The score was com-
puted as the log-likelihood ratio for the test utterance
given both classifiers. We followed the baseline model
that was provided by the organizers of the ASVspoof 2017
challenge.
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Table 2 Analysis conditions for all features
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MFCC cQcc MGDCC Original-RP Mel-scale RP Gammatone-scale RP
Frame length (ms) 25 - 25 125 125 12.5
Frame shift (ms) 10 - 10 5 5 5
FFT size (samples) 512 - 256 256 256 256
Dimensions 39 90 39 38 38 64

4.3 Results and discussion

4.3.1 Results for the development set

In this subsection, we present the EERs (equal error
rate) investigated on the development set. We compare
our proposed Mel-scale RP and gammatone-scale RP
features with three baseline features (MFCC, CQCC,
and MGDCC) and the original RP feature. Moreover,
we also refer to the results of four features used for
recent replay attack countermeasures to compare them
with the proposed feature. The results are reported
in Table 3.

Table 3 shows that the Mel-scale RP and gammatone-
scale RP feature had better EERs than the original RP.
This is because the Mel-filter and gammatone-filter can
capture the important information of the original RP, and
the implementation of the auditory feature improved the
robustness of the relative feature.

By comparing these result with the CQCC, we found
that our proposed method did not perform well in devel-
opment. This might be because the magnitude-based

Table 3 Results for the development set

Feature EER (%)
MFCC 13.78
cQcc 6.81
MGDCC 2529
Original-RP 14.50
Mel-scale RP 9.57
Gammatone-scale RP 10.84
MFCC + CQCC 5.31
CQCC + MGDCC 12.08
MFCC + Mel-scale RP 6.05
MFCC + gammatone-scale RP 7.77
CQCC + Mel-scale RP 582
CQCC + gammatone-scale RP 533
CQCC (6-8 kHz) (resultin [17]) 5.13
VESA-IFCC (result in [18]) 4.63
Voice source + instantaneous fre- 531
quency + cepstral features + CQCC

(result in [20])

RFCC + LFCC (result in [19]) -

CQCC feature could provide superior discrimination
power for the artificially generated speech in the devel-
opment set, which had similar acoustic conditions to the
training set.

The combination of scores of different features pro-
vides us with a promising result. First, we can see that
there was a significant improvement in performance once
a magnitude-based feature, such as the CQCC or MFCC,
was combined with our phase-based feature (i.e., Mel-
scale RP and gammatone-scale RP).

Second, from the results, we can also state that CQCC
captured information that was more salient to the task
of replayed speech detection compared with the MFCC,
and thus, combining CQCC with our proposed RP fea-
tures (Mel -scale and gammatonescale) provided better
performance than combining it with MFCCs. The CQCC
has already been one of the best performing magnitude-
based features in ASV systems. Thus, by combining it with
gammatone-scale RP, we achieved good performance.
The above combination performed better than a com-
bination of the CQCC and Mel-scale RP. This may be
because gammatone-scale RP contains more filter bank
than Mel-scale RP. The variable resolution of the CQCC
may complement the more available frequency band in
gammatone-scale RP.

4.3.2 Results for the evaluation set

In this subsection, we present the EERs investigated on the
evaluation dataset. The difference between the develop-
ment and evaluation sets is that the audio in the evaluation
set was recorded in real-world conditions using a vari-
ety of recording devices. Hence, the performance on the
evaluation set is much more significant than that on the
development set. The results of evaluation dataset are
shown in Table 4.

We experimented on three baseline features: the
MEFCC, CQCC, and MGDCC. The CQCC performed
better than the MFCC as the CQCC had a vari-
able resolution compared with the MFCC, which
mainly focuses on low-frequency components. Sec-
ond, the popular phase feature MGDCC did not
provide good results. This may be because the
MGDCC contained both magnitude and phase fea-
tures, which may make the detection of replayed speech
in-discriminating.
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Table 4 Results for the evaluation set

Feature EER(%)
MFCC 29.11
cQcc 21.61
MGDCC 31.81
Original-RP 13.15
Mel-scale RP 10.98
Gammatone-scale RP 11.07
MFCC + CQCC 28.12
CQCC + MGDCC 2248
MFCC + Mel-scale RP 15.34
MFCC + Gammatone-scale RP 14.51
CQCC + Mel-scale RP 10.74

CQCC + Gammatone-scale RP 948

CQCC (6-8 kHz) (resultin [17]) 17.31
VESA-IFCC (result in [18]) 14.06
Voice source + instantaneous 13.95
frequency + cepstral

features + CQCC (result in [20])

RFCC + LFCC (result in [19]) 10.52

The evaluation dataset was real-world recorded data,
and therefore, may have contained noise or artifacts
that distorted the speech. The relative phase fea-
ture normalizes the phase of other frequencies based
on the frequency, so the phase values of the base
frequency with different noises are the same. There-
fore, the RP is more robust to noise [27]. Therefore,
Mel-scale RP and gammatone-scale RP were robust to
noise and provided an efficient representation. More-
over, our proposed methods performed significantly
better than the CQCC baseline. Thus, we can con-
clude that our proposed feature contains efficient infor-
mation to detect replayed speech, even in real-world
conditions.

Finally, the score combination of Mel-scale
RP/gammatone-scale RP and the MFCC/CQCC was
applied to utilize the classifier-based complemen-
tary based on different features. Table 4 shows the
results of the score combination. We can see that the
replay attack detection based on the combined score
of the CQCC/MFCC and gammatone-scale RP out-
performed the systems that used the combined score
of the CQCC/MFCC and Mel-scale RP, or used an
individual feature. This is because the CQCC and
gammatone-scale RP have a strong complementary
nature, as described in the previous subsection. More-
over, our proposed combination of a magnitude and
phase feature, that is, the CQCC and gammatone-scale
RP, achieved a more significant relative error reduc-
tion than the combination of the baseline magnitude
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and phase feature, that is, the CQCC and MGDCC.
We can also see that the combination of two magni-
tude features did not perform well compared with our
proposed method. This proves that using only a magni-
tude feature may not be sufficient for real-world recorded
data.

We also compared our results with other recent research
publications and drew some conclusions. The CQCC at a
high frequency in [17] performed better than the baseline
CQCC. From this, we can conclude that for a magni-
tude feature, the high frequency contains discrimination
information in replayed attacks; however, high-frequency
components can be easily distorted by noise. By com-
paring our results with [17], we can see that the phase
contains significant information for the replayed attacked
detection task, and using only magnitude information
could not provide good performance. The VESA-IFCC
feature proposed in [18] achieved very good performance
for a single feature, and Teager energy could be mod-
ified to achieve better robustness in the future as this
method provided great performance on the development
dataset. In [20], combining multiple types of features
also improved performance. Although the performance
of individual features did not exhibit good performance,
multiple combinations of such features can increase the
performance overall of replayed speech detection sys-
tems. In this paper, we have only investigated the com-
bination of two features; therefore, further improve-
ment could be achieved by combining more appropriate
features.

5 Conclusion

In this paper, we proposed two novel features based on
auditory filters to distinguish replayed speech from gen-
uine speech. For the proposed features, the contribution
of the Mel filter and gammatone filter were exploited to
capture the important information of the conventional
RP feature. We introduced the first implementation of
the gammatone filter bank with the RP feature. Our
proposed feature, Mel-scale RP, and gammatone-scale
RP obtained significant performance improvement over
the CQCC baseline and original RP feature. The results
on ASVspoof 2017 showed that, for an individual fea-
ture with a GMM-based classifier, the Mel-scale RP and
gammatone-scale RP performed relatively better than the
baseline MFCC and CQCC features and other comparison
feature (i.e., RFCC, CQCC (6-8 kHz), and VESA-IFCC)
on the evaluation dataset. Moreover, the scores of the
Mel-scale RP and gammatone-scale RP could be com-
bined with the CQCC feature to obtain an additional
improvement on the development and evaluation sub-
sets. We confirmed that the proposed Mel-scale RP and
gammatone-scale RP were very useful for replay attack
detection.
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In the future, we would like to explore the effectiveness
of using the Teager energy operator phase information
and other classifiers for replay attack detection.
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