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Music detection from broadcast contents
using convolutional neural networks with a
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Abstract

We propose a new method for music detection from broadcasting contents using the convolutional neural
networks with a Mel-scale kernel. In this detection task, music segments should be annotated from the broadcast
data, where music, speech, and noise are mixed. The convolutional neural network is composed of a convolutional
layer with kernel that is trained to extract robust features. The Mel-scale changes the kernel size, and the
backpropagation algorithm trains the kernel shape. We used 52 h of mixed broadcast data (25 h of music) to train
the convolutional network and 24 h of collected broadcast data (ratio of music of 50–76%) for testing. The test data
consisted of various genres (drama, documentary, news, kids, reality, and so on) that are broadcast in British English,
Spanish, and Korean languages. The proposed method consistently showed better performance in all the three
languages than the baseline system, and the F-score ranged from 86.5% for British data to 95.9% for Korean drama
data. Our music detection system takes about 28 s to process a 1-min signal using only one CPU with 4 cores.
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1 Introduction
Broadcast contents consist of various signals, such as
music, speech, background music, noise, and sound
effects. The music type of broadcast content is diverse, for
example, classical music, popular song, rap, and instru-
mental music. On average, music has a higher proportion
of broadcast contents than the other signals. Therefore,
music detection is an elementary factor in research related
to the processing of broadcast data, such as automatic
data tagging, speech/music classification, music and back-
ground music detection, and music identification. Among
these, music identification is a research topic that can be
applied to various services to provide music information
to users, or identification when claiming royalties. Music
detection results can be helpful in the preprocessing step
for fast and robust music identification.
IberSPEECH held audio segmentation challenges in

2010 [1] and 2014 [2], while MIREX held music detection
challenges in 2015 [3] and 2018 [4]. The goal of the audio

segmentation challenges in the IberSPEECH 2014 was to
segment and label audio documents indicating where
speech, music, and/or noise were present. Because the
2010 and 2014 IberSPEECH challenges used the Catalan
broadcast news database [5], the proportion of speech in
the test set was high. Consequently, research works
focused on detecting speech, rather than music. The best
system in the 2014 [2] challenge combined the results of
two subsystems. The first subsystem uses the hidden Mar-
kov model (HMM) to classify the non-overlapping class.
The second subsystem used the Gaussian mixture model
(GMM) and multilayer perceptron (MLP) to classify the
detailed classes of speech. In this system [2], they
extracted the Mel-frequency cepstral coefficient (MFCC)
[6] and i-vector [7].
In the music/speech classification and detection chal-

lenge of MIREX2015, the music/speech detection was
attempted for the data set of the British Library’s World
and Traditional Music collections. The challenge provided
a sample of the evaluation data set [3, 8]. The data had a
clear boundary between music and speech, i.e., there was
less overlap between voice and music. The highest per-
formance system [9] in this challenge consisted of two
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steps. In the first step, a symmetric Kullback Leibler (KL)
distance was used to detect the music/speech boundary.
In the second step, a second music/speech classifier was
used to classify each segment. The MFCC was used as a
feature to detect the music/speech boundary. In the music
and/or speech detection challenge of MIREX2018, there
are four tasks of music detection, speech detection, music
and speech detection, and music relative loudness estima-
tion. The system [10] that showed the best performance
in music detection was the CNN model that was trained
using TV and radio broadcasting data and annotation and
that used the Mel-spectrogram.
Theodorou et al. [11] summarized the structure of audio

segmentation in three broad categories, i.e., distance-
based, model-based, and hybrid of distance- and model-
based. The distance-based audio segmentation is an
algorithm that detects the boundary of specific acoustic
categories by the use of a distance matrix of acoustic
features. For distance-based audio segmentation, the
MFCC and zero crossing rate (ZCR) were the main
features used. The distance matrix was computed using
these features with various distance measures. In their
paper, they introduced Euclidian distance, Bayesian in-
formation criterion (BIC), KL distance, generalized like-
lihood ratio (GLR), and so on as distance measures. The
model-based audio segmentation is a method of classi-
fying each frame using a trained model. GMM-HMM and
support vector machine (SVM) were mainly used as
machine learning algorithms for the audio segments.
MFCC, ZCR, and spectrum-based features (such as
energy, pitch, bandwidth, flux, centroid, roll-off, spread,
and flatness) were mainly used as the features for training
the model of machine learning algorithms.
Due to the development of deep learning, many recent

studies utilize the deep neural network (DNN) algorithms.
Grill and Schluter [12] used the CNN and self-similarity
lag matrices (SSLMs) for music boundary detection. They
trained the network with two input features that used the
Mel-scaled log-magnitude spectrogram and SSLMs as
inputs of the CNN. They employed four different network
architectures to combine the two input features. Among
the four architectures, the fusion in the convolutional
layer showed the best performance. When used in-
dependently without combining the two features, the
Mel-scaled spectrogram showed better performance
for boundary detection than the SSLM, indicating that
the Mel-scaled spectrogram is a good feature in the
CNN-based processing.
Doukhan and Carrive [13] used a CNN model for

music/speech classification and segmentation. They
extracted the Mel-frequency cepstra, corresponding to 40
Mel-scale bands, to train the model. The CNN model
consisted of two convolutional and two dense layers. They
trained the first convolutional layer with an unsupervised

procedure based on the spherical k-means and zero-phase
component analysis (ZCA)-based whitening [14]. They
used the CNN model to classify each frame into either
speech or music. They then determined the music/speech
segments using the Viterbi algorithm. Using the MIREX
2015 music/speech detection training example material
[3], they achieved a recall performance of 82.73% for only
music segment without post-processing and 91.07% with
post-processing (Viterbi algorithm). They also published
and distributed their systems [15].
Tsipas et al. [16, 17] introduced an audio-driven algo-

rithm for the detection of speech and music events in
multimedia contents. They used a distance-based method
using a self-similarity matrix and a model-based method
using the SVM. They first computed the self-similarity
matrix with cosine distance, to find the boundary between
music and speech. They then used the SVM to classify
each frame into speech or music. Finally, by combining
the classification results of the frame unit and the detected
boundary result, the result of the segment index was
output. They extracted the ZCR, flux, spectral roll-off,
root mean square energy, MFCC, and spectral flatness per
band for boundary detection and classification.
Seyerlehner et al. [18] proposed a new feature, called

continuous frequency activation (CFA), which is espe-
cially designed for music detection. They focused on the
fact that music tends to have more stationary parts than
speech. They extracted features that represented the
horizontal component of music. They detected music
using the extracted features and machine learning algo-
rithms. They detected the music in TV production data
with a lot of speech and noise and provided a sample
audio to publicize their data environment [19]. They
classified music and non-music by comparing the
proposed CFA feature value with the threshold value. Their
method of music detection improved the classification
accuracy from 81.21 to 89.93%. Moreover, they released
some examples of those misclassifications [19]. Wieser et
al. [20] improved the performance of speech/music
discrimination using the SVM with CFA and MFCC.
In addition, Choi et al. [21] improved the automatic

music tagging performance using Mel-spectrogram and
CNN structure, while Jansson et al. [22] improved the
performance of singing voice separation using spectro-
gram and CNN structure.
We propose a convolutional layer with a Mel-scale

kernel (melCL) for music detection in the broadcast data.
We detected music from real broadcast data, which
included music mixed with noise, and speech-like back-
ground music. Our test data is very similar to the data
used in [19]. We trained the CNN model for a model-
based music detection system and applied the proposed
melCL to the first convolutional layer. We used the test
data and a public data set to compare the music detection
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performance between the proposed method and the base-
line systems.
The paper is organized as follows: Section 2 describes

the overall structure of music detection and the proposed
algorithm. Section 3 reports the experimental results and
discussion. Section 4 presents the conclusions and
describes future works.

2 Proposed method
2.1 Overall structure for music detection
Figure 1 shows the overall structure of the music
detection system. The upper part of the figure shows the

model learning process for music detection. The lower
part shows the music detection process of broadcast
data. We employed mixed data obtained by mixing
music, speech, and noise signals to train the CNN
model. The log power spectrogram was used as input to
CNN for model learning. For music detection, we calcu-
lated the log spectrograms and then classified music and
non-music on a frame-by-frame basis using the trained
CNN model. We post-processed the frame-by-frame
CNN results, and output music sections whose onset
and offset positions were annotated. Figure 2 shows an
example of music detection.

Fig. 1 Overall structure of the music detection system

Fig. 2 An example of music detection
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2.2 Mixing data
We mixed music, speech, and noise database to train the
model for the music detection. To create data similar to
the broadcast data, we created “music with speech,”
“music with noise,” and “speech with noise,” by mixing
each pure data (music, speech, and noise). Equation 1
shows the mixing method:

Mixed data ¼ g � s1 þ s2; g ¼ 10
k
.
20 � E s2ð Þ

E s1ð Þ ð1Þ

where s is signal, g is gain, k is target decibel (dB), and
E(·) is energy. We automatically generated the label of
the mixed data, and Fig. 3 shows the criterion. That is,
the music duration of pure music is labeled as the music
duration of the mixed data. The “speech with noise” data
is labeled as non-music in all durations.

2.3 Feature extraction for CNN input
We computed the log power coefficients (spectrogram)
of the short-time Fourier transform (STFT) with a win-
dow size of 25 ms (400 samples at 16 kHz sampling rate),
shift size of 10 ms (160 samples at 16 kHz sampling
rate), and 512-point FFT (fast Fourier transform). In
contrast to the conventional processing that was used in
the previous studies [2, 11–13, 16, 20], we employed the
use of a convolution layer with a Mel-scale kernel,
instead of a Mel-scale filter bank. The final dimension of

a feature vector of CNN input was (257 × 101) by splicing
50 frames on either side.

2.4 Proposed convolutional layer with a Mel-scale kernel
The Mel-scale filter bank is similar to the human
auditory characteristics. Whereas the interval of the
filter banks in the low-frequency region was narrow,
the interval in the high-frequency region was wide.
The filter shape of the common filter banks [6] was
as shown in Fig. 4. Until recently, the features with
the Mel-scale (Mel-scaled spectrogram, MFCC) have
been widely used for processing audio signals and
have produced good performance [2, 11–13, 16, 20,
21, 23]. However, several studies have recently
attempted to detect music by suggesting or adding
new features [12, 18, 20] because there are limitations
in music detection through using features extracted
from fixed filter bank shapes. To overcome the limita-
tions, we attempted to implement a new filter bank
whose center frequency was located in the Mel-scale,
but whose filter shape was learned from input data.
From this reasoning, we proposed to use a convolu-
tional layer with a Mel-scale kernel (melCL).
We describe the Mel-scale spectrograms and one-

dimensional convolutional layers to help understand
melCL. The conventional Mel-scale spectrogram is the
Fourier transform point multiplied by the Mel-scale
filter, as shown below:

Fig. 3 Mixing and labeling

Fig. 4 Mel-scale filter bank
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yti ¼ wi � xt ð2Þ
where xt is a Fourier transform point vector for the t-th
frame, and wi is the weight of the i-th bin of Mel-scale
filter bank. The weight of the i-th bin has fixed values
with a triangular shape, and the size of the wi bin
changes according to the Mel-scale, as shown in Fig. 4.
The Mel-scale filter bank is advantageous for audio
processing, because of its different sizes depending on
the frequency. Because the low-frequency regions con-
tain more information than the high-frequency regions,

the Mel-scale helps to extract robust features from the
audio data.
Next, the kernel equation of the one-dimensional

convolution layer is as shown below:

yti ¼ F w � xt þ bð Þ ð3Þ

where w and b are the weight and the bias of kernel and
F is an activation function. The kernel weight of CNN
can be trained to benefit music detection through the

Fig. 5 Convolutional layers with a a fixed-size kernel and b a Mel-scale kernel

Fig. 6 The structure of the CNN
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backpropagation algorithm. However, a fixed-size kernel
will be applied for all frequency regions.
We have implemented the melCL by combining these

two advantages. We also implemented a two-dimensional
kernel composed of a two-dimensional convolution layer
to learn more about optimized filters. Figure 5 shows the
basic convolution layer with (a) a fixed kernel and (b) a
convolution layer with the Mel-scale kernel. Figure 5 a
shows the temporal and frequency dimensions of the
kernel fixed at all times. However, Fig. 5 b shows the
frequency dimension of the kernel is large in the
high-frequency region and small in the low-frequency
region. We initialize the kernel weight of the melCL
to the weight of the Mel-scale filter bank, to obtain
the stability of the learning process and improved
performance. The melCL has a temporal dimension of
kernel of 5 with stride 1, the hyperbolic tangent activation
function, and a feature map of 3.

2.5 CNN
We used a CNN with a Mel-scale convolutional layer and
3 convolutional layers appended with 2 fully connected
feed-forward layers, and a softmax layer for class output.
The three subsequent conventional convolutional layers of
the CNN had feature maps of 32, 64, and 128, respectively.

Each convolutional layer had a 3 × 3 kernel with stride
1, ReLU (rectified linear unit) activation function, and a
2 × 2 max pooling with stride 2. Figure 6 shows the
detailed structure of the CNN. The CNN was trained
for 50 epochs with cross-entropy loss function, Adam
optimizer, mini-batch size of 300, learning rate of 0.001,
and dropout probability of 0.4.

2.6 Post-processing
The music detection results obtained from frame-by-
frame processing appear as a very small segment. How-
ever, the music duration of broadcast data is mostly long,
which includes many frames. We applied a median filter
[24] with a size of 5 s to the frame-by-frame detection
results, in order to obtain smoothed segmentation results.
The median filter was repeatedly applied 3 times. The
post-processing removes or merges the small segments to
represent the detection result as a large segment. Figure 7
shows the original and post-processing results.

3 Experimental results and discussion
3.1 Database
We used the mixed data set to train the model for music
detection. This data set was created by mixing music,
speech, and noise. We used 25 h of library music (song,
classic, instrumental, and so on), 25 h of the librivox
(speech) in the MUSAN database [25], and 2 h 46min of
the ESC-50 database (noise) [26]. Table 1 shows the
information on the mixed data used in the training. In
order to equalize the duration of data 1 and 2, we
copied data 2, or cut it to the length of data 1. In
Table 1, k is a random value of 5 units in the range. The
“music with speech” was mixed so that the energy of

Fig. 7 Original and post-processing results

Table 1 Information on mixed data

Mixed data Data 1 Data 2 Target
dB (k)

Total
duration (h)

Music with speech Library music Librivox − 30–0 dB 25

Music with noise Library music ESC-50 0–30 dB 25

Speech with noise Librivox ESC-50 0–30 dB 25
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music signal is lower than that of speech, which is
similar to broadcast data.
We collected the broadcast data in 3 languages, i.e.,

British English, Spanish, and Korean, for the test of
music detection. The broadcast data in British English
and Spanish included various genres, such as drama,
documentary, news, and kids. They had 8 and 12 h,
respectively. The Korean broadcast data consisted of 3 h
of drama and 1 h and 30 min of reality show. They also
included metadata that manually tagged the music
segment. We used Praat [27] to create metadata. The
metadata includes speech and music start and end times.
Tagging of music segment and speech segment was per-
formed independently. Accordingly, these data include
background music and even include music whose power
of music is smaller than the power of speech or noise. In
particular, the metadata of Korean drama data also
includes noise segments. We used the Korean drama
data as a development data set for model selection and
parameter adjustment.

We also used two public data for evaluation. The first
was the MIREX 2015 data for music/speech detection
[3]. The second was Seyerlehner’s dafx 07 data for music
detection in television productions [18]. The length of
the MIREX 2015 data was 5 h and included classical,
folk, ethnic, and country music. We note that the data
also contained a very small amount of overlapping music
and speech. The dafx 07 data was 9 h and includes talk
show, music show, documentary, news, soap opera,
parliament, and cooking show.
Table 2 shows the ratio of music and non-music of

the data we collected and the public data. Since most
of the data is tagged only for music and speech seg-
ments, it is not possible to display the mixing ratio
for the noise. However, since the noise segment is
tagged in the Korean drama data, the mixing ratio of
the noise is also displayed. The dafx 07 data is tagged
only in the music segment. In the case of the British,
Spanish, and dafx 07 data, the ratio of music is low,
unlike other data, because it contains a genre with a

Table 2 Ratio (%) of music and non-music

Label Korean drama (dev) Korean reality British broadcast Spanish broadcast MIREX 2015 Dafx 07

Pure music 35.2 19.8 26.9 29.5 74.3 43.0

Music + noise 15.4

Music + speech 15.7 56.5 20.0 20.5 2.1

Music + speech + noise 1.0

Total music 67.5 76.3 53.0 50.0 76.5 43.0

Total non-music 32.4 23.6 46.9 50.0 23.5 57.0

Total duration (h) 2.9 1.6 7.9 12 5.24 9

Fig. 8 Density of music segment duration
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small proportion of music (news, talk show, and so
on), which can be expected to be more difficult data
for music detection. Figure 8 shows the density of the
music segment duration. The peak of the density
distribution is around 20 s, which means that more
than half the music segment duration is longer than
20 s. A very long music segment is even longer than
700 s. These long segments of music make it difficult
to detect music.

3.2 Baseline systems
We implemented the baseline systems for performance
comparison with our proposed algorithm. The first base-
line system had the same CNN structure as the structure
of the proposed algorithm, but did not include the
melCL. Other baseline systems had a RNN structure,
which was composed of the bidirectional GRU (gated re-
current unit) [28] or LSTM (long short-term memory)
layers [29]. The RNN structure had 2 layers with 1024
node, the hyperbolic tangent activation function, and
backpropagation through time (BPTT) of 101 (the
same as the temporal dimension of the CNN input).
Each baseline system implemented two versions, using
the log power coefficients (spectrogram) of STFT with
512 FFT points or Mel-spectrograms as inputs of
CNN or RNN.

3.3 Model selection
We had the model (baseline and proposed system) learn
with many epochs (over 50 epochs). However, it is well
known that as the model is repeatedly learned, the
model overfits the training data. In addition to our
system, overfitting is a more critical problem, because
the domains of training data (mixed data) and test data
(broadcast data) are very different. For this reason, we
needed to select the optimal model. We saved the model
every 5k iterations (1k for RNN). We evaluated the saved
models using the development datasets and selected the
best performance model. We repeated the overall ex-
periment three times and confirmed the consistency of
the experimental results.

4 Results
We first visualized the weights of the learned Mel-scale
kernels. Figure 9 shows the initial weights and the final
weights of the Mel-scale kernels. Each row corresponds
to the bins #1, #31, and #61 of the Mel-scale filter, the
left is the initial weight, and the right is the weight after
learning. Each bin has three kernels, depending on the
number of feature maps. We did not find any special
patterns in the learned kernel, but we found that the
learned kernel is different from the Mel-scale filter,

Fig. 9 The weight of the Mel-scale kernels
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which indicates that Mel-scale filters are not always the
best solution.
We calculated the frame-by-frame F-score, precision,

and recall to verify the music detection performance.
Table 3 shows the music detection performance of the
proposed algorithm and baseline systems. Here, the
number of bins for the melCL and Mel-spectrogram was
64, and the temporal dimension of the input of all sys-
tems was 101. The number of parameters to be studied

were about 29.47 million in the proposed system,
114.66 million for the first baseline system (using spec-
trogram + CNN), 29.46 million for the second baseline
system (using Mel-spectrogram + CNN), 20.46 million for
the third baseline system (using spectrogram + bi-GRU),
19.28 million for the fourth baseline system (using Mel-
spectrogram + bi-GRU), and about 25.71 million for the
fifth baseline system (using Mel-spectrogram + bi-LSTM),
respectively. The F-score in the table shows that the

Table 3 Performance of the proposed and baseline systems

Test data Model type F-score (%) Precision (%) Recall (%)

Korean drama (dev) Spectrogram + CNN with melCL (proposed) 95.9 95.9 96.0

Spectrogram + CNN 92.2 94.0 90.5

Mel-spectrogram + CNN 94.2 95.7 92.8

Spectrogram + bi-GRU 88.0 87.0 89.0

Mel-spectrogram + bi-GRU 93.4 91.9 95.0

Mel-spectrogram + bi-LSTM 90.6 90.1 91.1

Korean reality Spectrogram + CNN with melCL (proposed) 94.7 93.0 96.4

Spectrogram + CNN 90.7 91.4 89.9

Mel-spectrogram + CNN 93.5 91.1 95.9

spectrogram + bi-GRU 90.6 84.9 97.2

Mel-spectrogram + bi-GRU 92.3 88.5 87.8

Mel-spectrogram + bi-LSTM 92.6 87.5 98.4

British 8 h Spectrogram + CNN with melCL (proposed) 86.5 85.3 87.8

Spectrogram + CNN 83.5 79.8 87.5

Mel-spectrogram + CNN 86.8 83.3 90.5

Spectrogram + bi-GRU 75.0 65.7 87.4

Mel-spectrogram + bi-GRU 78.5 67.8 93.1

Mel-spectrogram + bi-LSTM 80.5 72.5 90.5

Spanish 12 h Spectrogram + CNN with melCL (proposed) 88.9 84.7 93.4

Spectrogram + CNN 86.6 80.0 94.4

Mel-spectrogram + CNN 80.9 70.6 94.6

Spectrogram + bi-GRU 75.3 63.8 92.0

Mel-spectrogram + bi-GRU 74.1 61.5 93.2

Mel-spectrogram + bi-LSTM 75.6 63.4 93.6

MIREX
2015

Spectrogram + CNN with melCL (proposed) 95.3 99.4 91.6

Spectrogram + CNN 93.8 98.8 89.3

Mel-spectrogram + CNN 92.5 93.8 91.2

Spectrogram + bi-GRU 92.8 94.9 90.8

Mel-spectrogram + bi-GRU 94.3 92.3 96.4

Mel-spectrogram + bi-LSTM 95.3 94.1 92.7

Dafx 07 Spectrogram + CNN with melCL (proposed) 84.9 84.0 85.9

Spectrogram + CNN 84.4 77.7 92.3

Mel-spectrogram + CNN 80.1 69.2 95.1

Spectrogram + bi-GRU 68.4 57.5 84.5

Mel-spectrogram + bi-GRU 69.0 53.3 98.0

Mel-spectrogram + bi-LSTM 70.6 55.4 97.3
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proposed system was better than the baseline systems for
all the data sets, except the British 8-h data set. The high-
est F-score in the British 8-h data set was 86.8% in the sec-
ond baseline system, which is very similar to the 86.5% in
the proposed system. The proposed system showed stable
values of more than 84% in both precision and recall of all
data sets. This means that the proposed system achieved a
stable performance regardless of the type of data. The
F-score of the proposed system showed the highest
value of 95.9% on the Korea drama data. In the base-
line systems, the Mel-spectrogram and spectrogram
have different performance, depending on the data.
We measured the performance by genre to investigate

the cause of performance degradation of the British and
Spanish data among our collected data. Table 4 shows

the performance by genre of the British and Spanish data.
Both data have low detection performance in drama and
documentary. In particular, the news genre of the Spanish
data showed very low precision, which is expected to be
very small in the news genre. Interestingly, both data have
the highest performance for the kids genre, and we
assume that this is because the kids genre uses a lot of
music and universal music, compared to other genres.
Next, we compared the proposed method with open

source programs. We used open source of music/speech
discrimination [16] and audio segmentation toolkit [15].
The two open-source sources are different from the data
and learning methods we use for learning. Because both
open sources do not allow overlap of music and speech,
there is a limitation in performance comparison with
our system. However, we performed this comparison
experiment to verify that the performance of our algo-
rithm was reliable. In order to compare the performance
fairly, we measured the detection performance of the
music segment without speech.
Table 5 shows the music detection performance of our

proposed algorithm and other algorithms. The perfor-
mance of the music segment without speech is indicated
by “recall_nosp.” Because unlike our algorithm, the other
algorithms [15, 16] do not allow overlap, we mainly com-
pared the performance of precision and recall_nosp. The
algorithm with the highest precision varied with the test
data. This fact seems to result from the difference in the
algorithm structure and the influence of the learning data
(especially music). Nevertheless, our algorithm showed

Table 4 Performance of the proposed algorithm by genre

Test data Genre F-score (%) Precision (%) Recall (%)

British 8 h Documentary 81.6 75.5 88.8

Drama 78.4 82.5 74.7

Kids 96.1 95.5 96.7

Reality 86.0 86.5 85.5

Show 86.9 86.2 87.5

Spanish 12 h Documentary 79.6 72.8 88.0

Drama 88.9 82.3 96.5

Kids 95.6 98.6 92.7

News 22.8 13.1 89.8

Show 92.3 91.5 93.1

Table 5 Performance of the proposed and other discrimination algorithms

Test data Algorithm F-score (%) Precision (%) Recall (%) Recall_nosp (%)

Korean drama Proposed 95.9 95.9 96.0 96.8

Tsipas et al. [16] 77.9 97.0 65.1 74.6

Doukhan et al. [15] 79.9 95.4 68.7 80.3

Korean reality Proposed 94.7 93.0 96.4 97.5

Tsipas et al. [16] 66.6 96.2 51.0 67.6

Doukhan et al. [15] 68.0 96.4 52.5 75.6

British 8 h Proposed 86.5 85.3 87.8 92.2

Tsipas et al. [16] 67.8 83.2 57.3 72.2

Doukhan et al. [15] 67.4 80.6 57.9 86.7

Spanish 12 h Proposed 88.9 84.7 93.4 96.8

Tsipas et al. [16] 71.1 91.8 58.0 76.4

Doukhan et al. [15] 73.1 92.9 60.2 86.5

MIREX 2015 Proposed 95.3 99.4 91.6 92.5

Tsipas et al. [16] 96.4 99.3 93.7 96.1

Doukhan et al. [15] 95.4 99.3 91.9 94.1

Dafx 07 Proposed 87.6 88.3 87.0 87.0

Tsipas et al. [16] 70.6 88.7 58.7 58.7

Doukhan et al. [15] 65.7 87.9 52.4 52.4
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the highest recall in most of these data (except MIREX
2015). We think that the reason is because we used
music with noise as training data. We guess that the
recall of our algorithm is somewhat low because of
the large proportion of pure music in MIREX 2015 data.

5 Conclusion
In this paper, we propose a new method of music detec-
tion in broadcast content by using a convolutional layer
with a Mel-scale kernel. Our proposed system is the CNN
model with melCL, which is trained by mixed data with
music, speech, and noise. To verify the performance, we
developed a baseline system, collected the broadcast data
in various languages of British English, Spanish, and
Korean, and performed various music detection experi-
ments. As a result, the proposed method showed better
performance than the baseline system. For the Korean
drama data set, it showed an F-score of 95.9%. In addition,
the proposed method showed a higher performance than
the other methods of music detection that used open
sources. We also submitted our algorithm to the MIREX
2018 Challenge [4] and achieved the second-best result
in the music detection task. However, we found that
sometimes there are missed detections of music (per-
cussive and traditional music) and false detection of
noise (bells ringing). We will study robust music detec-
tion and music/non-music separation based on the
proposed method. We also plan to extend our research
to speech/non-speech detection.
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