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Abstract

Voice conversion (VC) is a technique of exclusively converting speaker-specific information in the source speech
while preserving the associated phonemic information. Non-negative matrix factorization (NMF)-based VC has been
widely researched because of the natural-sounding voice it achieves when compared with conventional Gaussian
mixture model-based VC. In conventional NMF-VC, models are trained using parallel data which results in the speech
data requiring elaborate pre-processing to generate parallel data. NMF-VC also tends to be an extensive model as this
method has several parallel exemplars for the dictionary matrix, leading to a high computational cost. In this study, an
innovative parallel dictionary-learning method using non-negative Tucker decomposition (NTD) is proposed. The
proposed method uses tensor decomposition and decomposes an input observation into a set of mode matrices and
one core tensor. The proposed NTD-based dictionary-learning method estimates the dictionary matrix for NMF-VC
without using parallel data. The experimental results show that the proposed method outperforms other methods in
both parallel and non-parallel settings.

Keywords: Voice conversion, Non-negative Tucker decomposition, Non-negative matrix factorization, Non-parallel
training

1 Introduction
Voice conversion (VC) is a technique used to convert
speaker-specific information in the speech of a source
speaker into that of a target speaker while retaining
linguistic information. Lately, VC techniques have been
garnering particular attention [1], and various statisti-
cal approaches to VC have been studied [2, 3] as these
techniques can be applied to numerous tasks [4–8]. Of
these approaches, the Gaussian mixture model (GMM)-
based mapping method [9] is the most prevalent,
and a number of enhancements have been proposed
[10–12]. Other VCmethods, such as approaches based on
non-negative matrix factorization (NMF) [13–15], neural
networks [16], deep learning [17, 18], restricted Boltz-
mann machines [19–21], variational autoencoders [22],
and a generative adversarial network [23], have also been
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proposed. Notably, in recent years, the NMF has outper-
formed GMM in parallel data conditions. Exemplar-based
NMF-VC retains the high naturality of the converted
speech, and many of its variants have been proposed
[24, 25]. Although more recent deep learning methods
require significantly large training data, NMF-VC requires
comparatively less training data. Therefore, this study
focuses on NMF-VC.
NMF [26] is one of the most popular sparse rep-

resentation methods. The goal of NMF is to decom-
pose the input observation into two matrices: the basis
matrix and weight matrix. In this study, the basis
matrix is referred to as the “dictionary," and the weight
matrix as the “activity." The NMF-based method can be
classified into two approaches: the dictionary-learning
approach [14] and exemplar-based approach [27]. In the
dictionary-learning approach, the dictionary and activity
are estimated simultaneously during the training, and the
estimated dictionary is used in conversion. However, in
the exemplar-based approach, the training data is straight-
away used as exemplars in the conversion step. By using
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the learned dictionary instead of the exemplars, the VC is
executed with lower computation times.
However, both the NMF-based approaches require par-

allel data (aligned speech data from the source and the
target speakers, so that each frame of the source speaker’s
data corresponds to that of the target speaker’s data) for
training the models, which leads to several problems.
First, the data are limited to predefined statements (both
speakers must utter the same statements). Second, the
training data (the parallel data) are not the original speech
data anymore, as the speech data are stretched and mod-
ified along the time axis when aligned, and there is no
certainty that each frame is aligned perfectly. As the dic-
tionary is assembled from parallel data, the error of align-
ment in the parallel data might adversely affect VC perfor-
mance. Several other approaches have been proposed that
do not use (or minimally use) parallel data of the source
and the target speakers [28–30]. For example, in [28],
the spectral relationships between two arbitrary speak-
ers (reference speakers) is modeled using GMMs and the
source speaker’s speech is converted using the matrix that
projects the feature space of the source speaker into that of
the target speaker through that of the reference speakers.
In this study, the conventional NMF-based VC method
is expanded into a non-parallel VC method. A previous
study [30] proposed using the phone segmentation results
from automatic speech recognition to construct a sub-
dictionary for each phone for an exemplar-based NMF
voice conversion. This particular technique was applied to
the non-parallel VC.
To tackle the non-parallel approach, a non-negative

Tucker decomposition (NTD) [31–33]-based dictionary-
learning method is proposed. The NTD is a non-negative
extension of the Tucker decomposition that decomposes
the input observation into a set of matrices and one core
tensor. Tucker decomposition is generally introduced to
deal with a high-order tensor. In recent studies, Tucker
decomposition has been widely applied in visual question-
answering systems [34] and speech recognition [35]. As
spectral features are used for input observation, a set of
matrices consists of two mode matrices for frequency and
time and a core tensor corresponding to a corematrix. It is
assumed that these matrices correspond to the frequency
basis matrix, the phonemic information, and a codebook
between the frequency basis and each phone, respectively.
In the proposed approach, the activity matrix in NMF is
decomposed into the codebook and the phonemic infor-
mation. When learning the dictionaries, while the activity
matrix is shared between speakers using parallel data in
the conventional NMF-VC, in the proposed method, the
codebook is shared between speakers, and the phone-
mic information is dependent on a speaker. Hence, the
time-varying phonemic information can be captured for
each speaker. During the conversion, only the phonemic

information matrix is estimated as the activity matrix. As
the proposed method can have time-dependent factors
for each speaker, there is no necessity for parallel data.
To the best of authors’ knowledge, NTD-based VC has
not been attempted, except [36] where Tucker decompo-
sition was used to represent the speaker space and the
conversion mechanism was based on GMM. The present
VC is based on NMF, and this approach is fundamentally
different from those presented previously [36].
Several methods have been proposed for tensor decom-

position [37–39]. In [37], NMF is applied to variational
Bayesian matrix factorization, where each observed entry
is assumed to be a beta distribution. Shi et al. [38] pro-
posed tensor decomposition with variance maximization
for feature extraction. In [39], pairwise similarity infor-
mation is incorporated into Tucker tensor decomposition.
While these methods have useful properties, it is diffi-
cult to adapt them directly to VC. NTD can be readily
integrated with NMF-based VC, because NMF is the
second-order case of the Tucker decomposition with the
non-negative constraint.
The rest of this paper is organized as follows. In

Section 2, a conventional NMF-based VC is described.
Section 3 includes the description of the proposed
method. Section 4 details the evaluation of the experimen-
tal data, and Section 5 details the Experiments on VCC
2018. Finally, in Section 6, the conclusions are presented.

2 NMF-based voice conversion
NMF is a matrix decomposition method under non-
negative constraints. The basic idea behind decomposing
a matrix X ∈ R

F×T is to find two matrices W ∈ R
F×K

and H ∈ R
K×T that minimize the distance between X

and WH under non-negative constraints. F and T repre-
sent the number of dimensions and frames. In NMF, W
is called a basis matrix and contains K bases in columns.
H is called an activity matrix and indicates the activity of
each basis along the time index.
VC approaches using NMF are divided into two cat-

egories: supervised and unsupervised approaches. The
supervised approach, known as the exemplar-based VC,
estimates only the activity from observation and the dic-
tionary must be provided. However, the unsupervised
approach, i.e., the dictionary-learning VC, estimates both
the dictionary and the activity from observation. The pro-
posed method is based on the latter, i.e., the dictionary-
learning approach.

2.1 Dictionary learning using nMF
Figure 1 shows the basic approach of the dictionary-
learning NMF-based VC [14], where F, T, and K represent
the number of dimensions, frames, and bases, respec-
tively. This VC method needs two dictionaries that are
phonemically parallel. Ws ∈ R

F×K represents a source
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Fig. 1 Basic approach of NMF-based voice conversion

dictionary, andWt ∈ R
F×K represents a target dictionary.

In exemplar-based VC, these two dictionaries consist of
the samewords or sentences and are aligned with dynamic
time warping (DTW), which is comparable with the con-
ventional GMM-based VC. In dictionary-learning VC,
these two dictionaries are estimated simultaneously and
as a result have the same number of bases.
For the training source speaker data Xs ∈ R

F×T and the
training target speaker data Xt ∈ R

F×T , two dictionaries
Ws, Wt , and the activity H ∈ R

K×T are simultaneously
estimated. The cost function of this joint NMF is defined
as follows:

dKL
(
Xs,WsH

) + dKL
(
Xt ,WtH

) + λ||H||1
s.t.Ws,Wt ,H ≥ 0, (1)

where Xs and Xt represent parallel data. In Eq. (1),
dKL(A,B) denotes the Kullback-Leibler divergence
between the two matrices A and B, and the last term is
the sparsity constraint with the L1-norm regularization
term that causes the activity matrix to be sparse. λ repre-
sents the weight of the sparsity constraint. This function
is minimized by iteratively updating parameters, as is
done in the traditional NMF.
This method assumes that when the source and the tar-

get spectra (which are from the same words but spoken
by different speakers) are expressed with sparse represen-
tations of the source dictionary and the target dictionary,
respectively, the obtained activity matrices are approxi-
mately equivalent to each other. In the conversion process,
for the input source spectrogram Xs, only the activity
Hs is estimated while fixing the source dictionary Ws.

The estimated source activity Hs is multiplied with the
target dictionary Wt , and the target spectrogram X̂t is
constructed as follows:

X̂t = WtHs. (2)

2.2 Problems
NMF-based VC has several problems. First, if the source
and target utterances are aligned using DTW in advance,
the estimated parameters are affected by the quality of
the alignment. And a mismatch of alignment appears to
persist. Aihara et al. [24] have shown that this mismatch
degrades the performance of exemplar-based VC. Second,
it appears that the activity matrix contains other informa-
tion along with the phonetic information. Aihara et al. [25,
27] assumed that the activity matrix contains the phonetic
information and speaker information, and accordingly
proposed certain frameworks to overcome this effect,
thereby improving the performance of NMF-based VC.
In this study, an alternative approach is proposed. The
activity matrix is decomposed into the speaker-shared
matrix and the speaker-dependent phonetic information
matrix. This decomposition makes parallel data unnec-
essary. Moreover, during the conversion, estimating only
the phonetic information matrix as the activity matrix is
expected to improve the accuracy of activity estimation.

3 Methods
3.1 NTD
Given a non-negative N-way tensor, NTD [40] decom-
poses the input tensor into a core tensor and a set of mode
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matrices that are restricted to have only non-negative ele-
ments. In this study, as the spectral features are used as the
input observation, a core tensor is represented as a matrix,
and there are two mode matrices. Under these conditions,
NTD is simply defined as follows:

X ≈ UGV� s.t. U,G,V ≥ 0, (3)

where X ∈ R
F×T , U ∈ R

F×M, V ∈ R
T×L, and G ∈ R

M×L

represent an input spectrogram, a mode matrix along the
frequency axis, a mode matrix along the time axis, and a
core matrix, respectively. F, T,M, and L indicate the num-
ber of frequency bins, frames, frequency basis, and time
basis, respectively. The cost function of NTD is defined as
follows:

dKL
(
X,UGV�)

. (4)

NTD provides a general form of the non-negative tensor
factorization including a special case of NMF; updating
algorithms have been proposed in [40]. These updating
algorithms are based on that NMF.

3.2 Dictionary learning using nTD
This section describes the method of estimating a paral-
lel dictionary between the source and target speakers by
NTD. The objective function is represented as follows:

αdKL
(
Xs,UsGVs�)

+ βdKL
(
Xt ,UtGVt�)

+λ||Vs�||1 + λ||Vt�||1
s.t. Us,Ut ,G,Vs,Vt ≥ 0, (5)

where Xs ∈ R
F×Ts , Xt ∈ R

F×Tt , Us ∈ R
F×M, Ut ∈ R

F×M,
Vs ∈ R

Ts×L, Vt ∈ R
Tt×L, and G ∈ R

M×L represent the
source and target spectrograms, the source and target fre-
quency basis matrices, the source and target time basis

matrices, and a core matrix, respectively. α and β repre-
sent the weight of each term. F, Ts, Tt , M, and L indicate
the number of frequency bins, source and target frames,
frequency basis, and time basis, respectively. This func-
tion is minimized by iteratively updating the following
equations in the same manner as the NTD:

Us ←Us. ∗
(
H̃s (Xs./UsH̃s)� ./H̃s1(Ts×F)

)�
(6)

Ut ←Ut . ∗
(
H̃t (Xt ./UtH̃t)� ./H̃t1(Tt×F)

)�
(7)

Vs ←Vs. ∗
((

Xs./W̃sVs�)�
W̃s

)

./
(
1(Ts×F)W̃s + λ1(Ts×L)

)
(8)

Vt ←Vt . ∗
((

Xt ./W̃tVt�)�
W̃t

)

./
(
1(Tt×F)W̃t + λ1(Tt×L)

)
(9)

G ←G. ∗
(
Us� (

Xs./X̃s)Vs + Ut� (
Xt ./X̃t)Vt

)

./
(
Us�1(F×Ts)Vs + Ut�1(F×Tt)Vt

)
(10)

H̃s =GVs�, H̃t = GVt�, W̃s = UsG, W̃t = UtG,

X̃s =UsGVs�, X̃t = UtGVt�,

where .∗ and ./ denote element-wise multiplication and
division, respectively. In this framework, only a core
matrix G is shared, and time-varying matrices Vs and
Vt are dependent on each speaker, as shown in Fig. 2.
Therefore, there is no necessity for parallel data.
After each matrix in the model is estimated, the source

and target parallel dictionaries are calculated as UsG and
UtG, respectively. During conversion, for the given source
spectrogram Xs, only Vs is estimated as Xs = UsGVs�.

Fig. 2 Decomposition of spectrograms to frequency bases and phonemic information using NTD
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Then, the target spectrogram X̂t is obtained as X̂t =
UtGVs�.
It is assumed that Us and Ut represent the frequency

basis matrices, and Vs and Vt represent the phone-
mic information. As the core matrix is not dependent
on either the frequency or the time, this matrix rep-
resents the codebook between the frequency bases and
the phones. Based on this assumption, the core matrix
makes a correspondence between frequency bases and
phones. Specifically, there are L phones, and a spectrum
of each phone is constructed using M frequency bases.
Although the information contained in the activity matrix
is not only the phonemic information, in conventional
NMF-based approaches, the activity matrix is assumed
to contain only the phonemic information. Therefore, the
estimated activity is degraded. In contrast, the proposed
NTD-based approach specifically decomposes the activ-
ity matrix into the speaker-shared information and the
speaker-dependent phonemic information. Therefore, it is
expected that the performance of the activity estimation
will be improved during conversion.

4 Experimental evaluation
4.1 Conditions
The proposed VC technique was evaluated in a speaker-
conversion task using clean speech data by com-
paring its results with the conventional GMM-based
method [10], the conventional NMF-based dictionary-
learning method [14], and an adaptive restricted Boltz-
mann machine (ARBM)-based method [20] that does
not use parallel data. For the evaluation, voice sam-
ples of speech data stored in the ATR Japanese speech
database [41] of three males and three females were
used. The sampling rate was 16 kHz. A total of 45
sentences were used for training, and another 50 sen-
tences were used for testing. Parallel data aligned using
dynamic programming matching (DPM) was used to
train the GMM-based and NMF-based methods. The
proposed method and the ARBM-based method do not
require parallel data. As training data, the same utter-
ances were used for the source and the target speaker
in the parallel setting, and completely different utter-
ances for each speaker were used in the non-parallel
setting.
Parameter initialization has a significant impact on the

conversion performance. In this study, Vs and Vt are
initialized randomly. Table 1 shows the initialization algo-
rithm for Us, Ut , and G. In the parallel setting, the initial-
ization is based on the NMF framework using parallel data
calculated by the source and target training data. In the
non-parallel setting, the initialization is based on theNMF
and NTD frameworks. This initialization method uses an
adaptive matrix [42]. Finally, initialized parameters are
optimized by Eqs. (6) to (10).

Table 1 Algorithm for initializing parameters

Initializing in the parallel setting

• Set source and target parallel data Xs and Xt

• OptimizeWs ,Wt , and Hminimizing dKL(Xs ,WsH) + dKL(Xt ,WtH)

• Optimize Us , Ut , and Gminimizing dKL(Ws ,UsG) + dKL(Wt ,UtG)

Initializing in the non-parallel setting

• Set source training data Xs

• OptimizeWs and Hs while minimizing dKL(Xs ,WsHs)

• Set target training data Xt

• Optimize A and Ht while minimizing dKL(Xt ,AWsHt) while fixingWs

• Optimize Us , Ut , and G while minimizing dKL(Ws ,UsG) + dKL(AWs ,UtG)

In the conventional NMF-based method and the pro-
posedmethod, a 513-dimensionalWORLD spectrum [43]
is used for spectral features. The hyperparameters α and
β are used to control the length of the training data
for the source and the target speaker, respectively. These
parameters were set as follows:

α = min(Ts,Tt)/Ts (11)
β = min(Ts,Tt)/Tt , (12)

where Ts and Tt represent the number of frames of source
and target training data, respectively. The sparse con-
straint λ was set to 0.2. The parameters are updated until
the convergence condition |Ft − Ft−1| < ε|FT | is fulfilled,
where |Ft| indicates a value of an objective function at an
iteration t. ε was set to exp(−9). The GMM experiments
were implemented using sprocket [44]. In the conven-
tional NMF-based dictionary-learning method, the num-
ber of bases is 1000. In the ARBM-based method, a 32-
dimensional Mel-cepstrum that was calculated from the
513-dimensional WORLD spectra was used as an input
vector. Softmax constraints were set to hidden units.
In this study, a conventional linear regression based on

the mean and standard deviation [10] was used to con-
vert F0 information. Other information, such as aperiodic
components, was synthesized without any conversion.
The proposed method was evaluated both objectively

and subjectively. Mel-cepstral distortion (MCD) [dB] was
used as a measure of the objective evaluations, defined as
follows:

MCD = (10/ ln 10)

√√√√2
24∑

d=1

(
mcconvd − mctard

)2 (13)

where mcconvd and mctard represent the dth dimension of
the converted and targetMel-cepstral coefficients, respec-
tively.
The subjective evaluation was based on “speech quality"

and “similarity to the target speaker (individuality).” In the
subjective evaluation, 25 sentences were evaluated by 10
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Fig. 3 Average MCD [dB] of the conventional GMM-based VC when varying the number of mixtures

native Japanese speakers. To evaluate the speech quality, a
mean opinion score (MOS) test was performed. The opin-
ion score was set to a 5-point scale (5, excellent; 4, good; 3,
fair; 2, poor; 1, bad). For the similarity evaluation, an XAB
test was conducted, in which each participant listened to
the voice of the target speaker and then to the voice con-
verted using the two methods. The participant was then
asked to judge which sample sounded most similar to the
target speaker’s voice.

4.2 Parameters
The performance of each method was evaluated using
different parameters. One male speaker and one female

speaker were selected and male-to-female conversion and
female-to-male conversion was evaluated.
First, the performance of the conventional GMM-based

VC was evaluated using different number of mixtures.
The results obtained when using 4, 8, 16, 32, 64, and 128
mixtures are shown in Fig. 3. A lower value indicates a
better result. As shown in Fig. 3, the optimal numbers
were close to 8. Therefore, eight mixtures were used in the
subsequent experiments.
Next, the performance of the conventional ARBM-

based VC was evaluated using a different number of
hidden units. The results are shown in Fig. 4 when using
2, 4, 8, 16, 32, and 48 hidden units. As shown in Fig. 4,

Fig. 4 Average MCD [dB] of the conventional ARBM-based VC when varying the number of hidden units
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Fig. 5 Average MCD [dB] of the conventional NTD-based VC when varying the number of frequency bases

the optimal number was around 32. Therefore, 32 hidden
units were used in the later experiments.
Finally, the performance of the proposed method was

evaluated using a different number of frequency bases.
The results are shown in Fig. 5 when the numbers of fre-
quency bases M were 100, 200, 300, 400, and 500. The
optimal number was around 200. Therefore, 200 was used
as the number of frequency bases in the subsequent exper-
iments. In the experiments, to control the number of
dictionary bases during conversion, the number of time
bases L was fixed to 1000.

4.3 Results
In this section, the proposed method is compared with
conventional GMM, NMF, and ARBM-based methods.
Initially, the proposedmethod is compared with the par-

allel method in a parallel setting. Table 2 shows the average
MCD values for male-to-female conversion, female-to-
male conversion, male-to-male conversion, and female-
to-female conversion. In this table, “Mi” and “Fj” indicate
the ith male speaker and jth female speaker, respectively,
and src → tar denotes the src-to-tar conversion. The
rightmost column in the table indicates themean value for
eachmethod with a 95% confidence interval. Here, a lower
value indicates a better result. In these experiments, the

models were trained using parallel utterances. The GMM
andNMF frameworks require parallel data. For these, par-
allel utterances were used to calculate the parallel data.
Table 2 clearly demonstrates that the proposed NTD-
based dictionary learning is not affected by the alignment
error in DTW, and hence yields 10.1% and 1.8% rela-
tive improvements when compared with the conventional
GMM-based method and the conventional NMF-based
dictionary learning, respectively. Moreover, it confirms
that the proposed method achieved a significantly better
score than both the comparative methods, when using a p
value test of 0.05.
Next, the method was compared with the non-parallel

method in a non-parallel setting. Table 3 shows the
average MCD values for male-to-female conversion,
female-to-male conversion, male-to-male conversion, and
female-to-female conversion. These results show that the
proposed method has a comparable performance to the
conventional non-parallel method, ARBM. However, the
proposed method achieved a notably worse score than the
ARBM-based method, when using a p value test of 0.05.
This difference is explained in the next section.
Figure 6 shows the results of the MOS test on

speech quality. The error bar shows a 95% confi-
dence interval. Here, a higher value indicates a better

Table 2 Average MCD [dB] using parallel utterances

Male-to-female Female-to-male Male-to-male Female-to-female
Mean

M1→F1 M2→F2 M3→F3 F1→M1 F2→M2 F3→M3 M1→M3 M3→M2 F1→F3 F3→F2

GMM 6.67 7.35 6.76 6.60 6.97 7.04 6.41 7.36 6.42 7.21 6.88 ± 0.04

NMF 6.24 6.62 6.32 6.14 6.34 6.23 6.20 6.68 6.11 6.08 6.30 ± 0.03

NTD 6.12 6.50 6.31 6.04 6.23 6.08 6.05 6.66 5.99 5.86 6.19 ± 0.03
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Table 3 Average MCD [dB] using non-parallel data

Male-to-female Female-to-male Male-to-male Female-to-female
Mean

M1→F1 M2→F2 M3→F3 F1→M1 F2→M2 F3→M3 M1→M3 M3→M2 F1→F3 F3→F2

ARBM 6.52 6.69 6.27 6.48 6.76 6.62 6.98 7.04 6.37 6.21 6.59 ± 0.03

NTD 6.75 7.30 6.56 6.75 7.04 6.99 6.85 7.04 6.64 6.03 6.67 ± 0.04

result. M-to-F, F-to-M, M-to-M, and F-to-F denote male-
to-female conversion, female-to-male conversion, male-
to-male conversion, and female-to-female conversion,
respectively. “NTD (para)” and “NTD (non-para)” denote
the proposedmethod with parallel utterances training and
non-parallel utterances training, respectively. The pro-
posed method achieved a significantly better score than
the conventional methods. Specifically, NTD with the
non-parallel setting showed the best results across all
conversions.
Figures 7 and 8 show the results of the XAB test. The

error bar shows a 95% confidence interval. For this test, a
higher value indicates a better result. In Fig. 7, the results
of the proposed method and conventional NMF-based
dictionary-learningmethod are compared. In themale-to-
female and female-to-female conversions, the proposed
method achieved a better score than NMF-based dictio-
nary learning. In the male-to-male and female-to-male
conversions, the proposed method achieved a lower score
than NMF-based dictionary learning. However, the dif-
ference between the two methods is not statistically sig-
nificantly, because p > 0.3 in the p value test. The pro-
posed NTD-based dictionary learning without calculating
parallel data showed comparable performance to the con-
ventional NMF-based dictionary learning, which requires
parallel data. In Fig. 8, the results of the proposed method

and the ARBM-based VC are compared. In conversions to
male, the proposed method achieved a better score than
ARBM-base VC. In conversions to female, the proposed
method achieved a lower score than ARBM-based VC.
In only the male-to-female conversion, the difference was
significant — p < 0.05. However, in other conversions,
the difference was not statistically significant. These tests
show that the proposed non-parallel VC approach effec-
tively converts the individuality of the source speaker’s
voice to the target speaker’s voice while preserving high
speech quality.

4.4 Discussion
In the objective evaluations, the proposed method
achieved a better MCD value than the conventional VC,
which uses parallel data. This is due to the fact that the
proposedmethod is not affected by themismatch of DPM.
Moreover, the proposed NTD-based method yielded bet-
ter performance, although the number of learned param-
eters decreased by approximately 60% of the conven-
tional NMF-based one. This result indicates that the
proposed dictionary learning has better spectral represen-
tation while keeping the number of bases of dictionaries
constant during conversion. In addition, the average dif-
ference in MCD between the proposed method and the
ARBM-based method was approximately 0.08 dB. This

Fig. 6MOS of speech quality
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Fig. 7 XAB test between NMF and NTD

difference is relatively small. It is assumed that MCD is
superior to the ARBM-based method, as it uses Mel-
cepstrum as an input feature, whereas NTD-based meth-
ods use a WORLD spectrum. In the speech quality test,
the proposed method using non-parallel training data
achieved a betterMOS score than that using parallel utter-
ances. This is due to the model’s ability to learn diverse
phonemic information by using non-parallel data when
compared with parallel utterances. For example, n sen-
tences are used for each speaker as training data. In the
instances using parallel utterances, which consist of the
same context for both speakers, the frequency base matri-
cesUs andUt and the codebookG are learned from n con-
text patterns. However, in the non-parallel setting, where

a different context was used for the source and target
speakers, the frequency base matrices and the codebook
were learned from n and 2n context patterns, respectively.
A codebook was effectively learned while improving the
generalization ability. Therefore, the method using non-
parallel data outperformed that using parallel utterances.

5 Experiments on voice conversion challenge
2018

The proposed method was also evaluated on the Voice
Conversion Challenge (VCC) 2018 [45], which includes
both parallel and non-parallel recordings from native
English speakers from the USA. VCC 2018 consists of a
total of 12 speakers. Each speaker has sets of 81 and 35

Fig. 8 XAB test between ARBM and NTD
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sentences for training and evaluation, respectively. The
recordings were down sampled to 16 kHz. Systems were
conducted for the 16 combinations of source-target pairs.
The results of this objective evaluation are shown in

Table 4. Our proposed method did not outperform the
GMM-based VC in the parallel setting, while the NTD-
based method achieved 3.89% relative improvement com-
pared with the ARBM-based method in the non-parallel
setting. These results demonstrate that our method is
especially effective in non-parallel settings.

6 Conclusion
An innovative dictionary-learning method of NMF-based
voice conversion was proposed. It makes NMF-VC pos-
sible for non-parallel training. While exemplar-based VC
retains the naturality of the converted speech to a high
degree, the source and target dictionaries expand signif-
icantly. Although dictionary-learning VC achieves com-
pact dictionary representation, the parallel dictionaries
of the source and target speakers are difficult to learn.
These conventional NMF-VC methods require parallel
utterances by the source and target speakers to con-
struct the source and target dictionaries. In this study, a
method parallel dictionary learning for NMF-VC based
on NTD was proposed that does not require parallel
data during training. NTD decomposes an input obser-
vation into a set of mode matrices and one core tensor.
In the proposed framework, it is assumed that NTD
decomposes the spectrogram into the frequency basis
matrix, phonemic information matrix, and codebook
matrix. Recently, several studies have been conducted
for NMF-VC, and the scope of possible applications is
widening. It is assumed that the proposed method assists
these applications with non-parallel training. It was con-
firmed that the proposed method achieved an almost
identical MCD to the conventional NMF-based dictionary
learning that uses parallel data. Furthermore, the perfor-
mance of the proposed method was comparable to that of
the conventional ARBM-based method in a non-parallel
setting.
In future work, we plan to apply the method to assis-

tive technology for speakers with articulation disorders.
The speech of such speakers is considerably different from
that of the speech of unimpaired persons, and it is difficult
to align correctly. The proposed method does not require
the same texts of speech data for the source and tar-
get speakers or the framewise matching between acoustic

Table 4 Average MCD [dB] on VCC 2018

GMM ARBM NTD

Parallel 6.55 7.03

Non-parallel 7.97 7.70

features of both speakers. Furthermore, the NTD-based
dictionary learning is a natural expansion of the NMF-
based method, and it can read parallel and non-parallel
data to learn the dictionary. Therefore, we also aim to
investigate a semi-supervised dictionary-learning method
that improves the performance of a model trained with a
small set of parallel data using a large set of non-parallel
data.
In the real world, background noise deteriorates conver-

sion performance. However, the proposed model has not
been designed with noise robustness in mind. In order to
retain the quality of converted voices in a noisy environ-
ment, noise robustness is required. In our previous study
[46], a noise-robust NMF-based VC was proposed, where
the performance was improved by 25% compared with the
GMM-based method. As the currently proposed method
is based on NMF-based VC, it will be easy to apply the
noise-robust conversion. The evaluation of our proposed
method for a noisy environment will be a topic for our
future work.

Abbreviations
ARBM: Adaptive restricted Boltzmann machine; DPM: Dynamic programming
matching; DTW: Dynamic time warping; GMM: Gaussian mixture model; MCD:
Mel-Cepstral Distortion; MOS: Mean opinion score; NMF: Non-negative matrix
factorization; NTD: Non-negative Tucker decomposition; VC: Voice conversion;
VCC: Voice conversion challenge

Acknowledgements
Not applicable.

Authors’ contributions
YT performed the experiments and wrote the paper. YT, TN, and TT reviewed
and edited the manuscript. All of the authors discussed the final results. All of
the authors read and approved the final manuscript.

Funding
This work was supported in part by JSPS KAKENHI (no. JP17J04380) and
PRESTO, JST (no. PMJPR15D2).

Availability of data andmaterials
All data used in this study are included in the ATR Japanese speech database
[41].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Graduate School of System Informatics, Kobe University, 1-1 Rokkodai,
Nada-ku, Kobe 657-8501, Japan. 2Graduate School of Informatics and
Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka,
Chofu, Tokyo 182-8585, Japan.

Received: 19 December 2018 Accepted: 14 August 2019

References
1. T. Toda, L.-H. Chen, D. Saito, F. Villavicencio, M. Wester, Z. Wu, J. Yamagishi,

in Proc. Interspeech. The voice conversion challenge 2016 (ISCA, San
Francisco, 2016), pp. 1632–1636



Takashima et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2019) 2019:17 Page 11 of 11

2. R. Gray, Vector quantization. IEEE Assp. Mag. 1(2), 4–29 (1984)
3. H. Valbret, E. Moulines, J.-P. Tubach, Voice transformation using PSOLA

technique. Speech Comm. 11(2–3), 175–187 (1992)
4. A. Kain, M. W. Macon, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.

Spectral voice conversion for text-to-speech synthesis (IEEE, Seattle,
1998), pp. 285–288

5. C. Veaux, X. Rodet, in Proc. Interspeech. Intonation conversion from neutral
to expressive speech (ISCA, Florence, 2011), pp. 2765–2768

6. K. Nakamura, T. Toda, H. Saruwatari, K. Shikano, Speaking-aid systems
using GMM-based voice conversion for electrolaryngeal speech. Speech
Comm. 54(1), 134–146 (2012)

7. L. Deng, A. Acero, L. Jiang, J. Droppo, X. Huang, in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. High-performance robust speech
recognition using stereo training data (IEEE, Salt Lake City, 2001),
pp. 301–304

8. A. Kunikoshi, Y. Qiao, N. Minematsu, K. Hirose, in Proc. Interspeech. Speech
generation from hand gestures based on space mapping (ISCA, Brighton,
2009), pp. 308–311

9. Y. Stylianou, O. Cappé, E. Moulines, Continuous probabilistic transform for
voice conversion. IEEE Trans. Speech Audio Process. 6(2), 131–142 (1998)

10. T. Toda, A. W. Black, K. Tokuda, Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory. IEEE
Trans. Audio Speech Lang. Process. 15(8), 2222–2235 (2007)

11. E. Helander, T. Virtanen, J. Nurminen, M. Gabbouj, Voice conversion using
partial least squares regression. IEEE Trans. Audio Speech Lang. Process.
18(5), 912–921 (2010)

12. D. Saito, H. Doi, N. Minematsu, K. Hirose, in Proc. Interspeech. Application of
matrix variate gaussian mixture model to statistical voice conversion
(ISCA, Singapore, 2014), pp. 2504–2508

13. R. Takashima, T. Takiguchi, Y. Ariki, in IEEEWorkshop on Spoken Language
Technology. Exemplar-based voice conversion in noisy environment
(IEEE, Miami, 2012), pp. 313–317

14. R. Takashima, R. Aihara, T. Takiguchi, Y. Ariki, in Speech Synthesis Workshop.
Noise-robust voice conversion based on spectral mapping on sparse
space (ISCA, Barcelona, 2013), pp. 71–75

15. Z. Wu, T. Virtanen, E. Chng, H. Li, Exemplar-based sparse representation
with residual compensation for voice conversion. IEEE/ACM Trans. Audio
Speech Lang. Process. 22(10), 1506–1521 (2014)

16. S. Desai, E. V. Raghavendra, B. Yegnanarayana, A. W. Black, K. Prahallad, in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Voice conversion using
artificial neural networks (IEEE, Taipei, 2009), pp. 3893–3896

17. T. Nakashika, R. Takashima, T. Takiguchi, Y. Ariki, in Proc. Interspeech. Voice
conversion in high-order eigen space using deep belief nets (ISCA, Lyon,
2013), pp. 369–372

18. T. Nakashika, T. Takiguchi, Y. Ariki, Voice conversion using rnn pre-trained
by recurrent temporal restricted Boltzmann machines. IEEE/ACM Trans.
Audio Speech Lang. Process. 23(3), 580–587 (2015)

19. L.-H. Chen, Z.-H. Ling, Y. Song, L.-R. Dai, in Proc. Interspeech. Joint spectral
distribution modeling using restricted Boltzmann machines for voice
conversion (ISCA, Lyon, 2013), pp. 3052–3056

20. T. Nakashika, T. Takiguchi, Y. Minami, Non-parallel training in voice
conversion using an adaptive restricted Boltzmann machine. IEEE/ACM
Trans. Audio Speech Lang. Process. 24(11), 2032–2045 (2016)

21. Z. Wu, E. Chng, H. Li, in ChinaSIP. Conditional restricted Boltzmann
machine for voice conversion (IEEE, Beijing, 2013), pp. 104–108

22. Y. Saito, Y. Ijima, K. Nishida, S. Takamichi, in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. Non-Parallel Voice Conversion Using Variational
Autoencoders Conditioned by Phonetic Posteriorgrams and D-Vectors
(IEEE, Calgary, 2018), pp. 5274–5278

23. F. Fang, J. Yamagishi, I. Echizen, J. Lorenzo-Trueba, in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. High-Quality Nonparallel Voice Conversion
Based on Cycle-Consistent Adversarial Network (IEEE, Calgary, 2018),
pp. 5279–5283

24. R. Aihara, T. Nakashika, T. Takiguchi, Y. Ariki, in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. Voice conversion based on non-negative matrix
factorization using phoneme-categorized dictionary (IEEE, Florence,
2014), pp. 7894–7898

25. R. Aihara, T. Takiguchi, Y. Ariki, in Proc. Interspeech. Parallel dictionary
learning for voice conversion using discriminative graph-embedded
non-negative matrix factorization (ISCA, San Francisco, 2016), pp. 292–296

26. D. D. Lee, H. S. Seung, in NIPS. Algorithms for non-negative matrix
factorization (MIT Press, Denver, 2000), pp. 556–562

27. R. Aihara, T. Takiguchi, Y. Ariki, in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. Activity-mapping non-negative matrix factorization for
exemplar-based voice conversion (IEEE, South Brisbane, 2015),
pp. 4899–4903

28. A. Mouchtaris, J. V. der Spiegel, P. Mueller, Nonparallel training for voice
conversion based on a parameter adaptation approach. IEEE Trans. Audio
Speech Lang. Process. 14(3), 952–963 (2006)

29. T. Hashimoto, H. Uchida, D. Saito, N. Minematsu, in Proc. Interspeech.
Parallel-data-free many-to-many voice conversion based on dnn
integrated with eigenspace using a non-parallel speech corpus
(ISCA, Stockholm, 2017), pp. 1278–1282

30. B. Sisman, H. Li, K. C. Tan, in ASRU. Sparse representation of phonetic
features for voice conversion with and without parallel data
(IEEE, Okinawa, 2017), pp. 677–684

31. L. D. Lathauwer, B. D. Moor, J. Vandewalle, A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

32. P. M. Kroonenberg, J. De Leeuw, Principal component analysis of
three-mode data by means of alternating least squares algorithms.
Psychometrika. 45, 69–97 (1980)

33. L. R. Tucker, Some mathematical notes on three-mode factor analysis.
Psychometrika. 31, 279–311 (1966)

34. H. Ben younes, R. Cadène, M. Cord, N. Thome, in ICCV. Mutan: Multimodal
tucker fusion for visual question answering (IEEE Computer Society,
Venice, 2017), pp. 2631–2639

35. J.-T. Chien, C. Shen, in Proc. Interspeech. Deep neural factorization for
speech recognition, (2017), pp. 3682–3686

36. D. Saito, K. Yamamoto, N. Minematsu, K. Hirose, in Proc. Interspeech.
One-to-many voice conversion based on tensor representation of
speaker space (ISCA, Florence, 2011), pp. 653–656

37. Z. Ma, A. E. Teschendorff, A. Leijon, Y. Qiao, H. Zhang, J. Guo, Variational
bayesian matrix factorization for bounded support data. IEEE Trans.
Pattern Anal. Mach. Intell. 37(4), 876–889 (2015)

38. Q. Shi, Y.-M. Cheung, Q. Zhao, H. Lu, Feature extraction for incomplete
data via low-rank tensor decomposition with feature regularization. IEEE
Trans. Neural Netw. Learn. Syst. 30(6), 1803–1817 (2019)

39. B. Jiang, C. Ding, J. Tang, B. Luo, Image representation and learning with
graph-laplacian Tucker tensor decomposition. IEEE Trans. Cybernet. 49(4),
1417–1426 (2019)

40. Y. Kim, S. Choi, in Computer Vision and Pattern Recognition. Nonnegative
tucker decomposition (IEEE Computer Society, Minneapolis, 2007), pp. 1–8

41. A. Kurematsu, K. Takeda, Y. Sagisaka, S. Katagiri, H. Kuwabara, K. Shikano,
ATR Japanese speech database as a tool of speech recognition and
synthesis. Speech Commun. 9(4), 357–363 (1990)

42. R. Aihara, T. Fujii, T. Nakashika, T. Takiguchi, Y. Ariki, Small-parallel
exemplar-based voice conversion in noisy environments using affine
non-negative matrix factorization. EURASIP J. Audio Speech Music
Process. 2015, 32 (2015)

43. M. Morise, F. Yokomori, K. Ozawa, World: A vocoder-based high-quality
speech synthesis system for real-time applications. IEICE Trans. 99-D(7),
1877–1884 (2016)

44. K. Kobayashi, T. Toda, in Proc. Odyssey 2018 The Speaker and Language
RecognitionWorkshop. sprocket: Open-source voice conversion software
(ISCA, Les Sables d’Olonne, 2018), pp. 203–210

45. J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, T.
Kinnunen, Z.-H. Ling, in Odyssey. The voice conversion challenge 2018:
Promoting development of parallel and nonparallel methods (ISCA, Les
Sables d’Olonne, 2018), pp. 195–202

46. R. Aihara, R. Takashima, T. Takiguchi, Y. Ariki, Noise-robust voice
conversion based on sparse spectral mapping using non-negative matrix
factorization. IEICE Trans. Inf. Syst. 97-D(6), 1411–1418 (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	NMF-based voice conversion
	Dictionary learning using nMF
	Problems

	Methods
	NTD
	Dictionary learning using nTD

	Experimental evaluation
	Conditions
	Parameters
	Results
	Discussion

	Experiments on voice conversion challenge 2018
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

