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Abstract

A method called joint connectionist temporal classification (CTC)-attention-based speech recognition has recently
received increasing focus and has achieved impressive performance. A hybrid end-to-end architecture that adds an
extra CTC loss to the attention-based model could force extra restrictions on alignments. To explore better the end-
to-end models, we propose improvements to the feature extraction and attention mechanism. First, we introduce a
joint model trained with nonnegative matrix factorization (NMF)-based high-level features. Then, we put forward a
hybrid attention mechanism by incorporating multi-head attentions and calculating attention scores over multi-
level outputs. Experiments on TIMIT indicate that the new method achieves state-of-the-art performance with our
best model. Experiments on WSJ show that our method exhibits a word error rate (WER) that is only 0.2% worse in
absolute value than the best referenced method, which is trained on a much larger dataset, and it beats all present
end-to-end methods. Further experiments on LibriSpeech show that our method is also comparable to the state-of-
the-art end-to-end system in WER.
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1 Introduction
Although traditional speech recognition has been devel-
oped quite successfully over the past few decades, some of
the techniques, including hidden Markov models (HMMs)
and Gaussian mixture models (GMMs), require independ-
ent hypotheses and extra expert knowledge [1, 2]. Re-
cently, end-to-end methods have become able to ignore
these burdens and have achieved remarkable results in
many speech recognition tasks [3–5]. End-to-end models
are usually trained in a data-driven way without much in-
sertion of artificial interventions.
As important extensions of end-to-end theory,

attention-based models have been successfully applied in
speech recognition tasks. Attention-based models are
composed of an encoder, a decoder, and an attention
layer. The attention layer connects the encoder outputs
and decoder outputs. The attention mechanism was first
proposed as a machine translation, which does not have
too many bounds on alignments. However, it becomes a

many-to-one problem in a monotonic way in speech rec-
ognition. Traditional attention types do not have suffi-
cient restrictions to keep alignments monotonous or
avoid repeated alignments.
Attention mechanisms are always implemented within

an encoder-decoder architecture. The attention weights
map inputs (with length T) to outputs (with length L) in
speech recognition tasks where T is much larger than L.
A variety of attentions have been discussed in machine
learning tasks and developed into several types in the
past few years. They mainly vary in the scoring functions
and connection methods.
In the early stage, some attention mechanisms were

directly transplanted from other models to speech
recognition. Inspired by neural Turing machines (NTM),
three attention mechanisms were extended for
attention-based speech recognitions. Content-based
attention, hybrid attention, and location-based attention
generally rely on previous decoder state, previous align-
ments, and encoder outputs and only vary in different
combinations of them [6, 7]. All three attentions are cal-
culated using a multi-layer perceptron (MLP). To further
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simplify the function, Chan et al. [8] proposed that the
final matching MLP be performed with a dot product
operation. Using dot product attention together with a
pyramidal encoder-decoder model, they obtained state-
of-the-art performance in the Google Voice search task.
Although these models used the most common atten-

tion types in speech recognition, the calculations have
low bounds to monotonicity, which may generate ran-
dom connections between encoders and decoders. We
believe current attentions may still be simpler in struc-
ture than they should be.
There have been various further research studies aim-

ing to adopt better structures for the attention mechan-
ism in some specific tasks. For example, Yang et al.
proposed the use of word-level attention and sentence-
level attention as hierarchical attention networks in
document classification [9]. Cui et al. introduced an at-
tention over attention structure where a dot product at-
tention is calculated over a dot product of a query and
document [10]. Gehring et al. proposed a multi-step at-
tention combined with convolutional layers to capture
relations among words especially when sentences are
long [11]. In speech recognition, a joint CTC-attention
architecture was proposed. This model was expected to
transfer monotonic alignments from CTC to attention-
based part, and it was demonstrated to be quite effective
in solving the problem [12, 13]. The joint CTC-attention
model achieves the best performances in many corpora
[14, 15]. However, the joint CTC-attention model does
not improve attention mechanisms fundamentally. There
are no sufficient modifications in the attention layers.
To address these problems, we propose various im-

provements in the attention mechanism. In order to
demonstrate the effectiveness of our attention method,
we adopt a joint CTC-attention model trained with
high-level features. This is a system we have proposed in
our previous work [16, 17].
Our proposed attention method is described in two

parts. First, inspired by [18], we adapt multi-head atten-
tions into end-to-end speech recognition so that the
model can jointly obtain information from different rep-
resentation subspaces at different positions. Second, the
outputs of the last two layers in the encoders are utilized
to calculate attention scores by multiplying them to-
gether. We believe both improvements yield better re-
strictions on attentions and therefore provide better
accuracy for end-to-end models.
The paper is organized as follows. We first describe

the method of the high-level feature-based joint model
in Section 2. Section 3 describes our improvements on
the attention mechanism using multi-level encoder out-
puts and multi-head attentions. We propose a multi-
head attention scored with multi-level outputs of an
encoder. Section 4 presents experiments using our

improved attention mechanism compared to some typ-
ical attention types. Section 5 concludes our work.

2 Joint CTC-attention model with high-level
features
Before introducing our attention method, we first de-
scribe a joint CTC-attention model trained with high-
level features from our previous work [17]. The high-
level features can replace complex convolutional layers.
Therefore, this approach reduces the total number of pa-
rameters and makes the end-to-end model easier to
train. The joint CTC-attention models achieve the best
performances among end-to-end models because they
are able to transfer restrictions embedded in CTC to at-
tention alignments.

2.1 High-level feature extraction
In the high-level feature extraction stage, we use maxout
activation with dropout training to avoid the overfitting
problem and meanwhile capture better generalities. The
schematic structure of the deep neural network (DNN)
hidden layers is shown in Fig. 1.
DNNs are supervised by tied triphone units that are

generated by GMM, while the inputs are classical low-
level acoustic features. As analyzed in [16, 17], in order
to build a narrow layer to extract high-level features, we
apply convex nonnegative matrix factorization (CNMF)
to the weight matrix of DNN after training.

Fig. 1 The structure of DNN for feature extraction
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As a variant of NMF, CNMF not only has no hard-
bound for values, but also restrict the base matrix to
convex combinations of columns from the target matrix
[19]. Assuming that the target weight matrix X has a size
of N ×M, it is factorized into a base matrix F (with a size
of N × R) and a coefficient matrix G (with a size of R ×
M). We first use K-means to initialize CNMF and obtain
cluster indicators H = (h1,…, hk) where K denotes the
number of total classes. h1, …, hk are vectors containing
binary values. Then, we initialize G with an empirical
setting as we did in the previous research [16, 17]:

G 0ð Þ ¼ Hþ 0:2E; ð1Þ

where E is an identity matrix. F is initialized as cluster
centroids:

F 0ð Þ ¼ XHD−1
n ð2Þ

Dn = diag(n1,…, nk) and n1, …, nk are the numbers of
each class. CNMF defines F to be linear combinations of
columns of X, which is F =XW. According to this con-
straint and Eq. (2), we get Wð0Þ ¼ HD−1

n . Then, G and
W are updated as follows until convergence:
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ð3Þ

where (⋅)− and (⋅)+ denote the generalized {1}-inverse
and Moore-Penrose pseudoinverse, respectively. After
training, the base matrix F and the coefficient matrix G
are obtained. We abandon G and set F to be the weight
matrix of the new feature extraction layer, as shown in
Fig. 2.
The new layer is functionally similar to a bottleneck

layer except that we calculate the features without the
bias variable:

f ¼ FTu ¼ WTXTu ð4Þ

where u represents the activation outputs of the previ-
ous hidden layer.

2.2 The joint CTC-attention model
The network for feature extraction could also be consid-
ered as intermediate supervision for our end-to-end
models. Therefore, our features already contain high-
level speech information; thus, it is not necessary to
build a complex encoder that maps from raw inputs to
phones. Following the setup in [17], we stack the joint
CTC-attention model on top of our high-level features
to build an end-to-end model, which is shown in Fig. 3.
This enables the utilization of the complementary ad-
vantages of each model to improve the accuracy of the
alignments.
We first define the symbol sets for the CTC model.

Suppose π is the sequence set decoded by CTC and de-
note the tth symbol as πt where πt ∈ {_, S1,…, ST}. T de-
notes the number of the character or phone symbol, and
St denotes one of the characters or phone symbol in the
original symbol set. The posteriors of a symbol πt at
time t are computed over all inputs X with bi-directional
long short-term memory (BLSTM):

p πt jXð Þ ¼ Softmax BLSTM Xð Þð Þ ð5Þ

The distribution p(S|X) is modeled under conditional
independent assumptions:

pCTC SjXð Þ ¼
X

π∈Φ S0ð Þ
p πjXð Þ ≈

X
π∈Φ S0ð Þ

YT
t¼1

p πt jXð Þ;

ð6Þ

where Φ(S') denotes all possible sequences.
For the attention-based model, the symbol set is γk ∈

{<sos>, S1,…, ST, <eos>}. The posteriors p(S|X) of the
attention-based model are estimated directly with:

Fig. 2 High-level features extraction using CNMF Fig. 3 Joint CTC-attention model
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patt SjXð Þ ≈
Y
k

p γk jγ1;…; γk−1;X
� � ð7Þ

Then, the loss functions of CTC and attention-based
models to be optimized are defined as:

ℒ CTC ¼ − lnpCTC SjXð Þ
ℒ att ¼ − lnpatt SjXð Þ

�
ð8Þ

The total loss function to be optimized is calculated as
a combination of the logarithmic linear function of CTC
and attention:

ℒ ¼ λℒ CTC þ 1−λð Þℒ attention λ∈ 0; 1½ � ð9Þ
where λ is the linear weight of CTC loss.
It is known that the attention-based model decodes

phone/character synchronously while CTC does it in a
frame-wise way. Suppose that gl is a hypothesis with
length l; this term could then be used to incorporate two
scores. For the attention decoder, we compute the score
of hypotheses in the beam search recursively:

αatt glð Þ ¼ αatt gl−1ð Þ þ logp sjgl−1;Xð Þ ð10Þ
where s is the last character of gl. Then, we use the CTC
prefix probability and obtain the CTC score as:

αCTC glð Þ ¼ logp gl;…jXð Þ ð11Þ
We combine the CTC score and attention score to-

gether using one-pass decoding following the method in
[13], and then αCTC(gl) can be combined with αatt(gl)
using λ. The joint decoder gives the most likely phone
sequence S as follows:

S ¼ arg max
S

λαCTC glð Þ þ 1−λð Þαatt glð Þf g ð12Þ

3 Multi-head attention scored over multi-level
outputs
Based on the model we have described in Section 2, we
introduce our attention method utilizing multi-level in-
formation. Previous studies on attentions have one thing
in common: when calculating attention scores and the
contexts, they only consider the outputs from the last
layer. However, there is no clear evidence that the con-
nections for alignments must be built between a certain
layer of the encoder and a certain layer of the decoder.
Moreover, we believe that the multi-head attentions are
best suited to supplementary roles for our multi-level
methods. The multi-head attentions play roles similar to
those of kernels in the convolutional neural network
(CNN). They are expected to extract multiple represen-
tations in the encoder from different subspaces in paral-
lel. This potentially allows attention-based models to
capture embedded inner relations so that more accurate

attention scores can be provided. All of these facets indi-
cate that the attention layer requires a better structure
that can exploit as many inner relations as possible.
We will first introduce how the multi-level attention

works; we propose making use of the last two consecu-
tive layers of the encoder for the attention part. Our
multi-level structure for the attention-based model is
shown in Fig. 4. The inputs are DNN-based high-level
features. The encoder is composed of a few layers of
BLSTM cells and the decoder is composed of one layer
of unidirectional LSTMs.
The attention mechanism is modified from the trad-

itional structure of a location-based attention layer. The
location-based attention includes three factors when cal-
culating the score ek, t, i.e., the convolutional features fk
on previous weights, the hidden outputs for the decoder
s, and the last layer (nth) of outputs of the encoder hn.
However, in Fig. 4, the red dotted line starting from the
second to the last layer of the encoder represents its
extra contribution to the attention. Therefore, our calcu-
lation of the attentions also depends on the extra out-
puts of the encoder.
Let F and α denote a convolution filter and a T-di-

mensional attention weight vector, respectively; then, the
convolutional features f are calculated as follows:

f ¼ F� α ð13Þ

Different from traditional attention scores, our design
multiplies outputs from two consecutive layers of the
encoder and inserts this term in the score. Let hn and
hn − 1 denote the outputs from the nth layer and the (n ‐
1)th layer, respectively; we use hn⊙ hn − 1 to replace hn,
where the ⊙ operation is a Hadamard product. Here, we
use a multiplicative operation instead of an addition or a
concatenation operation because we intend to force a se-
quential restriction to the attention. Because we use re-
current layers as the encoder, a multiplication of
consecutive layers could include long-term dependencies
in the calculation of the attention score.
The multiplicative term hn⊙ hn − 1 enables the atten-

tion to be more sensible with regard to the multi-level
outputs in case one layer of outputs is not enough and
potentially embeds more long-term dependencies in the
attention mechanism.
Then, ek, t is described as follows:

ek;t ¼ wT tanh VSsþ VH hn⊙hn−1ð Þ þ V F fk;t þ b
� �

ð14Þ

where w, VS, VH, and VF are trainable weight matrices.
Let αk, t denote the attention weights connecting kth en-
coder outputs and tth decoder inputs. It is scaled with a
constant γ and calculated with a softmax function:
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αk;t ¼
exp γek;t

� �
PT

t¼1 exp γek;t
� � ð15Þ

Additionally, let rk denote the context term used to
decode the kth symbol. It integrates encoder outputs
from two layers using attention weights:

rk ¼
XT

t¼1
αk;t hn;t þ hn−1;t

� � ð16Þ

where hn, t and hn ‐ 1, t are the tth output vectors in the
nth layer and (n ‐ 1)th layer, respectively. We add the
additional hn ‐ 1, t term in Eq. (16) to form residual con-
nections and tied weights for the attention layer. This
could alleviate the degradation of weights potentially
brought about by our complex attention structure.
After the introduction of our multi-level method, we

will incorporate multi-level outputs into multi-head at-
tentions and show the schematic structure of the atten-
tion layer in Fig. 5.
As shown, our multi-head attention is a modified com-

bination of location-based attentions. The attention
score of each head relies on double outputs. Let Q de-
note the total number of heads, and let rk(q) replace rk
as the context of the qth attention head, the total

context is output from an MLP with a sum of contexts
of each head as input:

rk ¼ MLP ConcatQq¼1 rk qð Þð Þ
� 	

ð17Þ

Fig. 4 Multi-level attention-based model

Fig. 5 The structure of the multi-head attention with
multi-level outputs
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To alleviate the overfitting problem caused by increas-
ing parameters, dropout is applied to connections be-
tween context and the decoder. In addition, layer
normalization [20] is added to normalize the distribution
of the sum of all contexts. In addition, the original
multi-head attentions in [18] use an additional convolu-
tional operation over the encoder outputs.
Then, posteriors for the attention-based model are

output from the decoder via s, rk, hn, and hn − 1:

p sk js1;…; sk−1;Xð Þ ¼ Decoder s; rk ;hn;hn−1ð Þ ð18Þ

What should be noticed in our method is that some
configurations of the model may vary from the original
joint CTC-attention model. The multi-task learning
weight λ in the multi-head multi-level attention model
should be lower because this attention type is expected
to impose more restrictions on alignment; therefore,
there would be less need for CTC. Additionally, we
choose to use a deeper encoder and decoder for this at-
tention type referring to the configurations in [18].

4 Experiments and analysis
4.1 Dataset and evaluation measurement
We test our methods on TIMIT, WSJ, and LibriSpeech
in our experiments. For TIMIT, we followed the com-
mon setup. All SA sentences were removed. We select
46,250 speakers, as well as 24 speakers each for the
training set, dev set, and core test set. On the WSJ data-
set, we used the standard setup: “si284” for the training
set, “dev93” for validation, and “eval92” for the test set.
No extra dataset is used. The language model is trained
with all transcriptions from the training set. For LibriS-
peech, we train with 960 h of data and evaluate on the
“test clean” set.
Phone error rate (PER) is adopted to measure per-

formance in TIMIT, and word error rate (WER) is
adopted to measure performances in WSJ and LibriS-
peech. Both scores are calculated with the following
equation:

PER=WER ¼ nIns þ nDel þ nSub
N

� 100% ð19Þ

where nIns, nDel, and nSub are the numbers of insert er-
rors, delete errors, and substitute errors, respectively. N
is the total number of words/phones in the ground truth
labels.

4.2 Experimental tools
The extraction of low-level acoustic features and the
training of GMMs are implemented with Kaldi [21]. We
use Theano [22] and the PyMF toolkit [23] to train the
DNN and apply CNMF. Our end-to-end speech recogni-
tion systems are built with the Chainer [24] backend on

ESPnet [25]. Additionally, we use a single NVIDIA
GeForce GTX 1080Ti to accelerate training for
networks.

4.3 Experiments on TIMIT
In this part, we test our methods on the TIMIT dataset.
Experiments in this part are extensions of our previous
work in [17]. In short, all models are trained over high-
level features with transfer learning. Except for attention
layers, we copy all the configurations of the feature ex-
traction and the end-to-end models from [17]. There-
fore, we do not introduce many experimental details in
this part.
The only difference lies in the attention layer. Instead

of using a normal location-based attention, we test on
location-based attention over multi-level outputs and
multi-head location-based attention and their
combination.
System P0 is our best system in [17]. System P1 is

based on P0, with multi-level location-based attention
instead of a normal location-based attention, and its out-
puts from the last two consecutive layers of the encoder
are included in calculations. System P2 is based on P0,
with four-head location-based attention. System P3 com-
bines the multi-level outputs with multi-head attention.
All heads include double outputs from the encoder. We
list some of the important configurations for TIMIT ex-
periments in Table 1.
As mentioned in Section 2.2, two important settings

should be highlighted, which are the depth of the net-
work and the MTL λ. We also notice a fact from [18]
that as many as six layers were needed for multi-head at-
tentions. Therefore, we use deeper networks for our sys-
tems containing multi-head attentions. We should
emphasize that adding more encoder and decoder layers
does not improve the performance of the baseline, and
the deeper encoder and decoder only work well with
multi-head attentions (we do not discuss in detail but
we conducted experiments to confirm). Therefore, the
factor of a deeper structure should be excluded from the
improvement contribution. Moreover, lower λ is better
for our proposed attentions. The multi-head attention
scored over multi-level outputs brings more restrictions,
which could compensate for the need for CTC.
The results on TIMIT are shown in Table 2.

4.4 Experiments on WSJ
We further experiment on the WSJ corpus. For all end-
to-end models in WSJ experiments, we provide some
common configurations. These models were trained with
characters. During the training, gradient clipping [30]
was used, and the gradient norm threshold to clip was
set to 5.0. The beam size for decoding is 30. The Ada-
delta algorithm is used for the optimizer, and the label
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smoothing method is applied with a weight of 0.05.
Moreover, the MTL λ is set to 0.2, the decoding weight
for CTC is 0.3, and the scaling factor for the recurrent
neural network language model (RNN-LM) is 1.0 for all
joint models. For the location-based attentions, the
number of filters for convolutional features is 100, and
the number of channels is 10.
We train a word-level RNN-LM [31] to help decode

all end-to-end systems. The RNN is a 1-layer LSTM
with 1000 units. The RNN-LM is trained using stochas-
tic gradient descent (SGD) for 20 epochs with a batch
size of 100. The softmax layer predicts 65,000-dimen-
sional output values, which means that the vocabulary
size is 65,000.

4.4.1 Baseline setup
The configuration for the baseline system is that which
performs best in the ESPnet WSJ example, which is a
joint CTC-attention-based system. However, we rerun
this example with a Chainer version (the original is a
PyTorch version) to make it consistent with other exper-
iments in this paper. The input features are 40 Mel filter
banks with delta and delta-delta components. The en-
coder is a combination of a VGG net and a BLSTM. The
VGG net has two components, and each component has
two 2D convolutional layers with a 2D max pooling
layer. The stride for max pooling is (2, 2) which means
two steps of stride in each axis. A rectified linear unit
(ReLU) is used as the activation function on top of each
convolutional layer. The convolutional parameters are
described in Table 3.

The RNN of the shared encoder is composed of 4
layers of BLSTM with 320 units in each direction and
layer. Add attention is used, and the attention layer has
320 units. The decoder is a 1-layer LSTM with 300 units
in each layer. The batch size during training was set to
30.
Table 4 lists the performance of the baseline system

K0.

4.4.2 Experiments on high-level features
We then experiment on our high-level feature-based ap-
proach. The network for feature extraction is a 5-hidden
layer DNN. Each layer has 1026 input units and 342 out-
put units with a max pooling size of 3. Dropout is ap-
plied to each hidden layer with a rate of 0.2. To obtain
labels for DNN, we first build a GMM. The GMM is
trained using linear discriminative analysis (LDA), max-
imum linear logistic transformation (MLLT), and
speaker adaptive training (SAT) with 13 MFCC features.
Then, DNN is supervised by alignments of senones gen-
erated by each GMM. The initial learning rate was kept
at 0.2 for the first 8 epochs, and after that, it was
decayed by half when the validation error did not de-
cline. The training stops when the validation error finally
increases.
We build a narrow layer for the DNN with CNMF.

We follow the exact same setting in [16, 17] for
factorization, which is applying CNMF on the weight
matrix from the second to the last hidden layer. The
weight matrix is factorized into 40 dimensions after
5000 iterations of training.

Table 1 Important configurations for TIMIT experiments

System CTC encoder layers Attention encoder layers Decoder layers MTL λ

P1 2 3 1 0.3

P2 2 3 1 0.2

P3 3 4 2 0.2

Table 2 Comparisons on the TIMIT core test set

Methods PER (%)

Referenced traditional systems Kaldi’s DNN-HMM 18.5

Hierarchical maxout CNN [26] 16.5

Referenced end-to-end systems Hierarchical CNNs with CTC [27] 18.2

RNN transducer initialized with CTC + weight noise [28] 17.7

fMLLR + attention + weight noise [3] 17.6

fMLLR + RNN + CRF [29] 17.3

Our end-to-end systems Transferred high-level features + joint CTC-attention + RNN-LM (P0) [17] 16.59

P0 + multi-level location-based attention (P1) 16.42

P0 + multi-head location-based attention (P2) 16.51

P0 + multi-level multi-head location-based attention (P3) 16.34
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After the previous steps, these high-level features are
sent to joint CTC-attention models for end-to-end train-
ing. We only build shallow RNN networks on top of our
high-level features. According to our experience in [17],
we set a 3-layer BLSTM for the CTC encoder and a 2-
layer BLSTM for the attention-based encoder. The joint
decoder is a 1-layer LSTM. BLSTM and LSTM both
have 320 cells in each layer and direction. We use
location-based attention, and the attention layer has 160
cells. The BLSTM of the encoder and attention layer are
both regularized with a dropout rate of 0.2 during train-
ing. We name this system K1, and its result is shown in
the second line of the third block in Table 4.

4.4.3 Further experiments on multi-level multi-head
attentions
We further experiment on our proposed attention
methods. All attention layers have 160 units with a drop-
out rate of 0.2 and a layer normalization on top of the
context rk. The model is still a joint CTC-attention
model upon high-level features. Except for attentions,
the rest of the configuration of end-to-end models re-
mains the same as the previous settings.
First, we test the multi-level location-based attention

and the multi-head attention separately. System K2 is
based on K1 with multi-level location-based attention,
and its outputs from the last two consecutive layers of
the encoder are included in the calculations. System K3

is based on K1 with four-head location-based attention.
System K4 combines the multi-level outputs with multi-
head attention. All heads include double outputs from
the encoder. We list the best configurations for these
variables in Table 5.
As analyzed in TIMIT experiments, we choose various

empirical settings for the number of layers and MTL λ
in the WSJ experiments. We list the results of the WSJ
systems in Table 4.

4.5 Experiments on LibriSpeech
Finally, we experiment on larger-scale data, which is
960 h of training data in LibriSpeech, to further demon-
strate the effectiveness of our methods. Models in
LibriSpeech were also trained with characters. The beam
size for decoding is 20. We use Adadelta for the
optimizer with no label smoothing method. The MTL λ
and the decoding weight are both set to 0.5, and the
scaling factor for the RNN-LM is 0.7 for all joint
models.
We use byte pair encoding (BPE) [39] to create 5000

subword units as the output targets of the decoder. The
model is a 1-layer LSTM with 1024 units and is trained
using SGD for 20 epochs with a batch size of 1024.
For the baseline, we set 1024 units for BLSTM in each

layer and direction with 5 layers and 1024 units for the
attention layer. The rest of the configuration of the base-
line system follows the baseline settings in WSJ.

Table 3 Parameters of convolutional layers in WSJ experiments

Layer Input channels Output channels Kernel size Stride

Convolutional layer 1 1 64 (3, 3) (1, 1)

Convolutional layer 2 64 64 (3, 3) (1, 1)

Convolutional layer 3 64 128 (3, 3) (1, 1)

Convolutional layer 4 128 128 (3, 3) (1, 1)

Table 4 Comparisons on WSJ “eval92”

Methods WER (%)

Referenced traditional systems TC-DNN + BLSTM-DNN [32] 3.47

CNN + RAW speech [33] 5.6

Referenced end-to-end systems Deep Speech 2 (extra 11,940 h of labeled English data) [34] 3.6

Joint CTC-attention + char-LM + word-LM [35] 5.6

Pyramidal encoder + attention + label smoothing [36] 6.7

LAS grapheme model + RNN grapheme LM [37] 6.9

Attention + extended trigram LM [38] 9.3

Our end-to-end systems VGG + BLSTM + add attention + word-LM (baseline/K0) 4.7

High-level features + joint CTC-attention + word-LM (K1) 4.3

K1 + multi-level location-based attention (K2) 4.1

K1 + multi-head location-based attention (K3) 4.1

K1 + multi-level multi-head location-based attention (K4) 3.8
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For our high-level feature-based system, we also set a
3-layer BLSTM for the CTC encoder and a 2-layer
BLSTM for the attention-based encoder. The joint de-
coder is a 1-layer LSTM. They have 1024 cells in each
layer and direction. We use location-based attention,
and the attention layer has 512 cells. A dropout rate of
0.2 is applied to both BLSTM layers and attention layers.
Like the settings in WSJ, we reduce the training and de-
coding weight for CTC, with both weights set to 0.4, for
multi-head and multi-level attentions. For our proposed
attention methods, the rest of the configuration of the
end-to-end models remains the same as in WSJ.
We name our baseline and our basic high-level

feature-based systems as J0 and J1. For the rest of the
systems, J2, J3, and J4 represent our multi-head attention
system, multi-level attention system, and their combin-
ation, respectively. The results on LibriSpeech are listed
in Table 6.

4.6 Results and discussions
Table 2 shows the results of all referenced methods and
our methods on TIMIT. The baseline system “P0 +
RNN-LM” has the best performance in [17]. It is a joint
CTC-attention model with a normal location-based at-
tention. Its inputs are high-level features extracted using

transfer learning. We can see that the performance is
slightly worse than that of the state-of-the-art system.
When using the attentions proposed in this paper to

replace the original attention, the PERs were further re-
duced. We notice that the multi-level location-based at-
tention performs better than the multi-head location-
based attention. This is probably because the parameters
in the multi-head attention model are too much for a
small corpus such as TIMIT. Finally, the system with a
multi-level multi-head location-based attention achieved
the best performance compared with all listed methods.
This is an interesting fact because the multi-level con-
nections bring even more parameters for training which
is supposed to degrade the performance in TIMIT. We
further implement three significance tests, including the
matched pair sentence segment test, the signed pair
comparison test, and the Wilcoxon signed-rank test
using the SCTK toolkit.1 Both P1 and P2 fail to reach a
5% level of significance of difference compared with P0.
For our best system, P3 reaches a 5% level of significance
in both MP and SI tests, while no significant difference
is found in the WI test.
However, the improvement brought by this combin-

ation demonstrates that, although our attention mechan-
ism is complicated in connections, it could bring more
benefit than harm even in limited resource cases.
Table 4 shows the results of all referenced methods

and our methods on WSJ. We can see that the perform-
ance of the baseline system K0 is already at a good level.
When high-level features are introduced, our system K1
outperforms the baseline system as well as many present
end-to-end models. This further demonstrates that high-
level knowledge could be transferred into end-to-end
models, which was also proved in our previous work
[17]. Both systems K2 and K3 perform equally better
than our previous systems. However, two methods help
in different ways. The multi-level location-based atten-
tion could strengthen long-term restrictions due to the
multiplicative term. The multi-head attention extracts
inner relations embedded in the encoder and therefore
includes a self-restriction.
When we use a combination of multi-level and multi-

head methods in the attention layer in system K4, the
WER is further reduced and is only 0.2% worse than the

Table 5 Important configurations for WSJ experiments

System CTC encoder layers Attention encoder layers Decoder layers MTL λ

K1 2 3 1 0.2

K2 2 3 1 0.1

K3 3 4 2 0.1

K4 3 4 2 0.1

Table 6 Comparisons on LibriSpeech “test clean”

Methods WER
(%)

Referenced traditional
systems

IBM CAPIO [40] 3.19

17-layer TDNN + iVectors [41] 3.80

Referenced end-to-
end systems

End-to-end CNN on the waveform +
conv LM [42]

3.44

Deep Speech 2 (extra 11,940 h of labeled
English data) [34]

5.33

Our end-to-end
systems

VGG + BLSTM + add attention + word-
LM (baseline/J0)

4.3

High-level features + joint CTC-attention
+ word-LM (J1)

4.0

J1 + multi-level location-based attention
(J2)

3.8

J1 + multi-head location-based attention
(J3)

3.8

J1 + multi-level multi-head location-
based attention (J4)

3.6
1http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
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WER of the “Deep Speech 2” model in [34]. However, it
should be noted that the “Deep Speech 2” model is
trained on a much larger scale of dataset and apparently
has a much deeper network with more computational
components, while our method is more simplified with
only a few layers in the RNN, and the model is trained
only on 81 h of the WSJ dataset. Considering the gap be-
tween the training data, we believe that our results are
totally acceptable. We also apply three significance tests
to our results. The differences among the five systems in
Table 4 are all statistically significant at a 5% level in
three tests.
Table 6 shows comparisons of the LibriSpeech “test

clean” set. Our high-level feature-based system still beats
the baseline system. The results of J2 and J3 show a
similar conclusion to that which we get in WSJ, indicat-
ing that multi-level attention and multi-head attention
could play similar roles in improving the attention-based
model. When they are combined as a more complex
attention layer, the performance also further improves,
just like the case in WSJ. Although our method cannot
compare with the state-of-the-art system that combines
multiple systems, it performs closely to the best refer-
enced end-to-end approach, with only a gap of 0.16% in
WER. Again, we find that the differences between the
five systems in Table 6 are all statistically significant at a
5% level in three significance tests. The improvement
brought by the combination of multi-head and multi-
level attention demonstrates that two different attention
types solve different problems in attention-based models
and are complementary to each other. This greatly
broadens the research of attention structures.
Beyond all experiments above, we further experiment

on different numbers of heads ranged from two to five
heads. We do not use more than five heads due to mem-
ory limits. The results on single attention are summed in
Table 7. The results of multi-level attention are listed in
Table 8.

We can see that the four-head attention performs the
best among all settings in all three corpora. Lesser heads
may not provide enough information, and more heads
probably brings intermediate redundancy. This further
demonstrates why we choose an empirical setting of four
heads in multi-head attentions.

5 Conclusion
In this paper, we mainly propose the advancement of
the attention mechanism in joint CTC-attention-based
speech recognition. In the first phase, we adopt a high-
level feature-based joint model from our previous work
[17]. The only difference is that we do not use multi-
lingual pre-training for DNN.
In the second phase, we introduce a new attention type

for our end-to-end models. We add extra connections for
the second to the last layer of the encoder and then apply
multi-head attentions. Unlike other normal attention
types, this attention is scored over multi-level outputs of
the RNN and therefore brings extra long-term dependen-
cies on the attention. Experiments on TIMIT show that
all of our models perform better than all referenced
methods and prove the robustness of our method. Further
experiments on WSJ and LibriSpeech show that our atten-
tion mechanism could achieve the best performance
among all end-to-end methods without data augmenta-
tion, and it is only slightly worse than the state-of-the-art
performance. In the future, we would study other ways of
utilizing multi-level information [43].
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