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Abstract

Text-to-speech (TTS) synthesis systems have been widely used in general-purpose applications based on the
generation of speech. Nonetheless, there are some domains, such as storytelling or voice output aid devices, which
may also require singing. To enable a corpus-based TTS system to sing, a supplementary singing database should be
recorded. This solution, however, might be too costly for eventual singing needs, or even unfeasible if the original
speaker is unavailable or unable to sing properly. This work introduces a unit selection-based
text-to-speech-and-singing (US-TTS&S) synthesis framework, which integrates speech-to-singing (STS) conversion to
enable the generation of both speech and singing from an input text and a score, respectively, using the same neutral
speech corpus. The viability of the proposal is evaluated considering three vocal ranges and two tempos on a
proof-of-concept implementation using a 2.6-h Spanish neutral speech corpus. The experiments show that
challenging STS transformation factors are required to sing beyond the corpus vocal range and/or with notes longer
than 150 ms. While score-driven US configurations allow the reduction of pitch-scale factors, time-scale factors are not
reduced due to the short length of the spoken vowels. Moreover, in the MUSHRA test, text-driven and score-driven US
configurations obtain similar naturalness rates of around 40 for all the analysed scenarios. Although these naturalness

scores are far from those of vocaloid, the singing scores of around 60 which were obtained validate that the
framework could reasonably address eventual singing needs.
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1 Introduction

Text-to-speech (TTS) synthesis systems have been widely
used to generate speech in several general-purpose appli-
cations, such as call-centre automation, reading emails or
news, or providing travel directions, among others [1].
However, there are other domains that may require the
eventual generation of singing in addition to speech. For
instance, in storytelling [2, 3], when one of the characters
sings at one point in the story, or in voice output commu-
nication aid devices for individuals with vocal disabilities
[4] to allow them not only to talk, but also to sing. More-
over, a TTS with singing capabilities could also be useful
in assistive technologies, where the incorporation of songs
has been proved to be an effective form of improving the
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engagement of autistic children [5], or to reduce the pro-
cedural distress in children with cancer [6], or to augment
the positive memories of people with dementia [7], to
name a few.

In this sense, it is worth mentioning that early works on
speech synthesis already enabled the generation of both
speech and singing (e.g. see [8]), as they stood on a source-
filter model inspired by the classical acoustic theory of
voice production [1]. However, the difficulty of defining
and adjusting the necessary control parameters to obtain
high-quality speech led the research towards data-driven
approaches [1]. Although some approaches used diphone-
based TTS systems to generate singing [9, 10], most works
opted to use databases specifically recorded for singing
purposes [11-13]. Meanwhile, the speech synthesis inves-
tigations also moved to corpus-based approaches, deploy-
ing TTS systems based on unit selection (US), hidden
Markov models (HMM) or hybrid approaches, and more
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recently, including deep neural networks (DNN) (e.g., [14,
15]). Even though these systems can deliver very natural
synthetic speech [16], as far as we know, they are not able
to speak and sing at the same time.

In order to add singing capabilities to a corpus-based
TTS system, the first idea that may come to mind is to
incorporate a supplementary singing database. However,
occasional singing needs do not justify the cost of build-
ing an additional corpus, which may become unfeasible
if the original speaker is unavailable or unable to sing
properly [17, 18]. As an alternative, we could take advan-
tage of those approaches which focus on the production
of singing from speech following the so-called speech-
to-singing (STS) conversion [19-21]. These techniques
can be applied to the output of a TTS system to trans-
form speech to singing by maintaining the identity of the
speaker [18, 22]. However, this straightforward approach
has been proved suboptimal in terms of flexibility and
computational costs [18].

Building on the preliminary approach presented in
[18], this work introduces a unit selection-based text-
to-speech-and-singing (US-TTS&S) synthesis framework
that allows the generation of both speech and singing
from an input text and a score, respectively, using the
same neutral speech corpus. To this end, the framework
incorporates speech-to-singing (STS) conversion within
a TTS system pipeline. The viability of the proposal is
evaluated objectively and subjectively through a proof-
of-concept implementation of the US-TTS&S framework
using a 2.6-h Spanish neutral speech corpus.

The paper is structured as follows. Section 2 reviews the
singing and speech-to-singing literature. Then, Section 3
describes the proposed US-TTS&S framework and
the proof-of-concept implementation. The methodology
employed for the objective and the subjective evaluation
is detailed in Section 4. Finally, after presenting and dis-
cussing the results (Section 5), the conclusions of this
work are drawn in Section 6.

2 Related work

This section includes a review of the singing synthesis
approaches which are closely related to speech synthesis
and a description of speech-to-singing techniques.

2.1 Singing synthesis

Until the late 1980s, most of the singing synthesis
approaches were closely linked to sound synthesis [23] or
to speech synthesis (see [24] and references therein). The
latter correspond to first generation synthesis systems,
where according to a synthesis specification (verbal com-
ponent, pitch values, and durations), a rule-based control
drives a source-filter model built on the classical acoustic
theory of voice production. On the one hand, articulatory
speech synthesis [25] was used to generate one of the first
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synthetic singing examples'. This technology evolved giv-
ing rise to systems such as SPAM/Singer [8], which could
be used for TTS and singing synthesis through control
files [26]. On the other hand, formant speech synthe-
sis inspired the development of singing systems as the
MUSSE (MUsic and Singing Synthesis Equipment) and
the subsequent MUSSE DIG (MUSSE, DIGital version)
[27] or the CHANT project [28]. First-generation rule-
based systems gave way to data-driven approaches mainly
due to the difficulty of generating the control parameters
to get high-quality results [1]. However, formant synthe-
sis is still used nowadays in the context of performative
singing synthesis [29], where flexibility and real time are
the main issues.

In second-generation synthesis systems, a unit (typi-
cally a diphone) for each unique type was recorded. Pitch
and timing of units were modified applying signal pro-
cessing techniques to match the synthesis specification
[1]. Some works exploited signal processing capabilities to
generate singing from a spoken database. Flinger [9] for
instance used residual LPC synthesis and provided sev-
eral modules in order to enable the Festival TTS system
[30] to sing. MBROLA was also used to generate both
speech and singing from speech units [10, 31]. Similarly,
the Ramcess synthesiser [32] generated singing by con-
volving vocal tract impulse responses from a database
with an interactive model of the glottal source. However,
the data-driven paradigm of second generation synthesis
systems naturally led to the creation of singing databases.

Finally, it should be noted that there have been some
recent attempts to produce singing from speech in a
corpus-based TTS system. Some works used the system
to get a spoken version of the song and transform it into
singing by incorporating a signal processing stage. For
instance, in [22], the synthetic speech was converted into
singing according to a MIDI file input, using STRAIGHT
to perform the analysis, transformation and synthesis. In
[17], an HMM-based TTS synthesiser for Basque was used
to generate a singing voice. The parameters provided by
the TTS system for the spoken version of the lyrics were
modified to adapt them to the requirements of the score.

2.2 Speech-to-singing

Speech-to-singing conversion is the task of transforming
the spoken lyrics of a song into singing, while retain-
ing the identity of the speaker and the linguistic content
[33]. In [20], the authors proposed a method to trans-
form speech into singing, by modifying the pitch contour,
the duration of the phonemes and the spectrum accord-
ing to the analysis of the features of the singing voice.
Phoneme target durations were obtained by applying STS
duration conversion rules derived from the analysis of real
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performances. The pitch contour was derived from a step-
wise melody curve by applying a filtering that models the
behaviour and dynamics of the fundamental frequency
(F0) in singing: preparation, overshoot, fine fluctuation,
and vibrato. Finally, two spectral control models were
applied to the envelope to add the singing formant and
to apply a formant amplitude modulation that was syn-
chronised with the vibrato. Analysis, transformation, and
synthesis were carried out using STRAIGHT [34].

In order to obtain more natural contours, other
approaches have used real singing performances, but they
require spoken and sung parallel recordings. In [19], a
set of phrases was recorded by a female singer to get a
spectral envelope database. The same speech sentences,
recorded by an actor, were time-stretched, transposed,
and aligned with the singing phrases. Finally, the spec-
tral envelope from the singer database was transferred to
the speech signal. The transformation was performed by
a phase vocoder in this case. However, improved signal
models were subsequently proposed [35, 36]. In [21], IR
Speech2Singing system was presented. This application
was able to convert speech or poor singing into high-
quality singing, using a template-based conversion [37]
with professional singing as a reference model. Parallel
singing templates were aligned with the speech input in
a 2-step dynamic time warping-based method. Thus, the
pitch contour could be derived from actual singing voice
and applied to the input speech through STRAIGHT. An
improved dual alignment scheme for this system has been
recently presented in [38].

Finally, apart from appropriate timing and FO con-
tours, spectral transformation is a very important issue
in speech-to-singing conversion. Voice conversion and
model adaptation techniques were extended to this sce-
nario in [39], using a large collection of singing recordings
and their corresponding spoken lyrics. The comparison
between these methods and the spectral transformation
applied in [20] showed that model adaptation outperforms
the other approaches in singing quality and similarity
provided there is enough data.

3 US-TTS&S synthesis framework from neutral
speech

This section is organised as follows. Section 3.1 describes

the proposed US-TTS&S synthesis framework. Next,

Section 3.2 details the proof-of-concept implementation

of the framework.

3.1 Framework

The block diagram of the proposed synthesis framework
is depicted in Fig. 1. It consists of two main subsystems:
the text-to-speech subsystem (at the top), which allows
the framework to produce neutral synthetic speech for a
given input text, and the speech-to-singing subsystem (at
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the bottom), which provides the framework with singing
capabilities.

In the speech mode, the input text is analysed by the
Natural Language Processing (NLP) module, which yields
a linguistic target (including the phonetic transcription
and the linguistic context) and predicts a speech prosodic
target (i.e. phrasing and intonation appropriate for the
message). The unit selection block searches the corpus
for the units that best meet these targets and that can be
smoothly joined. Finally, the parametric representations
of the selected units are concatenated, thus obtaining a
stream of speech parameters that is rendered into syn-
thetic speech through the waveform generation module.

In the singing mode, the input score S, which contains
the lyrics as syllables assigned to the notes, is parsed by
the score processing module, which extracts the lyrics,
integrates score and phonetic information, and provides
a singing prosodic target to perform the unit selection
according to S and the optional tempo and transposition
values. Subsequently, the transformation module con-
verts the retrieved speech parameters into the singing
ones, according to the controls computed by the expres-
sion control generation module. Finally, the waveform
generation module renders the modified parameters into
synthetic singing.

The following subsections describe the key modules for
the singing mode.

3.1.1 Score processing

This module joins the syllables extracted from S in order
to get the full lyrics of the song, which are fed into the
TTS subsystem (see Fig. 1). Subsequently, it obtains the
links between the phonetic transcription of the lyrics (pro-
vided by the NLP module) and the notes. To this end, the
phonemes are distributed among the notes according to
the assignment of syllables to notes in the score. Further-
more, since a note onset coincides with a vowel [40], the
preceding consonants are assigned to the preceding note.

Moreover, this module allows for score transposition
according to the input value x, obtaining thereby a trans-
posed score Sx. This score is then used, together with
phoneme-note links and tempo 7, to compute the singing
prosodic target (see Section 3.1.2) and to generate the
expression controls (see Section 3.1.3).

With regard to tempo, the value of T in beats per minute
(bpm) can be extracted from S, or alternatively indicated
as an input of the synthesis framework (see Fig. 1). Tempo
is used to compute the duration of each note according to
its note value (e.g., quarter note, eighth note).

Regarding score transposition, this process consists of
moving the entire set of notes up or down in pitch by a
constant interval in order to fit it within the vocal range of
the singer. Accordingly, the notes of S are shifted to get the
score Sx, whose pitch range midpoint FOSX is x semitones
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Fig. 1 US-TTS&S framework. Block diagram of the unit-selection text-to-speech and singing (US-TTS&S) synthesis framework from neutral speech. In
the speech mode, an input text is converted into synthetic speech by the TTS subsystem (above in the blue box). In the singing mode, the
incorporation of the speech-to-singing (STS) subsystem (below in the red box) enables the framework to produce synthetic singing from an input
score S (containing both the notes and the lyrics), considering optional input values: tempo T in beats per minute and transposition x in semitones

above the speech corpus vocal range midpoint FOS,, which
represents an intermediate value within the pitch range
covered by the vowels in the corpus C. To this end, the
note pitches in S are translated into an integer notation
following a 12-tone equal temperament, which divides the
octave into 12 semitone steps equally spaced on a logarith-
mic scale. Thus, a note number N5 (i) is obtained for each
note in S, where i = {1..K}, being K the total number of
notes in the score S. Subsequently, the note numbers for
Sx are computed as

N%() = NS(i) +x — d (Fo,Cn,Fof;,) 1)
where
FOS
C S\ _ m
d (FOm,Fom) - |:1210g2 (Fog )] @)

is the distance in semitones from the speech corpus vocal
range midpoint FOS, to the input score pitch range mid-
point FOfn, and [ -] denotes that the result of the operation
is rounded to the nearest integer. Since the perception of
pitch is logarithmic, FOS, is computed from the lowest and
the highest note as the geometric mean of their FO values,
ie.

-FO3

max*

S
FO;, = ,/F0S

min

3)

3.1.2 Singing prosody generation

This block translates the note durations and FOs obtained
from Sx and T into a prosodic representation of the
singing target consisting of phonetic timing and FOs. This
singing prosodic target enables the US-TTS&S framework

to perform the unit selection according to Sx and T. The
phonetic timing is obtained by adjusting the duration of
the phonemes so that they fit the duration of the notes
to which they are linked. Similarly, the FO of each note is
assigned to its phonemes considering that the note FO is
reached at the vowel onset, so the transition occurs in the
precedent phoneme [40].

3.1.3 Expression control generation

Expression control in singing synthesis, also known as
performance modelling, consists in the manipulation of
a set of voice features (e.g., phonetic timing, pitch con-
tour, vibrato, timbre) that relates to a particular emotion,
style, or singer [41]. Accordingly, the expression control
generation module provides the duration, FO, and spec-
tral controls required by the transformation module to
convert the sequence of speech parameters into singing
parameters. To this end, and following the phoneme-note
links, this module aligns the units retrieved by the US
block with the notes, and generates the controls to trans-
form the spoken features (durations, FO and spectra) into
singing ones in accordance with Sx and 7. Since obtain-
ing control parameters that are perceived as natural is
one of the main issues regarding singing synthesis, several
approaches can be found in the literature (see [41] and
references therein for further details).

3.1.4 Speech parameter generation and transformation

In contrast to pure unit selection, where an overlap and
add (OLA) method is applied to the retrieved units, with
the aim of modifying the original waveforms as little
as possible [1], the US-TTS&S framework is based on



Freixes et al. EURASIP Journal on Audio, Speech, and Music Processing

a parametric representation of the speech. This enables
the use of more flexible processing techniques to address
the highly significant transformations (including spectral
ones) involved in the STS conversion.

The framework signal processing pipeline consists of
three modules. The speech parameter generation mod-
ule performs the unit selection (according to the lin-
guistic and prosodic targets) and concatenates the para-
metric representation of the selected units to obtain
a speech parameter sequence. In the speech mode,
this sequence is directly fed into the waveform gen-
eration module to produce synthetic speech. Con-
versely, in the singing mode, the sequence is previ-
ously processed by the transformation module, which
applies time-scaling, pitch-scaling, and spectral trans-
formations to convert the speech parameters into
singing ones.

3.2 Proof-of-concept implementation

In the following paragraphs, the main elements of
the implementation of the US-TTS&S framework are
described.

3.2.1 Text-to-speech subsystem

The US-TTS system of La Salle-Universitat Ramon Llull
[42] has been used as text-to-speech subsystem. This
TTS synthesis system includes a case-based reasoning
(CBR) prosody prediction block, trained with acoustic
prosodic patterns from the speech corpus, and a unit
selection block following a classical scheme [43]. This
block retrieves the units that minimise the prosodic,
linguistic, and concatenation costs (see [42] for more
details). The weights for the prosodic target and con-
catenation subcosts were perceptually tuned by means of
active interactive genetic algorithms for speech synthesis
purposes [44].

The Time-Domain Pitch Synchronous Overlap and
Add (TD-PSOLA) waveform generation used in the
original US-TTS system has been replaced by a har-
monic plus noise model (HNM) implementation [45].
Accordingly, the corpus has been parameterised with
HNM representation. The harmonic component (for the
voiced frames) is modelled by a sum of sinusoids (each
with a certain amplitude and phase) at the multiples
of the fundamental frequency up to the 5 kHz max-
imum voiced frequency [46]. This component is sub-
tracted from the speech signal to get the stochastic
(noise) component, which is analysed using an autore-
gressive model and it is represented with 15-order lin-
ear prediction coefficients (LPC) and the noise vari-
ance [46]. The HNM analysis has been performed pitch-
synchronously, applying a window around the centre
of gravity to avoid phase mismatches when units are
concatenated [47].
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3.2.2 Score processing
The proof-of-concept implementation of this module has
adopted the MusicXML? format for the score S. To this
end, the scripts from Nichols et al. [48] have been consid-
ered. In MusicXML, each syllable of the lyrics is assigned
to a note with the lyric element. This contains a text ele-
ment with the syllable and a syllabic element that indicates
how the syllable fits into the word. The latter can take the
values single, begin, end, or middle, and is used to recom-
pose the words and obtain the whole text of the song.
The syllabic element also provides the syllabic distribu-
tion, which is considered to assign the phonemes from
each word to their corresponding notes. An example of
this alignment is depicted at the top of Fig. 2.

With regard to the FO, each MusicXML note in S is
parsed into a MIDI note number NS(i), whose FO is
computed as

FOS(i) = 440.2(N5(i)769)/12’ w

since the MIDI note 69 corresponds to A4 (440 Hz)3. If
a transposition value of x semitones is introduced into
the framework, the shifted MIDI note numbers for Sx are
computed following Eq. (1), (2), and (3).

The speech corpus vocal range is defined from the FO
mean values of the vowels within it. According to this, the
speech corpus vocal range midpoint is computed in this
implementation as

FOS, = \/FOS-FOS;, (5)

where FOg and FOS5 are the 5th and the 95th corpus
vowel FO percentiles, respectively, thus avoiding possible
outliers.

3.2.3 Singing prosody generation

This block generates a singing prosodic target accord-
ing to the durations and FOs obtained from score Sx and
tempo 7.

On the one hand, the phoneme durations predicted by
the prosodic model (represented below the score S in
Fig. 2) are adjusted to fit the note durations by applying the
STS conversion rules derived by Saitou from the analysis
of real performances [20]:

1. When phonemes tied to a note have to be shortened,
their original durations are multiplied by the same
factor.

2. When phonemes have to be stretched, three parts are
differentiated around the boundary between a
consonant and a vowel: the consonant, the transition
(from 10 ms before to 30 ms after the boundary), and
the vowel.

2https://www.musicxml.com
3https://www.midi.org/specifications
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Fig. 2 Example of a song excerpt synthesised with transposed scores S0, S4, and S7. The phonemes from the lyrics phonetic transcription are
represented below the input score S, together with their durations, which are (i) predicted from the lyrics by the NLP module when computing the
singing prosodic target for the US block (see Fig. 1), or; (i) those of the retrieved speech units when generating the expression controls. At the
bottom, the phoneme durations have been time-scaled to fit the note durations. The crosses represent the F0 values of the singing prosodic targets
obtained from S0, $4, and S7. The pitch contours (time-scaled) of the retrieved speech units are depicted as dashed grey lines. Finally, the solid blue

T = 100 bpm have been used for this example

lines represent the singing pitch contours generated by the expression control generation module. The score-driven US configuration Sxp and

(a) The consonant part is extended according to
fixed rates (1.58 for a fricative, 1.13 for a
plosive, 2.07 for a semivowel, 1.77 for a nasal,
and 1.13 for a /y/).

The transition part (depicted as a shadowed
area in Fig. 2) is not extended.

The vowel part is extended until the phoneme
fits the note duration.

(b)
(c)

In the current implementation the transition length
within the vowel (30 ms) has been limited to a maximum
of half of its duration, since the corpus contains very short
vowels.

On the other hand, the FO target (represented by crosses
in Fig. 2) is assigned at a semiphoneme level. The FO
from each note in Sx is assigned to all its corresponding
semiphonemes, except in the transitions where the right
semiphoneme receives the FO of the following note.

3.2.4 Expression control generation
This module computes the duration, FO, and spectral
controls required to perform the STS conversion, in accor-
dance with Sx and T.

Regarding the duration control, the durations of the
phonemes retrieved by the US block are scaled to fit the

durations of the notes by applying the conversion rules
detailed in Section 3.2.3. The correspondence between
the original and the scaled durations will drive the time-
scaling process performed by the transformation module.

With respect to the FO control, a singing pitch con-
tour (the blue solid lines in Fig. 2) is obtained following
the approach described in [20]. According to this, a step-
wise pitch contour is built from FOs and durations of
the notes. Then, this contour is filtered to obtain the
singing FO characteristic fluctuations: overshoot, prepa-
ration, and fine fluctuation. Figure 3 depicts an example
of a pitch curve generation. Overshoot (upper right) is
obtained by directly filtering the stepwise contour. Alter-
natively, preparation (upper left) can be obtained by fil-
tering (from the end towards the beginning) a slightly
delayed version of the stepwise curve. The mix (bot-
tom) of both fluctuations is obtained by applying the
masks (middle), which prioritise the overshoot at the
beginning of the note, preparation at the end, and con-
sider a simple cross-fading in between. In this proof
of concept, the implementation of vibrato is left for
future research.

Finally, the spectral control tries to emulate the singing
formant by emphasising the spectral envelope peak
around 3 kHz within the vowels [20].
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Preparation

Contour to be filtered
Melody contour
——— Preparation

Overshoot

Melody contour
——— Overshoot

Melody contour
Preparation+Overshoot

Fig. 3 Singing pitch curve generation.

Preparation (upper left), overshoot (upper right), the applied masks (middle), and the resulting mix (bottom)

3.2.5 Speech parameter generation and transformation
The HNM parameters of the retrieved units are con-
catenated, removing pitch and spectrum mismatches by
applying a simple linear interpolation technique around
the joins [47]. Transformation and synthesis are per-
formed pitch-synchronously. Thus, when a prosody mod-
ification is performed, the HNM parameters in the new
epochs are obtained pitch-synchronously through the
time-domain linear interpolation of the original param-
eters. Furthermore, if pitch scaling is done, amplitudes
and phases are interpolated in frequency to preserve the
original spectral envelope shape [49]. The new harmonic
amplitudes are calculated by the linear interpolation of the
spectral envelope in a logarithmic amplitude scale. The
phases of the target harmonics are obtained by interpo-
lating the real and the imaginary parts of the harmonic
complex amplitudes at the new frequencies. Finally, the
amplitudes are scaled to preserve the energy despite the
variation in the number of harmonics.

4 Methods

This section describes the methods used for the evalu-
ation of the proposed US-TTS&S synthesis framework
through the proof-of-concept implementation using a
Spanish corpus. The study has been carried out for three
vocal ranges and two tempos, and considering a text-
driven and three score-driven US configurations. The
experiments setup is described in Section 4.1. Then, the
objective evaluation (Section 4.2) analyses the magnitude

of the transformations required by the STS process to
allow the framework to sing. Finally, the subjective eval-
uation (Section 4.3) assesses both the singing capabilities
of the framework together with the naturalness of the
synthesised singing.

4.1 Experiments setup

4.1.1 Corpus

The experiments have been performed using a 2.6-h Span-
ish neutral speech corpus recorded by a female profes-
sional speaker [50]. The duration and FO histograms of
the corpus vowels are depicted in the Fig. 4a. Regarding
duration, about half of the vowels last 50 ms or less, and
there are virtually none beyond 200 ms. The FO histogram
has been depicted so each bin coincides with a semitone
in an equal temperament. Even though the corpus con-
tains vowels from 123 until 330, 3 out of 4 are between 139
and 196, so only cover 7 semitones. The 5th and the 95th
percentiles (FO? and F0§5) are 134.4 Hz and 235.5 Hz,
respectively. Therefore, the corpus vocal range midpoint

is FOS, = \/FOS-FOS, = 178 Hz.

4.1.2 Vocal ranges and tempos

The first evaluation scenario considered corresponds to
singing in the corpus vocal range (SO). However, in order
to evaluate the capability of the proposed US-TTS&S sys-
tem to work in a singer vocal range, a contralto set up has
been also examined; this is 7 semitones above the speech
corpus pitch range midpoint (S7). Moreover, the study has
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S4 and S7, respectively).

Fig. 4 Corpus (@) and target (b) vowel duration and F0 distributions

123 139 156 175 196 220 247 277 311 SO
156 175 196 220 247 277 311 349 392 s4
185 208 233 262 294 330 370 415 466 s7

FO in Hz
F0 histograms predicted from

the test score dataset sung with 7' = 100 bpm, and 0, 4 and 7
semitones above the speech corpus vocal range midpoint SO,

been completed with an intermediate anchor point (S4).
Finally, regarding the tempo, two values have been consid-
ered: 7 = 100 bpm corresponding to a moderate speed,
and a slow one (T = 50 bpm).

4.1.3  Unit selection configurations

The evaluation has included a text-driven US configura-
tion, MLC, which considers linguistic (L) and concate-
nation (C) costs, and the prosodic target predicted from
the lyrics by the CBR prosodic model (M). This would
correspond to the default US-TTS setting.

Moreover, the study has also considered three score-
driven configurations. In this case, the prosodic target
is that obtained by the singing prosody generation block
according to Sx and 7. These configurations are SxpdLC,

which uses the pitch (p) and duration (d) from the score
instead of those from the model, SxpdC, which also
disables the linguistic cost, and finally Sxp, which only
considers the pitch.

4.2 Objective evaluation

The objective analysis has been conducted by feeding a
score dataset into the framework to be sung in the afore-
mentioned vocal ranges and tempos with the considered
US configurations. Then, the pitch and time-scale factors
required to transform the retrieved units into singing have
been computed. More specifically, the analysis has been
focused on the vowels, where the bulk of the signal pro-
cessing takes place. Moreover, the approach described in
[51] has been implemented to get a binary concatenation
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quality prediction (poor/good) for each join (within the
vowels). The subsequent paragraphs describe the details
of the experiments.

4.2.1 Score test dataset

From a score compilation of songs for children [52], a sub-
set of 279 musical phrases has been selected, by applying
a greedy algorithm [53] to ensure its phonetic coverage
in Spanish. This has resulted in a dataset containing 3899
notes, which spans 29 min and 57 s with 7 = 100 bpm
and 59 min and 54 s for T = 50 bpm.

Figure 4b presents the vowel duration and FO targets
generated from the dataset by the singing prosody gen-
eration block. The left of Fig. 4b shows the histogram of
the vowel duration target for the score dataset sung at
100 bpm, while the right section depicts the histogram of
the vowel FO target for the dataset performed with SO, S4,
and S7.

4.2.2 Transformation requirements
A time-scale factor (8) has been calculated for each
retrieved vowel as

Durtgt — Duryn

= (6)

Durerig — Durgn
where Dury is the singing target duration and Duroyig
is the original duration of the retrieved vowel. When the
vowel is stretched, Dury,, accounts for the duration of the
unscaled transition (shadowed areas in Fig. 2), otherwise
Durtrn = 0.

Regarding the pitch-scale factors («), since the core US-
TTS works with diphones, we have obtained two values
for each vowel, i.e., one for each semiphoneme. The pitch-
scale factor has been computed as

FO
o= 7)

mean(FOorig)

where FOy is the target FO assigned from Sx, and
mean(FOorig) is the mean of the FO values within the
retrieved semiphoneme. Pitch-scale factors are expressed
in number of semitones as «y = 12log, (), since these
units are more meaningful from a musical point of view
and closer to the logarithmic perception of the pitch.

Moreover, transformation factors have been categorised
taking into account reference values in the literature.
Regarding time-scale factors, authors in [54] considered
the values below 4 as moderate, whereas in [55] only fac-
tors smaller than 2.5 received this consideration. Accord-
ing to this, time-scale factors have been grouped in three
categories: low (< 2.5), moderate (2.5, 4], and high (> 4).
Similarly, pitch-scale values have also been categorised
according to typical values [55] (see Table 1).

Finally, the statistical significance of the differences
among the results has been analysed using the Wilcoxon
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Table 1 Pitch-scale intervals expressed in absolute number of
semitones (|as|) and as multiplying factors («)

Joest ] [0-4] (4-7] (7-12] > 12
a < [0.8-1) [0.67-0.8) [0.5-0.67) <05
a > (1-1.26] (1.26-1.50] (1.50-2] > 2

signed-rank test for the transformation factors, and
McNemar for the discretised factors .

4.3 Subjective evaluation

4.3.1 MUSHRA test setup

The subjective evaluation is based on the MUSHRA
(MUItiple Stimuli with Hidden Reference and Anchor)
test [56], and it was done using the Web Audio Evaluation
Tool [57]. For the evaluation, five sentences were chosen
from the speech corpus so that their phonetic stress dis-
tribution could coincide with the music stressed beats.
These sentences were set to music using eighth notes (the
most common note value), thus getting five scores. These
songs were synthesised in the 3 vocal ranges (S0, S4, and
S7) and the 2 tempos (100 bpm and 50 bpm) consider-
ing the 4 US configurations under study. The obtained
audios were analysed following the procedure described
in Section 4.2 to check that the transformation factors
obtained for the different US configurations fit with those
seen in the objective evaluation with the score dataset.
The audios generated for one of the five scores have been
provided as Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24.

Forty-nine Spanish native speakers took part in the test.
From the 30 evaluation sets (5 scores x 3 vocal ranges x 2
tempos), each user evaluated 6 sets corresponding to the
6 case scenarios (3 vocal ranges x 2 tempos). For each
set, the participants were told to rate different versions
of the same melody compared to a reference on a scale
of 0 to 100. Specifically, they were told to evaluate the
naturalness and the singing (i.e. how well sung is each
stimuli regardless the naturalness). Moreover, they were
instructed to give the highest score to the reference. Thus
we excluded 14.5% of the sets where participants rated the
hidden reference below 70.

Regarding the singing evaluation, the score performed
by Vocaloid [58] was used as the upper reference and the
lyrics synthesised by the TTS (i.e. not sung) as the lower
anchor (see, for example, Additional file 25). Since the
STS process applied is the same for all the US configura-
tions, only MLC was included together with the hidden
reference and the anchor to minimise the fatigue of the
participants. For the naturalness assessment, the upper
reference was the original sentence from the corpus, i.e.
natural speech (see, for example, Additional file 26), while
no lower anchor was available. In this case, 7 stimuli were
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evaluated within each set: MLC, the 3 score-driven con-
figurations (Sxp, SxpdC, and SxpdLC), Vocaloid (V), and
the hidden reference.

5 Results and discussion
This section presents and discusses the results obtained
from both the objective and the subjective evaluation.

5.1 Objective evaluation
5.1.1 Pitch-scale and concatenation analysis
The distributions of the pitch-scale factors («g) required
to convert the retrieved spoken units into singing are
depicted in Fig. 5. Their probability densities are repre-
sented by violinplots superposed on the standard box-
plots, whose whiskers are set to 2nd and 98th percentiles.
The percentages for the categorised pitch-scale factors
and for concatenation quality can be seen in Table 2. The
values obtained at the two tempos have been included
for the configurations that consider durations from the
score (SxpdC and SxpdLC). However, since the differences
due to the tempo are very small, only the distributions
obtained with 7' = 100 bpm have been depicted in Fig. 5.
When singing in the corpus vocal range (look at SO sce-
nario in Fig. 5), the distribution of pitch-scale factors is
centred around O semitones in all the configurations. The
interval defined by the 2nd and 98th percentiles ranges
from [— 6.9,8.2] for MLC to [— 0.8,0.9] for SOp. Therefore,

S7p v—‘—k ',:
P A e — .
S7pdC - —
(%)
S7pdLC -t —
—
-12 -8 -4 0 4 8 12 16 20
S4p —_—'f—_-—
S4pdC —} =
%) T
1 L
MLC t T
-12 -8 -4 0 4 8 12 16 20
SOp ___i_,‘_.._.
SOpdC +—H -
%)
SOpdLC > E f
1 L
MLC t f
-12 -8 -4 0 4 8 12 16 20
Pitch-scale factor (semitones)
Fig. 5 Pitch-scale factors («s;) for different vocal ranges (S0, 54, S7)
and unit selection configurations with T = 100 bpm. Whiskers are set
to 2nd and 98th percentile. Differences between all configurations are
statistically significant (p < 0.01) except for the pair SOpdC-SOpdLC

(2019) 2019:22 Page 10 of 14

Table 2 Pitch-scale factor (| s |) percentages and good
concatenation percentages

| ot | Concat.
Configuration [0-4] 4-7] (7-12] > 12  Good
S7p 94.2 4.5 1.2 0.1 33.1
S7pdC (100 bpm) 48.0 24.0 229 5.1 67.5
S7  S7pdC (50 bpm) 471 240 237 5.1 68.1
S7pdLC (100 bpm) 362 24.6 30.8 8.3 70.5
S7pdLC (50 bpm) 36.2 24.1 31.2 84 704
MLC 14.3 24.2 46.9 14.6 72.3
S4p 98.6 12 03 0.0 44.2
S4pdC (100 bpm) 69.2 19.0 1.1 0.7 704
S4  S4pdcC (50 bpm) 68.7 189 1.7 0.7 71.2
S4pdLC (100bpm) 604 226 157 13 72.0%
S4pdLC (50 bpm) 59.8 228 16.2 1.3 717
MLC 377 314 286 23 723
SOp 99.8 0.2 0.0 0.0 529
SOpdC (100 bpm) 88.1 103 15 0.0 784
SO SOpdC (50 bpm) 875 109 1.6 0.0 778
SOpdLC (100 bpm) 825 14.2 33 0.0 76.7
SOpdLC (50 bpm) 82.1 14.6 33 0.0 76.5
MLC 68.1 256 6.3 0.0 72.3

Each row shows the percentages corresponding to a particular vocal range (S0, S4,
or S7) and US configuration. Differences with respect to MLC are statistically
significant (p < 0.01) for all configurations, except *

the distributions are narrowed when the score is consid-
ered. This implies that the percentage of small factors
(| ast |< 4) increases from 68.1% in MLC until 99.8% for
SOp as can be seen in Table 2.

When singing beyond the speech corpus vocal range
(S4 and S7), the distribution of MLC pitch-scale factors
with SO shifts up 4 semitones for S4 and 7 for S7 as
seen in Fig. 5. Conversely, when the score is taken into
account this increase can be mitigated, or even neutralised
if only pitch is considered (Sxp). However, Table 2 shows
that 72.3% of good concatenations obtained with MLC
drop to 52.9% for SOp, 44.2% for S4p, and 33.1% for S7p.
By contrast, the intermediate configurations (SxpdC and
SxpdLC) still allow for a statistically significant reduction
of the pitch-scale factors while minimising the concatena-
tion quality degradation. Finally, it should be noted that
in the score-driven configurations, the percentage of good
concatenations decreases as the distance from the speech
corpus vocal range midpoint increases.
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5.1.2 Time-scale analysis

Regarding the time-scale factors, although the differences
between configurations are in some cases statistically sig-
nificant, they are barely relevant compared to the differ-
ences which arise from the tempo and the note values.
According to this, and for the sake of clarity, the results of
the intermediate configuration S4pdLC are presented for
the two tempos under study, breaking them down accord-
ing to the three most frequent note values: sixteenth note
(ﬁ), eighth note (j), and quarter note (J). These note
values respectively account for 14.0%, 59.1%, and 21.7%
of the notes in the score dataset, and they last 150 ms,
300 ms, and 600 ms for 7 = 100 bpm and double for
T = 50 bpm.

Figure 6 shows the distributions of the time-scale factors
(8), with the boxplot whiskers set to the minimum and the
98th percentile. The time-scale factor percentages by cat-
egory are presented in the Table 3. We can see in Fig. 6
that when the tempo goes from 100 bpm to 50 bpm, notes
doubled their duration, while time-scale factors more than
doubled. This behaviour is also observed between note
values within the same tempo. Similarly, Table 3 shows
that while almost all (97.8%) of the shortest notes (150 ms)
can be addressed with small time-scale factors (8 < 2.5),
when moving to medium duration notes (300 ms) 15.2%
of high time-scale factors emerge at 100 bpm, and 17.4%
at 50 bpm. Finally, as seen in Fig. 6 time-scale factors up to
28 can be required when singing long notes (600 ms), and
even greater than 50 for notes lasting 1200 ms.

5.2 Subjective evaluation

Results from the MUSHRA test are shown in Tables 4
and 5. Regarding the singing assessment (see Table 4) the
US-TTS&S framework has received MUSHRA scores of
around 60. Although a slight preference for the contralto

2 1200 | — } s
S o |
2 600 — - s f=m
(0]
- ———.-_
2 300 KD —
2 4 6 8 10 12 14 16 18 20 30 40 5060
Time-scale factor at 50bpm
’g 600 f l I I I
=
3 300 |;It l[ e
2 ]
S 150 €. o
1.2 3 4 5 6 7 8 9 10 15 20 2530
Time-scale factor at 100bpm
Fig. 6 Time-scale factors (8) obtained with the S4pdLC configuration
at 100 bpm and 50 bpm for different note durations. Whiskers are set
to minimum and 98th percentile
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Table 3 Time-scale factor (8) percentages obtained with the
S4pdLC configuration at 100 bpm and 50 bpm for different note
durations (in ms)

Note B Note B

dur(ms) <25 (254 >4 dur(ms) <25 (254 >4
600 9.0 235 675 1200 0.0 0.2 99.8
300 55.1 29.7 152 600 35 84 88.1
150 97.8 1.8 0.3 300 50.1 326 174

vocal range (S7) can be observed (62 at 100 bpm, and 61
at 50 bpm), similar results have been obtained for all the
analysed scenarios.

With regard to naturalness (see Table 5), singing pro-
duced by the US-TTS&S framework is far from the
Vocaloid (around 40 and 69, respectively). Although the
differences between the US configurations are not statis-
tically significant (according to the Wilcoxon signed-rank
test), some tendencies can be observed. For instance,
looking at the MUSHRA scores in Table 5 it can be
seen that Sxp configurations have received the lowest
ratings in all the analysed scenarios except for S4 and
T = 50 bpm. Conversely, when the concatenation cost
is enabled (SxpdC and SxpdLC), the naturalness is sim-
ilar to that of MLC, or in some cases slightly improved,
as with SO and SOpdC at 50 bpm, or with S4 for both
configurations and the two tempos.

5.3 Discussion

The experiments have been designed to evaluate the pro-
posal through a proof-of-concept implementation. From
the objective tests, it can be observed that large time
transformation factors arise when dealing with medium
duration notes (300 ms), but especially when long and very
long notes (600 ms and 1200 ms) are present in the song
(see Fig. 6). This result is in concordance with the corpus
characteristics, which contains almost no vowels longer
than 200 ms (see Fig. 4a). As a consequence, we can con-
clude that score-driven US configurations hardly impact
on the time-scaling requirements.

Regarding pitch-scaling, the obtained moderate trans-
formation factors required to sing in the speech corpus
vocal range (SO) are consistent with the overlap between
the FO distribution from the score dataset and that from

Table 4 Singing MUSHRA average scores and 95% confidence

interval
Configuration T =100 bpm T =50bpm
S7 MLC 62+6 617
S4 MLC 59+6 60+ 6
SO MLC 60+ 8 58+7

Best values are in italics
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Table 5 Naturalness MUSHRA average scores and 95%
confidence interval

Configuration T =100 bpm T =50bpm
S7 \Y 74+6 70+6
S7pdLC 415 44+ 6
S7pdC 39+6 43+6
S7p 365 40+£6
MLC 42+5 44£5
\Y 697 677
S4pdLC 42+6 38+6
S4 S4pdC 3946 41+6
S4p 35+6 38+6
MLC 38+6 37+6
SO \Y 66£7 70+6
SOpdLC 44+5 38+4
SOpdC 44+ 5 42+6
SOp 41+6 35+£6
MLC 44£6 39+5

Best values achieved by the proposed system in each scenario are in italics

the corpus vowels (see Fig. 4). Conversely, when moving
towards a contralto singer vocal range (S7), the over-
lap between FO distributions is significantly reduced as
it can be seen in Fig. 4. Thus, even though Sxp config-
urations are able to find almost all the vowels close to
the desired pitch, it becomes harder to find units that
also join adequately and meet the other target specifi-
cations (SxpdC and SxpdLC). This can be observed in
the last column of Table 2, in the decreasing percent-
age of good concatenations when moving away from the
corpus vocal range. Hence, although the score-driven
US strategies have been proved helpful to reduce the
pitch-scaling requirements, their effectiveness could be
higher if a larger speech corpus with a greater coverage
was available.

From the perceptual tests, a slight preference for singing
in an actual singer vocal range (S7) has been observed
(see Table 4). However, this preference is not significant
with respect to the other vocal ranges under study (with
MUSHRA scores of around 60). With regard to natural-
ness (see Table 5), the ratings achieved by the proof-of-
concept with respect to natural speech are significantly
different to those obtained by Vocaloid (with MUSHRA
ratings around 40 and 69, respectively). Nevertheless, this
is not surprising since Vocaloid is a commercial high-
quality singing synthesiser exclusively designed for this
purpose, which uses databases including diphones, sus-
tained vowels and optionally triphones, sung by profes-
sional singers in several pitches to cover their vocal range
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[58]. Conversely, the proposal has to deal with the spo-
ken units available in the corpus, which are low-pitched
and very short compared to what could be found in a
singing database. Therefore, converting them into singing
involves high demanding transformations factors as seen
in the objective evaluation. In this context, it has also been
observed that the substantial pitch-scale factors reduction
achieved by the score-driven US configurations has had
a small impact on the naturalness, obtaining scores simi-
lar to those received by the text-driven US configuration.
Besides the aforementioned restrictions due to the corpus
size,this could be explained by the impossibility of relax-
ing the time-scale requirements. This may be important,
considering that the ability to reproduce the behaviour
of sustained vowels is known to be essential in singing
synthesis [58].

Finally, it is worth mentioning that the validation of the
proposal has been carried out with a specific speech cor-
pus on a US-TTS system, since this approach enabled the
study of the STS transformation factors required to pro-
duce singing from speech. Nevertheless, other corpus and
adjustments of the cost function weights could be con-
sidered, and even other corpus-based approaches, such
as statistical parametric speech synthesis using HMM or
DNN.

6 Conclusions

This work has proposed a synthesis framework that pro-
vides singing capabilities to a US-TTS system from neu-
tral speech, through the integration of speech-to-singing
(STS) conversion. The proposal has been evaluated by
means of a proof-of-concept implementation on a 2.6-h
Spanish neutral speech corpus, considering different vocal
ranges and tempos and studying diverse text-driven and
score-driven US configurations.

Results show that high demanding STS transforma-
tion factors are required to sing beyond the corpus vocal
range and/or when notes longer than 150 ms are present.
However, the pitch-scale factors can be reduced by con-
sidering score-driven US configurations. Conversely, the
time-scale requirements cannot be reduced because of the
short length of the vowels available in the corpus.

Regarding the subjective evaluation, text-driven and
score-driven US configurations have obtained a similar
naturalness in all the analysed scenarios, with MUSHRA
scores around 40. Although these values are far from
those of Vocaloid (around 69), the obtained singing rat-
ings around 60 validate the capability of the framework to
address eventual singing needs.

The obtained results encourage us to continue working
on the proposal to improve the performance of the sys-
tem. To this aim, the focus will be placed on the generation
of long sustained vowels, exploring advanced time-scale
and spectral transformation strategies, and incorpora-
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ting vibrato to the singing expression control generation
module. Furthermore, other signal-processing techniques
could be considered for the transformation module to bet-
ter cope with the challenge of generating singing from
neutral speech.
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