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Abstract

According to the encoding and decoding mechanism of binaural cue coding (BCC), in this paper, the speech and
noise are considered as left channel signal and right channel signal of the BCC framework, respectively.
Subsequently, the speech signal is estimated from noisy speech when the inter-channel level difference (ICLD) and
inter-channel correlation (ICC) between speech and noise are given. In this paper, exact inter-channel cues and the
pre-enhanced inter-channel cues are used for speech restoration. The exact inter-channel cues are extracted from
clean speech and noise, and the pre-enhanced inter-channel cues are extracted from the pre-enhanced speech and
estimated noise. After that, they are combined one by one to form a codebook. Once the pre-enhanced cues are
extracted from noisy speech, the exact cues are estimated by a mapping between the pre-enhanced cues and a
prior codebook. Next, the estimated exact cues are used to obtain a time-frequency (T-F) mask for enhancing noisy
speech based on the decoding of BCC. In addition, in order to further improve accuracy of the T-F mask based on
the inter-channel cues, the deep neural network (DNN)-based method is proposed to learn the mapping
relationship between input features of noisy speech and the T-F masks. Experimental results show that the
codebook-driven method can achieve better performance than conventional methods, and the DNN-based
method performs better than the codebook-driven method.
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1 Introduction
For speech communication system in natural environ-
ment, the background noise will cause an impairment to
speech signal. Thus, it is necessary to reduce the effect
of the noise by speech enhancement. The purpose of
speech enhancement is to improve quality and intelligi-
bility of speech by suppressing background noise.
Many speech enhancement methods were developed

in the last few decades, such as spectral-subtractive algo-
rithm [1, 2], Wiener filtering [3] and statistical model-
based methods [4, 5]. These methods could achieve a
good performance for stationary noise, but their per-
formance becomes worse when the non-stationary noise
is concerned. The main problem is that the estimation
of non-stationary noise is a difficult task [6–8], for ex-
ample, the estimation method of noise power spectrum
[9] in a large buffer limits its ability to track rapid
changes of noise energy [6–8].

In order to solve the problem of non-stationary noise
estimation, some supervised approaches were proposed
by using a priori knowledge of speech and noise. For ex-
ample, in the auto-regressive hidden Markov model
(ARHMM) method [10] and codebook-driven Wiener
filtering methods [6, 8, 11, 12], the spectral shapes of
speech and noise were considered as a priori informa-
tion used for the pre-training. In the ARHMM-based
methods, the spectral shapes of speech and noise are
represented by the HMM model, and the speech signal
is reconstructed by combining spectral gains of speech
and noise. Since the spectral gain of noise is obtained on
a short-frame basis, the quick changes of noise energy of
non-stationary noise can be followed. In codebook-
driven methods, the auto-regressive (AR) coefficients of
speech and noise are used to train two shape codebooks
of spectra by vector quantization method [13]. Once the
AR gains of speech and noise are estimated by max-
imum likelihood (ML) technique [11] or the Bayesian
minimum mean squared error (MMSE) technique [6, 8]
or maximum posteriori probability (MAP) technique
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[12], the spectral envelope of speech and noise could be
obtained. Since the AR gain of noise is estimated on a
short-frame basis, the codebook-driven methods could
better track the energy changes of non-stationary noise
to some extent [6, 8].
In addition to above-mentioned methods [6, 8, 10–12]

using spectral envelope of speech and noise as a priori in-
formation, the spectral details of speech and noise were
used as a priori knowledge in [14–25]. In [14, 15], Gaussian
mixture model (GMM) was used to train the log spectra of
speech and noise, and speech signal was estimated by a
MMSE estimator. In the MMSE estimation, the weighted
sum of the posterior probabilities of all Gaussian pairs was
used to the MMSE estimators of speech. Later, in [16], in
view of the lack of temporal dynamics in the GMM-based
methods, a layered HMM model was incorporated to
model the relationship between adjacent frames. In the ref-
erences from [17] to [25], log spectrum of speech or the T-
F mask was trained by deep neural network model for
restoring spectral details. Hereinto, in [24, 25], the
generalization ability of the DNN-based methods was also
discussed, and these studies have shown that large-scale
training with a wide variety of noises is helpful to noise
generalization.
Considering the fact that the prior information of speech

and noise can improve speech quality, our former works
[26, 27] have shown an effectiveness of using binaural
inter-channel cues between speech and noise to enhance
speech. In previous studies based on the cue parameter
[28–39], the binaural inter-channel cues [28–37] have been
used to estimate ideal T-F mask in binaural computational
auditory scene analysis (CASA) systems and have shown a
good performance in binaural speech processing. In the
BCC technique [40–42], the binaural inter-channel cues
were viewed as the side information, which was combined
with a down-mixed audio signal to recover the left channel
and right channel audio signals. The down-mixing signal is
a mono signal generated from the left and right channel
signals. According to the principle of the BCC, the BCC
technique can recover the input signals of the left and right
channels, when the down-mixing signal and the inter-
channel cues between the left and right channel signals are
given. Based on this, for single-channel speech enhance-
ment, when the noisy signal is seen as the down-mixing sig-
nal constructed by speech and noise, the exact inter-
channel cues between speech and noise are obtained as
well. We could exploit the BCC framework to extract clean
speech from noisy speech. Compared with the original
BCC framework [41, 42] that the left channel and the right
channel correspond to left microphone and right micro-
phone, respectively, in the BCC scheme used in speech en-
hancement, the left channel and the right channel
correspond to speech signal and noise signal, respectively.
In this paper, the noisy signal is seen as the down-mixing

signal of speech and noise based on the BCC framework
[40–42]; two kinds of the T-F mask estimation methods are
proposed to estimate clean speech from noisy speech by
extracting and training the inter-channel cues between
speech and noise.
For the first T-F mask estimation, the inter-channel cues

between speech and noise are trained as a priori codebook
similar to [26]. However, in [26], multiple frequency sub-
bands have the same inter-channel correlation (ICC)
between speech and noise, which limits the ability of redu-
cing noise. In the proposed codebook-based method, the
shared correlation of multiple frequency sub-bands is
avoided by modifying the calculation of the inter-channel
cues, that is, in this paper, the ICC between speech and
noise is considered in each frequency sub-band. In
addition, in the proposed method, the pre-enhanced cues
following the pattern involved in [22] are extracted to gen-
erate a vector with 28 dimensions to replace a vector with
2 dimensions in [26], which help to improve the accuracy
of selecting the optimal code-vectors by the weighted
mapping technique [43]. Once the pre-enhanced cues and
exact cues are extracted, they can be combined one by
one for training a codebook offline. In online enhance-
ment stage, by comparing distance between the pre-
enhanced cues online and cues stored in the codebook,
the exact cues can be obtained by a combinatorial map-
ping and used to generate the T-F masking estimator for
enhancing noisy speech.
Since the codebook-driven method is much sensitive

to the pre-enhancing method, and the inter-channel
cues with unboundedness is detrimental to the super-
vised methods based on the gradient descent [17], the
second technique cancels the pre-enhancing module and
uses the DNN to directly learn the mapping relationship
between input features of noisy speech and the T-F
mask synthesized by exact inter-channel cues.
The rest of this paper is organized as follows. In Sec-

tion 2, the relationship between the BCC and speech en-
hancement is described. In Section 3, we discuss the
details of the proposed method. Experimental results are
provided in Section 4, and Section 5 provides the
conclusions.

2 The BCC framework and speech enhancement
system
2.1 A brief description of the BCC framework
The binaural cue coding (BCC) [40] is a kind of stereo
coding method. Its principle is shown in Fig. 1. The
BCC method is composed of the encoder and decoder
and adopts the coding way combining the down-mixed
process and side information [40]. In the BCC, the bin-
aural inter-channel cues are usually selected as the BCC
parameters, which are termed as side information. In
Fig. 1, to satisfy the coding way of the down-mixed
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process and side information, the down-mixed module,
analysis module, side information processing module,
and synthesis module are considered. At the encoder,
the signal of left channel and signal of right channel are
down-mixed by the down-mixed module for producing
a mono signal, and analyzed by the analysis module for
generating the inter-channel cues. The down-mixed
mono signal is the sum of the signals coming from the
left and right channels. The binaural inter-channel cues,
ICLD, ICC, and inter-channel time difference (ICTD)
[30, 42] are extracted respectively as follows:

ICLD i; lð Þ ¼ 10 log10

XN−1

n¼0

Xil;L nð Þ�� ��2
XN−1

n¼0

Xil;R nð Þ�� ��2

2
66664

3
77775 ð1Þ

ICC i; lð Þ ¼
j
XN−1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1
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s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1
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ICTD i; lð Þ ¼ argmax
δ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1
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s ð3Þ

where N is frame length and δ denotes time delay. Xil, L

and Xil, R indicate left channel and right channel signals
at the ith sub-channel of the lth frame, respectively.
At the decoder, the side information processing mod-

ule is used to extract the binaural inter-channel cues,
which are combined with the down-mixed signal to ob-
tain the left channel signal and right channel signal by
the synthesis module, that is, given the T-F components
Yilof mono signal, the T-F components Xil, L of left
channel can be calculated as [42]

Xil;L i; lð Þ ¼ FL i; lð Þ � GL i; lð Þ � Y il ð4Þ

Similarly, we can obtain the T-F components of the
right channel. In Eq. (4), GL(i, l) denotes the phase modi-
fication function related to time delay. In this paper, the
matching data set between speech and noise is used in
training, so when the speech and noise are viewed as left
channel and right channel signals, the time delay may be
neglected so that it is not concerned in this paper. FL(i,
l) is used to determine the amplitude modification of the
T-F component, which depends on the ICLD and ICC.
For convenience, the frame index l in the following
equations is omitted. Thus, the FL(i) can be obtained by
the inter-channel cues as follows:

FL ið Þ ¼ 10 ICLD ið Þþr ið Þð Þ=20 � FR ið Þ ð5Þ
with

FR ið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10 ICLD ið Þþr ið Þð Þ=10

p ð6Þ

r ið Þ ¼ 1−ICC ið Þ½ � � τ ið Þ ð7Þ
where τ(i) is the random Gaussian sequence with zero
mean and variance 1.

2.2 The transfer from the BCC to speech enhancement
In the original BCC framework [41, 42], the down-
mixed mono signal is the sum of the collected sig-
nals from the left channel and right channel. For
additive noise, since noisy speech is the sum of
speech and noise signals, when speech and noise sig-
nals are regarded as the left channel signal and right
channel signal, respectively, the noisy speech can be
seen as a down-mixed mono signal composed of
speech and noise. At this time, in order to observe
the transfer from the original BCC framework to
speech enhancement, the clean speech and noise sig-
nals are in the two separate channels to simulate the
down-mixed process. Thus, the BCC shown in Fig. 1
can be transferred to a speech enhancement frame-
work shown in Fig. 2. In Fig. 2, the functions of the

Fig. 1 Block diagram of the BCC
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four modules (i.e., the down-mixed module, analysis
module, side information processing module, and
synthesis module) are the same as those in Fig. 1.
From Fig. 2, we can see that once the inter-channel
cues between speech and noise are given, the clean
speech can be separated from noisy speech signal by
using decoding principle of the BCC. This speech
enhancement framework is based on the studies in
[44–46], that is, there is a certain correlation
between speech and noise components in time-
frequency domain. Moreover, the studies in refer-
ences [47] to [48] further confirmed that the level of
normalized cross-correlation coefficient (NCCC) be-
tween noisy speech and noise approximates to 0.5 in
voiced segments, which also implies a relatively
strong correlation between speech and noise. So, we
attempt to exploit level modifications of speech and
noise to generate a ratio mask based on the correl-
ation between speech and noise for speech
restoration.

3 The proposed method based on binaural inter-
channel cues
In the proposed speech enhancement method, the
exact inter-channel cues between speech and noise
are considered as a priori information of speech and
noise. By extracting exact inter-channel cues be-
tween speech and noise, the T-F mask exploiting
the BCC decoding can be obtained for speech res-
toration. In order to get exact inter-channel cues
between speech and noise, two different techniques
are considered in this paper. In the first technique
that will be described in Section 3.1, the exact
inter-channel cues and pre-enhanced inter-channel
cues are trained as a priori codebook offline, and
the estimations of the exact inter-channel cues are
obtained online by a weighted mapping technique
[43] for generating the T-F mask, which is termed
as the codebook-based T-F mask estimation method.
In the first technique, the selection of code vectors
or the calculation of weights is liable to lead to

errors, which directly affects the estimation accuracy
of the exact inter-channel cues. Thus, for the sec-
ond technique given in Section 3.2, we plan to use
the DNN to directly predict exact inter-channel
cues between speech and noise in the beginning.
However, the study in [17] has shown that the com-
pression training of the unbounded predictive target
(e.g., ICLD) is detrimental to the supervised ap-
proaches based on the gradient descent [20]. So, in
the second technique, the DNN is used to directly
predict the T-F mask constructed by exact inter-
channel cues, which is termed as the DNN-based T-
F mask estimation method.

3.1 Codebook-based T-F mask estimation
Considering that the cocleagram is more separable than
spectrogram [49], the proposed method is operated in
the Gammatone auditory domain. In order to use the
BCC framework to separate speech from noisy speech,
the pre-enhancing technique [5] is used for initial esti-
mation of speech and noise in order to modify the levels
of speech and noise (Fig. 3).
Figure 3 shows a block diagram of codebook-based

T-F estimation. The T-F mask estimation consists of
two stages, i.e., the training phase and the enhancing
phase. In the training phase, the noisy speech is firstly
pre-enhanced to obtain pre-enhanced speech and
estimated noise for generating the pre-enhanced
inter-channel cues. Here, the purpose of using pre-
enhancement is to ensure data matching between the
enhancement and training phases. Next, clean speech,
noise, pre-enhanced speech, and estimated noise are
decomposed into T-F units by a Gammatone filter
with 64 channels. Wherein, the frame length of each
channel is 32 ms and overlapped by 16 ms. It must
be noted that the pre-enhanced inter-channel cue
vector θy is obtained from pre-enhanced speech and
estimated noise, and the exact inter-channel cue vec-
tor θx is extracted from clean speech and noise. θy
and θx are combined one by one to train a vector
codebook. In the enhancing phase, the pre-enhanced

Fig. 2 Block diagram of speech enhancement framework based on the BCC
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cue vector θyy is extracted from noisy speech. The
weighted mapping technique [43] is used to obtain a
weighted sum of the pre-enhanced cues chosen from
the trained codebook. According to one-to-one rela-
tionship of θy and θx, the exact inter-channel cues are
estimated. Given the estimated θx, the T-F mask can
be obtained from the BCC decoder. With the esti-
mated T-F masks, the speech signal is reconstructed.
In order to perform speech enhancement, there are

three key problems to be solved. One is how to define
exact inter-channel cues. The second one is how to esti-
mate exact inter-channel cues from the trained code-
book. The last one is how to obtain the T-F mask based
on exact inter-channel cues.

3.1.1 Definition of the inter-channel cues
In order to facilitate symbol distinction of the cues be-
tween speech enhancement system and the BCC system,
in this paper, the cue ICLD defined in the BCC is rede-
fined as level difference of speech and noise (LDSN), and
the cue ICC defined in the BCC is redefined as speech
and noise correlation (SNC). For each frequency sub-band
of each frame, the LDSN and SNC are denoted as exact
inter-channel cues and calculated respectively by:

LDSN ið Þ ¼ 10 log10

XN−1

n¼0

xi nð Þj j2

XN−1

n¼0

wi nð Þj j2

2
66664

3
77775 ð8Þ

and

SNC ið Þ ¼
j
XN−1

n¼0

xi nð Þwi nð Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

n¼0

xi nð Þj j2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

n¼0

wi nð Þj j2
s ð9Þ

where N is frame length, i is the frequency sub-band
index, and x(n) and w(n) denote clean speech and noise
signals, respectively. For the LDSN, it is actually equiva-
lent to the sub-band SNR in [50]. Obviously, in this
paper, the SNC is computed in each frequency sub-band
so that the shared correlation of multiple frequency sub-
bands in [26] can be avoided.
For the calculation of the pre-enhanced inter-channel

cues, the pre-enhanced speech xp(n) and pre-enhanced
noise wp(n) are firstly obtained with the pre-enhanced
method [5]. Then, pre-enhanced speech and estimated
noise are decomposed into the sub-band signals [51] by
the Gammatone filter, respectively. For the frequency sub-
band i of frame l, the pre-enhanced LDSN is calculated in
time-frequency domain with the following steps [22]:

(1) Compute the DFT of xp(n) and wp(n) as Xp(k) =
Xp,k · exp(jφy(k)) and Wp(k) = Wp,k · exp(jφy(k)),
where Xp,k and Wp,k denote the magnitude spectra
of xp(n) and wp(n). φy(k) is the phase of the
corresponding noisy speech.

(2) Estimate LDSN: εk(l) = α · εk(l − 1) + (1 − α) ·
(Xp,k)

2/(Wp,k)
2, where α is the weighting parameter

and εk(l − 1) is the SNR value of previous frame.

Since the calculation of the LDSN concerns a high-
dimension vector caused by the DFT for each frequency

Fig. 3 Block diagram of the codebook-based T-F estimation
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sub-band, the dimension number is reduced to 10 from
256 by a similar polynomial model [22] in this paper.
The pre-enhanced SNC is defined in the critical bands

and calculated as follows:

SNC bð Þ ¼
j
XAup bð Þ

k¼Ab

Xp kð Þ �Wp kð Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXAup bð Þ

k¼Alow bð Þ
Xp kð Þ � X�

p kð Þ
0
@

1
A XAup bð Þ

k¼Alow bð Þ
Wp kð Þ �W �

p kð Þ
0
@

1
A

vuuut
ð10Þ

where b Є [0, 18) is the critical band index and Aup(b)
and Alow(b) are the upper and lower frequency bound of
the bth critical band [52], respectively.
Thus, for the pre-enhanced signals, the LDSN cue and

SNC cue are represented by 10 dimensional vector and
18 dimensional vector, respectively. Combining 10
LDSN cues and 18 SNC cues, we can build a vector with
28 dimensions to generate the pre-enhanced cues.

3.1.2 Estimation of exact inter-channel cues
In this part, the weighted codebook mapping (WCBM)
algorithm [43] is selected to obtain exact inter-channel
cues from the trained codebook. In the trained stage, the
exact inter-channel cues and the pre-enhanced inter-
channel cues are combined one by one and trained as a
codebook, that is, for each code-vector of the trained
codebook, it consists of exact cues with a 2-D vector θx
and the pre-enhanced cues with a 28-D vector θy. Here,
the exact cue vector θx = [LDSN, SNC] and offline pre-
enhanced cue vector θy = [LDSNy0, LDSNy1,…, LDSNy9,
SNCy0, SNCy1,…, SNCy17], where the [LDSNy0, LDSNy1,
…, LDSNy9] is a vector with 10 dimensions obtained by
dimension reduction of the pre-enhanced LDSN based
on a polynomial model [22] and the [SNCy0, SNCy1,…,
SNCy17] is a vector with 18 dimensions obtained from
18 critical band of the pre-enhanced SNC based on
Eq.(10). In this paper, the size of codebook is Q = 256,
i.e., the codebook is comprised of 256 code-vectors. Fig-
ure 4 gives the block diagram of extracting exact inter-

channel cues from the trained codebook. For each fre-
quency sub-band of each frame, the pre-enhanced cue
vector θyy is extracted from noisy speech in the en-
hanced stage. Here, online pre-enhanced cue vector θyy
= [LDSNyy0, LDSNyy1,…, LDSNyy9, SNCyy0, SNCyy1,…,
SNCyy17] is similar to offline pre-enhanced cue vector θy.
However, different from the [LDSNy0, LDSNy1,…,
LDSNy9] and [SNCy0, SNCy1,…, SNCy17] generated from
the pre-enhanced speech and noise of the trained stage,
the [LDSNyy0, LDSNyy1,…, LDSNyy9] and the [SNCyy0,
SNCyy1,…, SNCyy17] are generated from the pre-
enhanced speech and noise of the enhanced stage. Then,
by comparing Euclidean distance (ED) between the θyy
and the pre-enhanced cue vector θy stored in the trained
codebook, we only choose M code-vectors with relatively
smaller ED from Q code-vectors [26]. The pre-enhanced
cue vectors of the M code-vectors are defined as θy1, θy2,
..., θyM. In order to obtain the weights of M code-vectors
[26], the qth ED between θyq and θyy is first given as fol-
lows (Fig. 4):

Ed qð Þ ¼ sqrt
X28
j¼1

θyq jð Þ−θyy jð Þ� �2 !
∀q∈ 1;Q½ �

ð11Þ

Then, the EDs corresponding to M code-vectors are
expressed as Ed(1), Ed(2) , ... , Ed(M). And the degree ρm
of the mth member of M code-vectors is defined as fol-
lows [26]:

ρm ¼ Ed mð Þð Þ2XM
m¼1

Ed mð Þð Þ2

2
66664

3
77775

−1

∀m∈ 1;M½ � ð12Þ

Subsequently, the mth weight of M code-vectors is
given by:

Fig. 4 Block diagram of extracting exact inter-channel cues from the codebook
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dm ¼ ρmXM
m¼1

ρm

ð13Þ

According to one-to-one mapping between exact cues
and pre-enhanced cues in each code-vector, all weights
derived by the Eq. (13) can be used to estimate exact
cues as follows:

θ̂x ¼
XM
m¼1

dm � θx;m ð14Þ

where θx, m is the mth vector of M exact cue vectors
chosen from M code-vectors.

3.1.3 T-F Mask estimation based on exact inter-channel
cues
Once the exact cues including LDSN and SNC are esti-
mated in the frequency sub-band i, by exploiting the
BCC decoding principle, we have:

LDSN1 ið Þ ¼ LDSN ið Þ þ r ið Þ ð15Þ
with

r ið Þ ¼ 1−SNC ið Þ½ � � τ ið Þ ð16Þ
Finally, with exact inter-channel cues obtained above,

the proposed ratio mask based on the cues (RMC) is
given as follows:

RMC ið Þ ¼ Fx ið Þ
Fx ið Þ þ Fw ið Þ

� �1=2

ð17Þ

where based on amplitude modifications of left channel
and right channel signals from the Eq.(5) and Eq.(6),
Fx(i)and Fw(i)are defined as the energy modifications of
speech and noise, respectively. They are given by:

Fw ið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10LDSN1 ið Þ=10

p
 !2

ð18Þ

Fx ið Þ ¼ 10LDSN1 ið Þ=20� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10LDSN1 ið Þ=10

p
 !2

¼ 10LDSN1 ið Þ=10

1þ 10LDSN1 ið Þ=10� � ð19Þ

3.2 DNN-based T-F mask estimation
In the aforementioned codebook-based method and the
studies [26, 27], some intermediate parameters (e.g., code-
vector selection or exact cue estimation) need to be selected
for generating ratio mask or speech gain. However, it is not
easy to ensure a high accurate degree in obtaining these
intermediate parameters. Furthermore, the performance of

the pre-enhancing module may limit the improvement of
speech quality for these methods. In order to solve the
problems, we attempt to reduce intermediate link of esti-
mating ratio mask by directly constructing a mapping rela-
tionship between noisy speech and the ratio mask
constructed by exact inter-channel cues. As we all know,
the DNN has a very good learning ability to fit the mapping
function between the input features and training targets.
Thus, the DNN is investigated in this sub-section to learn
the mapping relationship between input features of noisy
speech and the proposed ratio mask.
Figure 5 shows a block diagram of the DNN-based T-

F estimation. It also contains two stages. One is the
offline training stage, and another one is the online en-
hancing stage. In the training stage, with the Gamma-
tone filter, the T-F representation of the speech and
noise are obtained. Then, the exact inter-channel cues
are extracted to generate a T-F mask. For the acoustic
features in the input of the DNN, a set of robust features
[23] (i.e., amplitude modulation spectrogram (AMS),
relative spectral transform and perceptual linear predic-
tion (RASTA-PLP), Mel frequency cepstral coefficients
(MFCC), and Gammatone filterbank power spectra
(GF)) are obtained from noisy speech.
For the DNN-based methods, the training target plays

a very important role on the performance of speech res-
toration. The ideal ratio mask (IRM) [23] is commonly
used as the training target. However, it does not focus
on the correlation between noise and clean speech. In
this paper, the T-F mask obtained by level modifications
of speech and noise incorporates the correlation between
noise and clean speech. In constructing the correlation,
considering that the introduction of the random number
τ(i) may weaken the periodicity of speech to some ex-
tent, a multiplicative combination between the proposed
RMC (i.e., Eq. (17)) and the IRM [23] is used as the de-
sired output of the DNN. The combined mask (CM) is
represented as follows:

CM ið Þ ¼ RMC ið Þ � IRM ið Þ ð20Þ

In the enhancing stage, the well-trained DNN can be
seen as a non-linear mapping function to directly predict
the proposed T-F mask given input features of noisy
speech. With the masking estimation, the clean speech
can be separated from noisy speech (Fig. 5).

4 Experimental results
In this section, we attempt to give some experiments to
evaluate the performance of the proposed scheme. In the
experiments, three reference methods are considered,
namely the pre-processed method [5] is selected as the first
reference method (named as Ref.1), a codebook-based
speech gain estimator [26] is considered as the second
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reference method (named as Ref.2), and a classical DNN-
based IRM method [23] is considered as the third reference
method (named as Ref.3). Our codebook-based technique
is named as ProC, and the DNN-based technique is named
as ProN. For Ref.2, it used the inter-channel cues and
speech presence probability (SPP) to obtain spectral gain of
speech. Moreover, in the Ref.2 and the proposed codebook-
based technique, the pre-processed module is MMSE spec-
tral amplitude (MSA) method [5] and the estimated noise
is obtained from the minima controlled recursive averaging
(MCRA) method [53] in the pre-processed module. The 8-
bit inter-channel cue codebook was trained by LBG algo-
rithm [13]. The number M of candidate code-vectors is 50.
Considering that the minimum statistics (MS) method in
[9] is a more robust approach in different SNR conditions
[54], a method of combining the MSA and MS is also used
as the reference method (named as Ref.4) to observe the ro-
bustness of the proposed method. For the Ref.3 and the
proposed DNN-based technique, a set of the features (i.e.,
AMS, RASTA-PLP, MFCC, and GF) were used as input
features of the DNN. In the training stage, 2 h of utterances
from different talker were selected from TIMIT training set
[55]. The speech signal was down-sampled to 8 kHz. Four
different types of background noises (i.e., white noise, bab-
ble noise, f16 noise, and factory noise) were chosen from
NOISEX-92 databases [56]. Aside from the aforementioned
four training noises, two types of the unseen noises (i.e., fac-
tory2 noise and street noise) were used for mismatch evalu-
ation. In the test stage, our method was evaluated with 240
noisy speech signals composed of 40 clean speech signals
from the TIMIT test set [55] mixed with six noises for each

input signal-to-noise ratio (SNR) condition. The input SNR
is set to − 5dB, 0 dB, 5 dB, and 10 dB, respectively. The
frame size is 32 ms (256 samples) with 50% overlap. For the
DNN model in the Ref.3 and ProN, the four hidden layers
(each with 1024 nodes) with sigmoid activation functions
were used in the DNN model. The backpropagation algo-
rithm with dropout regularization (dropout rate 0.2) was
used to train the networks. The adaptive gradient descent
along with a momentum term was used as the optimization
technique. The momentum rate is 0.5 for the first 5 epochs
and 0.9 for the rest epochs. The mean squared error was
used as the cost function for the DNN training. The num-
ber of output units corresponds to the dimensionality of
the training target. Some evaluations are performed for
speech enhancement as follows.

4.1 The comparison of the RMC and combined mask
In this section, the performances of the RMC and com-
bined mask (named as ProN) are discussed, when they
are used as the desired output of the DNN. For the
multiplicative combination between two masks, the
study in [18] has shown that the combined mask can re-
duce the disadvantages of their respective masks. In the
proposed DNN-based method, considering that the
introduction of the random number τ(i) in the RMC
may weaken the periodicity of speech to some extent,
we select a multiplicative combination between RMC
and the IRM [23] as the desired output of the DNN.
Table 1 lists the average PESQ and STOI scores of the
RMC and ProN for six noises. From Table 1, the RMC
and ProN can all obtain better PESQ and STOI results

Fig. 5 Block diagram of the DNN-based T-F estimation
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than noisy speech. As a comparison, the combined mask
gives a higher PESQ and STOI values than the RMC.
This confirms that the multiplicative combination can
help to improve the prediction ability of the RMC.

4.2 The comparison between the proposed method and
other methods
4.2.1 The SSNR evaluation
The segmental signal-to-noise ratio (SSNR) [8] is often
applied to evaluate the de-noising performance of speech
enhancement method. It is defined as follows:

SSNR ¼ 1
Num

XNum

j¼1

10 log10

XN
n¼1

x2 nð Þ

XN
n¼1

x nð Þ−x̂ nð Þ½ �2

0
BBBB@

1
CCCCA ð21Þ

where Num is the number of frames, N is the length of
frame, x(n) is clean speech signal, and x̂ðnÞ is the en-
hanced speech signal. Higher values of SSNR improve-
ment is an indication of higher speech quality.
Table 2 shows the SSNR improvement (SSNRI) ob-

tained by processing noisy signals with the proposed
methods and reference methods at different input SNRs
for the white, babble, F16, and factory noises, respect-
ively. As seen from Table 2, the enhanced speech signals
from the Ref.1 and Ref.4 get relatively lower SSNRI re-
sults than the other methods. The reason for this case
may be the inaccurate estimation of noise power
spectrum, which could result in more residual noise in
the enhanced speech. Compared with the Ref.4, the
Ref.1 can suppress more noise, which is similar to the
case in [57].
For the Ref.2 algorithm considering the shared correl-

ation from multiple frequency bands, it views the inter-
channel cues with shared correlation as the prior infor-
mation of speech and noise and generates effective per-
formance in reducing noise. Moreover, we can find that
the DNN-based Ref.3 method can consistently generate
higher SSNRI results than the Ref.1, Ref.2, and Ref.4. In
the proposed codebook-based technique, given the
mono noisy signal, we can use the T-F mask based on
the LDSN and SNC to estimate clean speech and obtain

a better performance than the Ref.1, Ref.2, and Ref.4.
However, the ProC achieves a poorer result than Ref.3
and Ref.N because of the introduction of the errors from
the intermediate link between noisy feature and the T-F
mask. From the results of the SSNRI, with the proposed
DNN-based framework, we can reduce more residual
noise than the Ref.3 in all conditions.
For each input SNR, the average SSNRI values of dif-

ferent methods for four types of noise are presented in
Fig. 6. From Fig. 6, we can find that the average SSNRIs
of the Ref.1 and Ref.4 are relatively lower than that of
the supervised methods. In comparison, the proposed
DNN system and Ref.3 get much higher average SSNR

Table 1 Comparison on average STOI and PESQ

Methods − 5 dB 0 dB 5 dB 10 dB

Noisy PESQ 1.53 1.85 2.16 2.50

STOI 0.6407 0.7522 0.8336 0.8793

RMC PESQ 2.18 2.53 2.86 3.13

STOI 0.7426 0.8064 0.8629 0.9094

ProN PESQ 2.25 2.60 2.91 3.17

STOI 0.7431 0.8068 0.8633 0.9097

Table 2 Test results of SSNR improvement

Noise
type

Input
SNR

Methods

Ref.1 Ref.2 Ref.3 Ref.4 ProC ProN

White − 5 dB 11.15 13.081 13.72 11.09 13.77 16.01

0 dB 9.69 11.10 12.56 9.61 12.07 14.05

5 dB 7.97 9.25 10.73 7.93 10.06 11.97

10 dB 6.35 7.41 8.67 6.33 8.07 10.01

Babble − 5 dB 9.71 10.10 13.42 9.65 10.60 15.05

0 dB 8.58 9.29 11.87 8.49 9.59 13.55

5 dB 7.04 8.03 10.05 6.96 8.24 11.21

10 dB 5.62 6.05 7.93 5.33 6.60 9.02

F16 − 5 dB 10.78 12.59 14.01 10.65 14.34 16.14

0 dB 9.45 11.05 12.60 9.33 12.07 14.32

5 dB 7.83 9.93 10.57 7.76 11.60 12.11

10 dB 6.19 7.75 8.79 6.11 8.86 10.12

Factory − 5 dB 10.50 12.01 13.29 10.39 12.88 15.88

0 dB 8.47 10.32 11.99 8.38 11.74 13.97

5 dB 6.73 8.36 10.02 6.65 9.30 11.55

10 dB 4.88 6.49 8.41 4.81 7.48 9.33

Fig. 6 Average test results of the SSNRI
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improvement than the Ref.2 and ProC, which may mean
that the reduction of the intermediate link between noisy
feature and T-F mask could help to suppress back-
ground noise. Moreover, we can see that the proposed
ProN method performs better than the Ref.3 in reducing
noise.

4.2.2 The PESQ evaluation
The perceptual evaluation of speech quality (PESQ) [58]
is an objective evaluation of speech quality, which is
often used to evaluate the quality of the restored speech.
The higher the PESQ, the better the speech quality.
Table 3 shows the PESQ results for the proposed

method and reference methods at different noisy condi-
tions and input SNR levels. From Table 3, we can see
that the Ref.1 method is slightly better than the Ref.4 in
most SNR cases because of good preference of the
MCRA compared with the MS [59]. The Ref.1 and Ref.4
generate poorer PESQ results than the supervised
methods. For the Ref.2 and ProC algorithm, in order to
obtain spectral gain and T-F mask, several appropriate
code-vectors termed as the intermediate parameters and
the pre-enhanced module were concerned. The estima-
tion error of these intermediate parameters and an in-
appropriate pre-enhanced method may enlarge the
inaccuracy of estimating spectral gain and T-F mask so
that the Ref.2 and ProC have more insufficient ability to
cope with speech restoration compared to the Ref.3 and
ProN methods. In addition, the DNN-based methods,
Ref.3 and ProN, outperform the codebook-driven
method since the DNN could more effectively model

nonlinear interaction between training target and the
acoustic features of noisy speech than vector
quantization. In the ProN method, the level modifica-
tions including the correlation between speech and noise
are used to generate a training target. Compared with
the Ref.3 without correlation between speech and noise,
the proposed ProN can provide better speech quality in
terms of the PESQ.
From the average PESQ given in Fig. 7, we can see

that, by comparing with the PESQ of noisy speech, all
methods can improve the PESQ result to some extent.
Furthermore, the proposed ProN method produces the
highest average PESQ scores than the other methods in
different input SNR conditions.

4.2.3 The speech intelligibility test
The short-time objective intelligibility (STOI) [60] is
used to evaluate our system and reference methods for
the intelligibility. The STOI is shown to be highly corre-
lated to human speech intelligibility. Table 4 gives the
average STOI comparison of different methods under
different input SNR conditions. As shown in Table 4,
compared with the noisy speech, the Ref.1, Ref.2, and
Ref.4 methods do not consistently improve STOI results.
Because the MCRA has a higher estimation error com-
pared with the MS under high SNR conditions [7, 57], it
may cause speech distortion and make the Ref.4 outper-
form the Ref.1 in relatively high SNR cases. Similar to
the results of the SSNRI and PESQ, the Ref.3 and ProN
algorithms reducing intermediate link between noisy fea-
ture and T-F mask can achieve higher results in all cases
compared with the Ref.1, Ref.2, and RroC. In the Ref.3,
IRM is used as the training target, which does not con-
sider the correlation between noise and clean speech. As
a comparison, the proposed ProN system gives a rela-
tively higher average STOI value than the Ref.3 at differ-
ent input SNR conditions, which may mean that
incorporating the correlation between noise and speech
into the T-F mask could help to improve speech intelli-
gibility of the enhanced speech.

4.2.4 The speech spectrogram comparison
In this subsection, in order to describe the details and
structure of speech, we give the speech spectrograms of
the enhanced speech obtained by the proposed methods
and reference methods. In this part, Fig. 8 provides the
speech spectrograms of noisy speech (speech signal is
mixed with babble noise at 0 dB input SNR) and the en-
hanced speech generated by the various methods. From
the Fig. 8, we can see that the main structure of speech
signal can be recovered by all algorithms, compared with
the structure of noisy speech. For the Ref.1 and Ref.4,
some speech regions are discarded and more residual
noise is retained in the enhanced speech. The reason is

Table 3 Test results of PESQ

Noise
type

Input
SNR

Methods

Noisy Ref.1 Ref.2 Ref.3 Ref.4 ProC ProN

White − 5 dB 1.206 1.312 1.559 2.003 1.301 1.724 2.111

0 dB 1.410 1.640 1.875 2.308 1.635 2.067 2.377

5 dB 1.646 2.085 2.329 2.586 2.084 2.354 2.701

10 dB 1.977 2.467 2.527 2.859 2.491 2.612 3.002

Babble − 5 dB 1.360 1.430 1.650 1.981 1.398 1.699 2.080

0 dB 1.630 1.895 2.019 2.270 1.854 2.075 2.381

5 dB 2.010 2.308 2.427 2.572 2.289 2.481 2.682

10 dB 2.390 2.607 2.709 2.859 2.601 2.717 2.992

F16 − 5 dB 1.293 1.355 1.615 2.049 1.301 1.7113 2.112

0 dB 1.569 1.860 2.049 2.362 1.833 2.143 2.432

5 dB 1.908 2.289 2.403 2.651 2.286 2.495 2.777

10 dB 2.218 2.640 2.759 2.939 2.643 2.785 3.101

Factory − 5 dB 1.179 1.340 1.505 2.010 1.299 1.518 2.109

0 dB 1.470 1.820 1.941 2.303 1.787 2.033 2.412

5 dB 1.820 2.280 2.385 2.582 2.276 2.450 2.711

10 dB 2.237 2.534 2.623 2.869 2.533 2.742 3.012
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likely that the spectral information belonging to the
parts of speech is suppressed, and noise spectral infor-
mation is retained because of inaccurate noise
estimation.
The Ref.2 uses a codebook-based technique to obtain

exact inter-channel cues for generating a spectral esti-
mator of speech and can suppress more speech energy
loss to some extent than the Ref.1 method. Moreover,
the Ref.2 also achieves a good performance in noise re-
duction. Compared with the Ref.2, more residual noise
is reduced in the enhanced speech obtained by the pro-
posed ProC method, which may show that the inter-
channel cues without the shared correlation can more
effectively restore clean speech signal from noisy speech.
For the Ref.3 and ProN algorithms, the DNN model is

used to model the nonlinear interaction between the T-
F mask and the acoustic features of noisy speech. Com-
pared with the Ref.1, Ref.2, and ProC methods, the Ref.3
and ProN can remove more background noise and

maintain more speech energy, for example, at about the
1.3 s, more harmonic structure is retained. However,
there are still more speech distortions in enhanced
speech processed by two DNN-based methods, especially
in the lower speech energy area, for example, between
1.5 and 1.7 s, more speech energy is seen as noise to be
suppressed. This may be because of the limited training
set and the limited learning ability of the DNN model.
Thus, it may have a potential way to reduce the problem
of speech distortion in future work, when long short-
term memory model (LSTM) with temporal dependen-
cies and large-scale training with many speakers and
numerous noises are considered [25]. As a comparison,
the Ref.3 and ProN can achieve similar performance in
the speech restoration. However, more background noise
can be suppressed in the proposed ProN method be-
cause of the consideration of the correlation between
speech and noise.

4.2.5 Noise generalization ability test
In order to measure the robustness of noise environ-
ment of the proposed method, two types of the unseen
noises (i.e., factory2 noise and street noise) are used for
mismatch evaluation. Table 5 lists the average results of
PESQ and STOI of the unseen noises for different
methods under different input SNR conditions. The en-
hanced speech processed by the Ref.1 and Ref.4 methods
can obtain better PESQ results than the noisy speech.
For the Ref.2 and ProC, the ability to handle unseen
noise is not weakened to a certain extent probably be-
cause of the usage of an unsupervised pre-enhanced

Fig. 7 The average test results of PESQ

Table 4 Comparison on average STOI

Enhancement methods − 5 dB 0 dB 5 dB 10 dB

Noisy 0.6056 0.7394 0.8318 0.8776

Ref.1 0.6238 0.7411 0.8221 0.8545

Ref.2 0.6425 0.7589 0.8309 0.8767

Ref.3 0.7384 0.8050 0.8632 0.9115

Ref.4 0.6233 0.7399 0.8221 0.8548

ProC 0.6441 0.7631 0.8335 0.8826

ProN 0.7407 0.8062 0.8685 0.9156
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Fig. 8 Spectrogram comparison of different methods. a Clean speech. b Noisy speech. c Enhanced speech by Ref.1.d Enhanced speech by Ref.2.
e Enhanced speech by Ref.3. f Enhanced speech by Ref.4. g Enhanced speech by ProC. h Enhanced speech by ProN
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method. However, compared with noisy speech, the
Ref.1, Ref.2, Ref.4, and ProC methods do not perform
well in terms of the STOI. A more possible reason is
that the a priori information of speech and noise is not
considered in the Ref.1 and Ref.4, and the higher accur-
acy of code-word selection is difficult for Ref.2 and
ProC. Thus, more speech distortion existed in the en-
hanced speech processed by the Ref.1, Ref.2, and ProC
methods, which may be detrimental to the improvement
of speech intelligibility. For the Ref.3 and ProN methods
using DNN model, two systems outperform the other
three systems in terms of STOI and PESQ. Moreover,
the STOI and PESQ improvements of two systems are
also higher than the results of noisy speech in all input
SNR conditions. In the ProN, the level modifications of
speech and noise including the correlation between
noise and speech are considered to generate a desired
output for the DNN training. Compared with the Ref.3
method using the IRM, the ProN achieves a better per-
formance in the STOI and PESQ.

4.2.6 Discussion
From the aforementioned experimental results, we can see
that the first proposed technique achieves better perform-
ance of speech restoration than the pre-enhanced method
and related codebook-based referenced method, and the
second proposed technique performs better than all refer-
enced methods. Herein, we discuss the advantages of the
proposed methods against to the referenced methods.
As a classic unsupervised method, the MSA does not

use a priori information about speech and noise. Gener-
ally, it requires noise estimation technique to estimate
noise power spectrum [9, 53] from the noisy speech for
achieving speech restoration. Here, the Ref.1 is obtained

by combining the MSA and MCRA [53], and Ref.4 is ob-
tained by combining the MSA and MS [9]. However,
most of noise estimation techniques are hard to obtain
noise power spectrum on a short-frame basis so that it is
not helpful to track the rapid change of noise energy,
which causes the performance of speech enhancement
to be limited.
For the Ref.2 and ProC methods, the inter-channel cues

are viewed as a priori information of speech and noise and
are trained in the form of codebook. In these methods,
since the idea of combining the down-mixed process and
side information in BCC is used to achieve speech en-
hancement, the noise power spectrum is not needed in re-
storing target speech, which helps to reduce the problem
of the methods depending on the noise power spectrum.
In the Ref.2, multiple frequency bands share the same cor-
relation between speech and noise so that the ability of re-
ducing background noise is limited largely. Thus, to
address the problem of the shared correlation from mul-
tiple frequency bands in the Ref.2, the ProC technique
modifies the calculation of exact inter-channel cues.
Moreover, in order to improve the accuracy of the code-
vector selection, the ProC follows the pattern involved in
[22] to calculate the pre-enhanced cues. However, in the
Ref.2 and ProC methods, some appropriate code-vectors
(termed as the intermediate parameters) need to be esti-
mated in advance and a pre-enhanced module also need
to be given, so the performance of these methods could be
sensitive to the pre-enhanced method and the accuracy of
intermediate parameters estimation.
Considering that the learning machine based on the

DNN has a strong learning capacity in modeling the
nonlinear interaction between training target and the
acoustic features of noisy speech, the ProN technique
uses the DNN model to directly learn the mapping rela-
tionship between the input features of noisy speech and
the T-F mask based on exact inter-channel cues, namely,
the pre-enhanced module and the intermediate link be-
tween noisy features and learned target are canceled. In
the DNN-based Ref.3 method, IRM is used as the train-
ing target, which can help to improve the speech intelli-
gibility and quality of target speech. However, it does
not take into account the correlation between noise and
speech. According to the studies in [44–48, 61], the cor-
relation between speech and noise is helpful to improve
speech quality. Thus, the paper attempts to use the
inter-channel cues to incorporate the correlation be-
tween noise and speech into T-F mask for improving the
quality of the enhanced speech.

5 Conclusions
In this paper, we present a single-channel speech en-
hancement system based on the inter-channel cues. In
this system, the mechanism of processing left channel

Table 5 Comparison on average STOI and PESQ

Methods − 5 dB 0 dB 5 dB 10 dB

Noisy PESQ 1.8146 2.1822 2.4782 2.8086

STOI 0.6758 0.7651 0.8355 0.8811

Ref.1 PESQ 2.0631 2.4202 2.7037 2.9561

STOI 0.6831 0.7462 0.8025 0.8516

Ref.2 PESQ 2.2145 2.5300 2.7873 3.0683

STOI 0.6892 0.7471 0.8066 0.8615

Ref.3 PESQ 2.3813 2.7855 3.0747 3.3164

STOI 0.7389 0.8055 0.8572 0.9033

Ref.4 PESQ 2.0589 2.4178 2.6987 2.9544

STOI 0.6815 0.7458 0.8026 0.8518

ProC PESQ 2.2884 2.6073 2.8644 3.1294

STOI 0.7001 0.7668 0.8234 0.8805

ProN PESQ 2.4114 2.8101 3.0902 3.3322

STOI 0.7456 0.8075 0.8581 0.9039
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and right channel signals from the BCC was exploited.
In our work, the clean speech and noise signals are con-
sidered as the left channel and right channel signals of
the BCC, respectively, and the noisy speech is considered
as the down-mixed mono signal of the BCC. In order to
achieve noise reduction based on the BCC, two tech-
niques are proposed. In the codebook-based technique,
when the clean signal and the corresponding noisy signal
are given, the exact inter-channel cues and pre-
enhanced cues can be extracted, respectively. This tech-
nique views the exact cues and pre-enhanced cues as the
a priori information of speech and noise and trains them
in the form of the codebook. With the weighted code-
book mapping method in this technique, the exact cue
parameters can be estimated to obtain a T-F mask for
performing the single-channel speech enhancement.
Considering that the errors from the intermediate link
between noisy features and T-F mask may enlarge the
inaccuracy of the output mask in the first technique, the
second technique used a DNN model to directly learn
the mapping relationship between noisy speech and the
T-F mask based on exact inter-channel cues. Experi-
ments showed that the proposed methods can achieve
an effective improvement in speech quality and speech
intelligibility.
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