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Abstract

So-called full-facemasks are essential for fire fighters to ensure respiratory protection in smoke diving incidents. While
such masks are absolutely necessary for protection purposes on one hand, they impair the voice communication of
fire fighters drastically on the other hand. For this reason communication systems should be used to amplify the
speech and, therefore, to improve the communication quality. This paper gives an overview of communication
enhancement techniques for masks based on digital signal processing. The presented communication system picks
up the speech signal by a microphone in the mask, enhance it, and play back the amplified signal by loudspeakers
located on the outside of such masks. Since breathing noise is also picked up by the microphone, it’s advantageous to
recognize and suppress it – especially since breathing noise is very loud (usually much louder than the recorded
voice). A voice activity detection distinguishes between side talkers, pause, breathing out, breathing in, and speech. It
ensures that only speech components are played back. Due to the fact that the microphone is located close to the
loudspeakers, the output signals are coupling back into the microphone and feedback may occur even at moderate
gains. This can be reduced by feedback reduction (consisting of cancellation and suppression approaches). To
enhance the functionality of the canceler a decorrelation stage can be applied to the enhanced signal before
loudspeaker playback. As a consequence of all processing stages, the communication can be improved significantly,
as the results of measurements of real-time mask systems show.

Keywords: Full-face mask communication, Feedback cancellation, Noise reduction

1 Introduction
A so-called full-face mask in combination with a self-
contained breathing apparatus—in the following abbre-
viated as SCBA—is essential for a fire fighter to ensure
respiratory protection in smoke diving incidents and in
toxic environments. Such masks exist since the early 20th
century.
One of the masks that is already quiet old but sill in use

is shown in Fig. 1. The depicted mask (model Panorama
Nova, Dräger) was (and is) used by fire fighters in sev-
eral countries since 1980. This mask could be used for
an SCBA and also as a so-called rebreather for fire fight-
ing, mining, or in industrial applications. A rebreather is a
device that absorbs carbon dioxide of a person’s breath to
permit rebreathing it.
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Early masks such as the model depicted in Fig. 1 support
voice communication only in a passive manner. If two fire
fighters that wear such masks want to communicate they
have to shout to each other. As a consequence, the speech
intelligibility in a noisy environment is rather limited with
such passive masks.
Beside the communication among fire fighters in a

direct neighbourhood also other communication channels
are of importance. During incidents, fire fighters usually
operate in troops of two to four people and they need to
communicate in order to act uniformly, while, e.g., crawl-
ing for injured people in a building that is on fire. The head
of the troop has to report the observed situation of each
room to the team leader, who is usually located outside the
building. This is done via a so-called tactical radio unit.
The internal troop communication (the communication

among fire fighters) is not that easy due to the high atten-
uation of the masks (even of most of today’s models). To
get an impression of this attenuation, the power spectral
density of a multitude of speech signals was measured in a
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Fig. 1 Full-face mask (model Panorama Nova, Dräger [2])

distance of about 1 m in front of the mouth of a torso with
an artificial mouth loudspeaker (without anymask). After-
wards, the mask of Fig. 1 was put over the torso and the
measurement was repeated. The ratio of the two power
spectral densities (depicted in Fig. 2) shows the attenu-
ation due to the mask. This helps to get an impression
of the large attenuation and thus for the difficulties that
passive masks generate for voice communication. Also
the communication via tactical radio is not really a com-
fortable alternative, because fire fighters have to keep the
tactical radio unit in front of their masks and the micro-
phone of this unit picks up the attenuated and distorted
speech, which is not very intelligible.
To improve the communication of the masks, signal

processing units, which are attached to the masks, have
been investigated and are in use since the beginning of this

Fig. 2 Frequency response of the full-face mask Panorama Nova
(blue) and the artificial head without a full-face mask (red)

century. These communication units have a microphone
inside the mask, which picks up the speech of the fire
fighters. This microphone signal is amplified and played
back by loudspeakers in front of the mask leading to an
enhanced troop communication. Additionally, the speech
signal can be supplied to the tactical radio unit to improve
the communication with the team leader.
The signal processing of the first communication sys-

tems was purely analog causing potential howling due to
the closed-loop behavior of such systems and also breath-
ing noise was not sufficiently suppressed. To solve these
problems, the communication systems have continuously
been improved in the last years. The results of these devel-
opments are described in this contribution. Before going
into the details of the involved signal processing units, we
would like to mention the special challenges that one faces
if working on signal processing for fire fighter masks. Fur-
thermore, we show shortly how this paper is organized
and we introduce the notation that will be used in the
following.

1.1 Special challenges
When working on communication units of fire fighter
masks, special care has to be paid. Fire fighters have to
operate in a very large bandwidth of conditions. While
they are sometimes in very quiet situations, they have to
work in the next moment in a very loud environment
under very large physical and mental stress. This leads to
very large level variations of the speech signals that such
communication units have to deal with. Also, the strength
of the involved breathing signal can vary a lot from one
moment to the next.
Beside the challenges that stem from the involved sig-

nals, also the hardware that can be used to implement
the invented algorithms has also specific restrictions. Of
course, one has to deal with a mobile application, mean-
ing that power consumption as well as power supply are
important aspects for communicationmasks. Even if great
technical progress has been achieved in the power sup-
ply of mobile phones or hearing aids, the rechargeable
batteries of such devices can not be used for communi-
cation masks of fire fighters due to temperature require-
ments. As a consequence only specific battery types can
be used which leads to very severe power restrictions.
Thus, the algorithms of such communication units have
to be designed such that they can operate on fixed-point
hardware with limited precision (e.g. 16 bits). Such hard-
ware has—even today—still the lowest power consump-
tion. Also the clock frequencies are usually much smaller
(again because of the power/energy restriction) compared
to other audio hardware.
Finally, the communication units operate in a closed

electro-acoustic loop, since the recorded speech of the fire
fighters is played back via small loudspeakers in front of
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the mouth to improve the communication with, e.g., peo-
ple that have to be rescued. More details on this issue will
be given in the next sections. The consequence is that one
faces delay restrictions that are comparable with hearing
aids [24], public address systems [18], and so-called in-car
communication systems [46].
All these boundary conditions make the development

of communication units for fire fighters a very challeng-
ing (but also interesting) task. However, when keeping in
mind that fire fighters rescue our lives day by day, it is
pretty clear that engineers should also do their very best to
optimize the performance of such communication units.

1.2 Organization of this paper
Our contribution is organized as follows: after the presen-
tation of the properties of the full-face masks in Section 2
the properties of the communication systems will be dis-
cussed in Section 3. The signal processing is decomposed
into several subunits, which are outlined as follows:

• Preprocessing and analysis filterbanks in Section 3.1
• Feedback cancellation in Section 3.2
• Residual feedback and noise suppression in

Section 3.3
• Automatic gain control and equalization in

Section 3.4
• Signal decorrelation in Section 3.5
• Post processing and synthesis filterbanks in

Section 3.6

Finally the effectiveness of the signal processing algo-
rithms applied on communication systems is presented in
Section 4.

1.3 Previous work of the authors related to this
contribution

The theory of the step-size control for the feedback can-
cellation in Section 3.2 was published in 2000 by Mader
et al. [36]. The basics of the utilized feedback cancella-
tion in Section 3.2 was published in 2004 by Hänsler and
Schmidt [25]. An earlier version of the feedback suppres-
sion scheme presented in Section 3.3 was published in
2011 by Lüke et al. [34]. The mask characteristic was pub-
lished in 2013 by Volmer et al. [52]. Decorrelation schemes
for automotive applications were published in 2014 by
Withopf et al. [55]. An earlier version of the voice activity
detection inside the noise suppression in Section 3.3 was
published in 2015 by Brodersen et al. [10].

1.4 Notation
Throughout this contribution the notation will follow
some basic rules:

• Scalar quantities such as time-domain signals are
written in lowercase, non-bold letters such as s(n) for
a signal at time index n.

• Frequency-domain quantities are described by upper
case letters such as X(μ, k). Here, μ indicates the
subband or frequency index and k is the frame index.

• Vectors are noted as bold letters, e.g., Ĥ(μ, k)
represent a vector containing filter coefficients.

• Smoothed signals are noted by over-lined letters such
as x(n) and estimated signals are written as letters
with a hat such as x̂(n).

• All signals are represented in discrete time.

2 Properties of full-facemasks
Full-face masks protect the face and the respiratory tract
of the mask wearer against toxic gasses and smoke (see
[52]). Previous and current masks, as shown in Fig. 3, seal
around the face and an SCBA worn on the back is used to
ensure a clean air supply. The nose andmouth are covered
by a so-called inner mask, to direct the (fresh) air stream
to the visor while exhaled air is exhausted through a valve
to prevent fogging of the mask. Because of the sealing of
the masks, the speech of the person wearing the mask is
highly attenuated (as already explained before). To over-
come this problem, a so-called speech diaphragm is placed
in front of the mouth. For low and medium frequencies,
it acts partly as a resonator. However, frequencies above
2 kHz are largely attenuated. The speech diaphragm has to
withstand high chemical exposure to guarantee breathing
protection. Typically, the speech diaphragm consists of a
thin foil of stainless steel or polyimide which is clamped
into a ring [52]. While the diaphragm on the one hand
allows speech signals to pass the hermetical sealing of
the mask, its mechanical properties simultaneously add
distortions (mainly attenuation) to the speech on the other
hand.

Fig. 3 Full-face mask (FPS 7000, Dräger [3]) with a communication
system (FPS-COM 7000, Dräger [4])
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The resonance frequencies of typical diaphragms are
located around 800Hz. Unfortunately, this corresponds to
the center of the frequency range responsible for proper
intelligibility. Furthermore, the sound pressure level (SPL)
that is caused by the speech of the fire fighter might
be very high (e.g., in situations with large physical stress
and/or in loud environments). This might cause a non-
linear behavior of the diaphragm.

3 Methods, experimental, and system overview
Breathing protection is typically used in noisy environ-
ments and the intelligibility of the voice is limited if
only purely mechanical (passive) systems are used. An
improvement is achieved by amplifying the speech by
means of a communication system which is attached to
a mask (Fig. 3). In more details: a microphone and loud-
speakers are attached to modern masks (see Fig. 4). The
microphone picks up the speech signal. Afterwards this
signal is processed and played back via the loudspeakers
(and corresponding amplifiers) that are attached usu-
ally to the front part of masks. As already mentioned in
Section 1.1 the requirements for the microphone and the
loudspeakers are really high, because they have to be heat
resistant for flame retardant, watertight for cleaning, and
shock resistant for the case that fire fighters accidently
collide in an incident [52]. Thus, a suitable system has
to manage the challenge between acoustical performance
and sufficient robustness.
Fig. 4 depicts an overview about the individual com-

ponents of a mask with a communications system. The

(mouth) loudspeakers are located in the front of the
mask to optimize direct communication. The so-called
ear loudspeakers are located close to the ears (without
fully covering them). They are intended to perceive the
signals of a so-called tactical radio. The radio unit is usu-
ally realized as an external device which establishes the
communication to the control center as well as to other
fire fighters via a so-called team talk.
The microphone of the communication unit is located

in front of the speech diaphragm (outside the sealing vol-
ume) and it records the distorted signal. The signal quality
would be better if the microphone would be placed inside
the mask, but then the opening of the speech diaphragm
would decrease and—as a result—the attenuation of the
mechanical system would also increase. This modifica-
tion is not possible because investigations showed that the
speech transmission index (STI) [30, 48, 49] decreases and
themechanical system does not satisfy the North America
standard NFPA 1981:2013 [38] any more. This restric-
tion leads to a microphone position in front of the speech
diaphragm.
The recorded signal of the microphone contains speech,

feedback from the loudspeakers, as well as breathing
and background noise. The breathing noise has usually
the highest sound pressure level and can be removed
by appropriate voice activity detection (VAD) combined
with an attenuation unit—as explained in the following
sections.
It takes about 0.3ms for the acoustic signal to trace from

the (mouth) loudspeakers to the microphone. This leads

Fig. 4 Structure of the communication system
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to potential feedback situations, which can be avoided
by applying appropriate feedback suppression algorithms.
The stability of the system is essential, because fire fight-
ers use these systems in awkward situations and they have
to rely on good communication possibilities. A restric-
tion for the communication system is battery lifetime,
because the energy supply is implemented with special
heat resistant batteries. Therefore, a very power-efficient
signal processing is necessary as already mentioned at the
beginning of this paper. Another restriction is the delay of
the system, which has to be very low, because otherwise
the loudspeaker output signals are perceived as disturbing
echoes [7]. An overview of the signal processing is shown
in Fig. 5.
The microphone signal will be denoted in the follow-

ing sections as xmic(n). The second input signal is the
signal received by the radio unit, xradio(n). This signal is
usually called downlink signal of the radio unit. After sev-
eral stages of processing, three types of output signals
are generated. On the one hand, the two types of loud-
speaker signals are as follows: the signal ymouth(n) that is
played back in front of the mask to improve communi-
cation with partners being in the direct neighbourhood
of the fire fighter and the ear loudspeaker signal year(n)

that is the received radio signal (after enhancement). On
the other hand, an enhanced microphone signal yradio(n)

is computed as a last output, being the so-called uplink
signal. The amount of processing in the two main pro-
cessing chains (see Fig. 5) is rather different. While only a
small amount of processing (mainly automatic gain con-
trol, equalization, and limitation) is usually done in the
path that connects the radio downlink signal xradio(n)with
the ear loudspeaker output year(n), much more is done in
the path that connects the microphone signal xmic(n)with
the mouth loudspeaker output and the uplink signal of the
radio unit.
As a first stage, feedback cancellation by means of

adaptive filters is applied. Since the performance of such
algorithms is usually not sufficient to completely remove
the feedback, suppression of remaining feedback as well
as suppression of background noise is performed in a
separate unit. Beside stationary noise also non-stationary
breathing noise is suppressed in this unit. To detect such
breathing periods a separate detection unit (in Fig. 5
denoted as voice activity detection) is utilized. To adjust
different speaking and (noise-dependant) playback levels
automatic gain control algorithms are applied in differ-
ent flavors. To overcome the problem that adaptive fil-
ters have with correlated excitation and distortion signals
(seen from the perspective of an adaptive filter), a decorre-
lation stage is necessary (or at least beneficial) before play-
ing back the enhanced microphone signals. Since compu-
tational complexity must be kept low, all processing stages
of the signal path that connects the microphone of the

mouth loudspeakers and the radio uplink are embedded
in low-delay versions of analysis and synthesis filterbanks.
Most of the before mentioned signal processing compo-
nents will be described in the next sections. For those
components that are more or less state-of-the art, we
will give only short explanations with references to good
descriptions in the literature.

3.1 Preprocessing and analysis filterbanks
Since—as mentioned before—the signal processing must
be designed such that only a minimum amount of pro-
cessing load is required, most of the algorithmic parts
are processed in the subband domain. The conversion is
achieved by appropriately designed analysis and synthe-
sis filterbanks. However, to use the hardware precision
in best manner, so-called preem phase filters are applied
before entering the subband domain. This is achieved by a
simple two-tap FIR filter:1

xpre,mic(n) = xmic(n) − βpre-de xpre,mic(n − 1). (1)

The filter can also be interpreted as a prediction error
filter that has whitening properties. The decorrelation
coefficient βpre-de is usually chosen in the range:

0.95 > βpre-de > 0.99. (2)

Afterwards the conversion to the subband domain is per-
formed [26]. This conversion is done here by the fast
fourier transformation (FFT). The output of the preem
phase filter xpre(n) is processed with the frame size R and
the discrete time index n. The input signal is windowed by
an analysis window hana(n) before the DFT to improve the
aliasing properties (within the subband domain) [9]:

Xmic(μ, k)=
NDFT−1∑

n=0
hana(n) xpre,mic(n+kR) e−j 2π

NDFT
μn,

(3)

where Xmic(μ, k) is the resulting spectrum with the sub-
band index μ and the frame index k. Figure 6 shows an
overview about the analysis filterbank and the preprocess-
ing.
The key element of filterbanks is the utilized window

function. Beside a perfect reconstruction property, two
further criteria are important for this application. The
aliasing components that appear after the analysis stage
should be kept below a certain limit in order to allow for
unconstrained adaptive system identification approaches
(in the subband domain) and the delay should be kept
rather low in order to avoid self perception of the mask
wearer. We will use here a DFT order of NDFT = 256

1Please note that we perform the preprocessing and the analysis filter bank for
the microphone input and for the mouth loudspeaker signals. However, to
keep the description short, we will only show the equations of the microphone
path. The other path is performed equivalently and results in the short-term
spectra Xmouth(μ, k).
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Fig. 5 Signal processing overview

and a basic frameshift of R = 64. For the window, an
appropriately scaled Hann window is used. Due to the
conjugate complex symmetry in the spectral domain only
NDFT/2 + 1 = 129 subbands need to be processed. At
a sample rate of fs = 16 kHz this results in an overall
delay of the analysis/synthesis system (see Section 3.6 for
details of the synthesis filterbank) of 16 ms. If this is too
high, the filter design method of [54] can be used, result-
ing in a delay of just 8ms (with the same frameshift and
DFT size). In that case the aliasing, properties are slightly
worse, resulting in a maximum feedback reduction (due
to cancellation) of about 25 dB. However, this setup is still
sufficient for the signal processing approaches described
in the following sections.

3.2 Feedback reduction
Feedback is the main problem of the communication unit,
because the microphone picks up a large amount of the

signals emitted by the mouth loudspeakers. To allow sig-
nificant amplification of the loudspeaker, signal feedback
cancellation (in combination with feedback suppression,
described in the next section) is required (see Fig. 5). Such
algorithms require an estimation of the loudspeaker sig-
nal component that is included in the microphone signal.
This is done by a convolution of the estimated impulse
responses of the electro-acoustic system with the loud-
speaker signal. A subtraction of this estimated signal from
the microphone signal cancels the feedback and, thus,
allows a higher gain at the loudspeakers. The estimation
is performed in the attempt described here using the nor-
malized least mean square (NLMS) algorithms [27, 44],
where the estimation of the transfer function works best
in case of fully decorrelated signals. The term decorre-
lated means that the mouth loudspeaker signal should be
decorrelated from the signal that is recorded in the mask
(the speech signal of the fire fighter). Of course, that is
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Fig. 6 Structure of the preprocessing andanalysis filterbank stage

the same signal in an ideal case, but from the perspec-
tive of system identification attempts, a non-uniqueness
and a robustness problem arises from that correlation.
For details on that problem (appearing in hearing aids,
public address systems, etc.), see [5, 39, 53] for excellent
overviews and problem descriptions. Anyhow, a decor-
relation of the loudspeaker signal is necessary, which is
realized in the approach described here by a frequency
shift. The results of the feedback cancellation and sup-
pression attempts are shown in Section 4.2, where the
transmission characteristic of the communication sys-
tem including all described algorithms is illustrated in
comparison to a purely mechanical approach.

3.2.1 Feedback cancellation
As already mentioned above, feedback cancellation
approaches are estimating the transfer function from
loudspeaker to microphone. The output of the convolu-
tion of the loudspeaker signal and the transfer function
is subtracted from the microphone signal. If the transfer
function is estimated correctly, the enhanced microphone
signal after the spectral subtraction only includes the
speech signal but not the feedback. To save computational
complexity, the feedback cancellation is realized in the
subband domain as is shown in Fig. 7.
The signal xmic(n) contains speech s(n), background

noise b(n) and the coupled signal from the loudspeakers
f (n) (feedback):

Fig. 7 Structure of an feedback cancellationsystem operating in
subbands (according to [25])

xmic(n) = s(n) + b(n) + f (n). (4)

This signal is transformed into the frequency domain
to perform the complex-valued spectral subtraction of
Xmic(μ, k) and F̂(μ, k), which is computed by a convolu-
tion of the mouth loudspeaker signals with the estimated
transfer functions in each subband:

F̂(μ, k) = Ĥ
H
(μ, k)Ymouth(μ, k), (5)

with H denoting complex conjugation and transposition
and Ymouth(μ, k) being a vector containing the last Ncanc
frames

Ymouth(μ, k) = (6)
[
Ymouth(μ, k), ..., Ymouth(μ, k − Ncanc + 1)

]T
.

The enhancedmicrophone spectrum (also called the error
spectrum) E(μ, k) is created by subtracting the estimated
feedback spectrum from the microphone spectrum:

E(μ, k) = Xmic(μ, k) − F̂(μ, k). (7)
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The coefficients of the subband impulse responses Ĥ(μ, k)
are updated using the NLMS algorithm [25]

Ĥ(μ, k+1) = Ĥ(μ, k) + α(μ, k)
Ymouth(μ, k)E∗(μ, k)

∥∥Ymouth(μ, k)
∥∥2

,

(8)

where the step size has to be chosen close to the pseudo-
optimal value for the NLMS algorithm (for a derivation
see [36]):

αopt(μ, k) =
E
{∣∣Eu(μ, k)

∣∣2
}

E
{∣∣E(μ, k)

∣∣2
} . (9)

The problem here is that so-called undistorted error spec-
trum Eu(μ, k) cannot be measured directly. Thus, it must
be estimated (at least its short-term power). It is defined
as the error spectrumwithout the local signal components

Eu(μ, k) = E(μ, k) − S(μ, k) − B(μ, k), (10)

where S(μ, k) and B(μ, k) are the speech and the noise
spectra, respectively. In our approach, we use short-term
power smoothing with IIR (infinite impulse response) fil-
ters of first order with the smoothing constant β to obtain
the required quantities for the step size. The short-term
power of the error signal is obtained as

Pe(μ, k) = β Pe(μ, k − 1) + (1 − β)
∣∣E(μ, k)

∣∣2. (11)

For the short-term power of the undisturbed error sig-
nal, we utilize the so-called coupling factor method. Here
a delayed version of the reference signal is squared and
smoothed

Py(μ, k) = β Py(μ, k − 1) + (1−β)
∣∣Ymouth(μ, k−�)

∣∣2

(12)

and finally multiplied with a coupling factor c(μ, k):

Peu(μ, k) = Py(μ, k) c(μ, k). (13)

The parameter � takes the delay of the electro-acoustic
feedback path into account. The coupling factor c(μ, k)
can be set either to a fixed value that stems from a
desired echo reduction of, e.g., 15 dB. A better way is
to estimate the coupling adaptively by tracking the ratio
Pe(μ, k)/Py(μ, k) in such a way that decreasing values are
followedmuch faster than increasing ones. Since feedback
cancellation filters are (in contrast to echo cancellation fil-
ters) in a permanent double-talk period, the update of the
coupling factors is performed only during falling signal
edges of the microphone signal power. In such situations
the local speech activity is usually smaller compared to the
loudspeaker output. For further details about this method,
the reader is referred to [36] for an extended derivation
and to [12] for details on the proposedmethod. Using both

short-term power estimations the optimal step size can be
approximated as

αopt(μ, k) ≈ α(μ, k) = Peu(μ, k)
Pe(μ, k)

. (14)

3.2.2 Residual feedback estimation
In order to further expand the system gain, the residual
feedback can be analyzed and estimated. With the esti-
mation of the (short-time) power spectral density of the
residual feedback, it is possible to suppress this undesired
signal component with, e.g., a Wiener filter (described
in Section 3.3.5). The feedback estimation is split into
an attenuation and a coupling part. The attenuation part
comprises reverberation estimated by the reverberation
time T60 in seconds [34]:

T60(μ) = − 3000R
log

(
αfeedb(μ)

)
fs
, (15)

which yields to the to the attenuation factor

αfeedb(μ) = 10− 3000R
T60(μ) fs . (16)

The reverberation time T60 describes the time needed
until the signal is attenuated by 60 dB. This parameter
can be extracted in a frequency selective manner out of
the filter coefficients of the feedback cancellation filter
(under the assumption of a sufficient degree of conver-
gence). This is shown in Fig. 8 for the full-face mask with
a communication system attached.
The reverberation time of the full-face mask depends on

one the hand on the mask itself but also on the environ-
ment in which the mask is used. Our experiments show
that in most situations about 100ms to 300ms are esti-
mated. This is very long compared to other audio devices;
for example the T60 time in a car is about 50ms (see [34]).
The relevant frequencies are located above 1 kHz, because
the loudspeakers can only transmit in that range due to
the small housing.

Fig. 8 Cumulative spectral decay of the full-face mask with activated
communication system
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The coupling part is described by the coupling fac-
tor cfeedb(μ, k), which is calculated based on the mea-
sured/estimated coupling from the loudspeaker to the
error signal (including the attenuation caused by the can-
cellation filter). The feedback reduction due to the feed-
back cancellation is estimated by the factor c(μ, k) (see
the last section for details). This parameter, however, cov-
ers only the attenuation between the microphone and the
error signal, but not the coupling from the loudspeaker to
the microphone of the mask. This coupling, denoted by
cls,mic(μ) is not changing over time and is mainly deter-
mined by themechanical setup of themask. It can bemea-
sured off-line and stored as a fixed (frequency selective)
parameter. Thus, the entire coupling factors cfeedb(μ, k)
are determined as

cfeedb(μ, k) = c(μ, k) cls,mic(μ) (17)

For the computation of the (short-term) power, spectral
density of the residual feedback the instantaneous squared
magnitude of the loudspeaker spectrum is computed as a
first step:

Pym(μ, k) = ∣∣Ymouth(μ, k)
∣∣2. (18)

By using a coupling-based estimation scheme and the
average feedback attenuation per frame according to
Eq. (16) we can estimate the short-term power spectral
density of the residual feedback as:

Pf (μ, k)=αfeedb(μ)Pf (μ, k − 1) + ...

... + cfeedb(μ, k)Pym(μ, k − �). (19)

Again� is the delay of the acoustic path between the loud-
speaker in front of the mask and the microphone (see pre-
vious section) in frames. The coupling factor cfeedb(μ, k) is
an estimation of the acoustic attenuation from the mouth
loudspeaker to the microphone on the one hand and of
the attenuation of the feedback cancellation unit on the
other hand. The estimated short-term power will be used
within a Wiener-like attenuation characteristic that will
be described in more detail in Section 3.3.5. With the
feedback cancellation and the suppression of the resid-
ual feedback, a gain increase of about 5 to 10 dB can
be achieved. Here, one should keep in mind that until
now, no decorrelation approach was performed. When
activating such units an additional gain increase can be
realized, mainly by means of an improved performance of
the cancellation filter. The decorrelation is described in
Section 3.5.

3.3 Residual feedback and noise suppression
Beside feedback, also background and breathing noise are
distortions that appear when using full-face communica-
tion masks. The breathing noise reduction relies mainly
on a so-called voice activity detection (VAD) scheme,

which is realized using a pattern recognizer approach that
distinguishes between five classes:

• Side talkers
• Pause
• Breathing out
• Breathing in
• Speech

The spectrogram in Fig. 9 represents a microphone sig-
nal with the classes breathing out, pause, speech, and
breathing in. The spectral content of the different classes
is clearly visible. The characteristic of the class side talk-
ers is spectrally close to the speech but with less energy. It
usually includes talkers and speech from a so-called land
mobile radio located in front of the mask. It is necessary
to reduce the breathing noise because of its very high-
sound pressure level. Background noise is some stationary
noise like a water pump that can be estimated by conven-
tional noise estimation schemes [21, 35] such as presented
in Section 3.3.4. After estimating the power spectral den-
sities the undesired signal components are suppressed by
a time-varying spectral suppression method such as a
Wiener filter (described in Section 3.3.5).
The differentiation among the individual classes is nec-

essary since this decision will be used when controlling a
so-called comfort noise injection (see Eq. (29)) on the one
hand. Here, the signal is replaced by artificial noise when-
ever the classes breathing in, breathing out, or side-talkers
are detected. Details will be described in Section 3.3.5. On
the other hand, detailed knowledge about, e.g., the dura-
tion of breathing in and out phases as well as the signal
power and the spectral contents of the individual phases
can be used for healthmonitoring purposes. However, this
aspect is not in the scope of this contribution and will
not be described here, but it should motivate why two
breathing classes instead of one are used.

Fig. 9 Spectrogram of a microphone signal picked up by the masks
communication system
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3.3.1 Voice activity detection
Voice activity detection (VAD) is a widely explored field in
speech processing. Several overviews show this, see [16,
22, 47] for example. In our case, we need a scheme that
decides on the one hand rather fast and on the other hand
is optimized for specific distortions (breathing noise) that
are usually not part of conventional VAD schemes. The
VAD scheme that we used here is implemented by means
of a neural network [10]. This neural network distin-
guishes between the five signal classes mentioned in the
last section. The aim of the VAD and the related units for
signal manipulation is to keep all speech components and
transmit them to the loudspeaker outputs, while suppress-
ing all other signal components. The pattern recognition
scheme presented in the next section uses mainly spec-
tral envelope properties to classify between the classes;
hence, the feature extraction elaborates properties from
the frequency domain input signal Xmic(μ, k).

3.3.2 Feature extraction
The feature extraction is used to work out the most
relevant properties out of the microphone spectrum
Xmic(μ, k). These properties should represent the signif-
icant information utilizing a minimum set of features to
reduce the computational complexity. The input signal is
transformed into a set of absolute spectral values. After-
wards, a mel filterbank [6] with 10 mel bands is applied to
reduce the amount of frequency supporting points while
mimicking the frequency perception of the human ear [41,
50]. A simple loudness approximation is achieved by a
logarithmic characteristic [17, 19]. As a result, a subset

X in(k) =
[
Xin(0, k), ..., Xin(Nin − 1, k)

]T
(20)

ofNin = 10 features is generated out of theNDFT complex
spectral values Xmic(μ, k). Subsequently, the extracted
features are processed by a neural network for classifica-
tion.

3.3.3 Neural network
The neural network is based on the function of the brain,
which consists of neurons [8, 13]. These neurons are con-
nected together to weight the transition paths by wij,
meaning the transition path from the neuron i to the neu-
ron j [33]. The used neural network (see Fig. 10) comprises
one input layer, one hidden layer, and one output layer.
The input layer normalizes the features to the range of −1
to 1. The normalized input X̃in(m, k) is distributed from
the corresponding neuron to every neuron of the hidden
layer and multiplied with the associated weight whid(i, n).
Each weighted incoming signal is individually biased by
Bhid(i) before summing. Subsequently, fact(x) is a linear
transfer function, with max and min limitations at +1

and −1. The low computational complexity of this func-
tions has clear advantages in the fixed-point implemen-
tation. Furthermore, no significant performance degrada-
tion could be observed when comparing the recognition
results when sigmoid and other typical activation func-
tions (with larger computation load) were used. With this
limited linear activation function

fact(x) =

⎧
⎪⎨

⎪⎩

1, if x > 1,
-1, if x < -1,
x, else;

(21)

the output of the hidden layer is generated:

Xhid(i, k)=fact
(
Bhid(i) +

Nin−1∑

n=0
X̃in(n, k)whid(i, n)

)
,

for 0 ≤ i < Nhid. (22)

Here, Nhid is the number of neurons in the hidden layer,
whid(i, n) is the weight from the input n to the hidden layer
i. The computation of the output vector

Xout(k) =
[
Xout(0, k), ..., Xout(Nout − 1, k)

]T
(23)

with the number of output elements Nout, is similar to the
previous stage and is given by

Xout(j, k)=fact
(
Bout(j) +

Nhid−1∑

i=0
Xhid(i, k)wout(j, i)

)
,

for 0 ≤ j < Nout. (24)

The weights from the hidden layer i to the output layer
j are described by wout(j, i). This neural network is used
to classify the features into Nout = 5 classes, which are
summarized in the set C = {side talkers, pause, breathing
out, breathing in, speech}. A distinction is made between
5 classes, since in the future post processing can be imple-
mented, which can distinguish between the states and, for
example, attenuating some classes more than others, or a
time dependency between the classes could become inter-
esting. With the recognition of inhalation and exhalation,
it is also recognized in non-speech passages whether the
wearer is still breathing and in which frequency one is
breathing. This information can be provided to the team
leader and he has an overview of the vitality of the troop
members. If these variabilities are not needed, then only
a distinction could be made between speech and non-
speech. In order to detect the most likely class, the index
of the maximum entry of the vector Xout(k) is determined
by

dres(k) = argmax
j∈C

{
Xout(j, k)

}
. (25)

If speech is detected with dres(k), the signal will be pro-
cessed normally and the background noise will be attenu-
ated in the noise reduction. If a small inhalation passage of
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Fig. 10 Feed-forward neural network [20]

less than 0.5 sec occurs during speech, it is slightly atten-
uated so that the speech intelligibility of the sentence is
improved. If the inhalation passage is longer than 0.5 sec,
it is assumed that the sentence is not completed. When
wearing a mask with SCBA it is not normal to be exhaled
during speech and thus this condition needs to be applied
only for inhalation. When pause is detected, this state
is used to estimated the background noise. In the other
cases, if no speech is detected with dres(k), the signal is
completely muted for the all classes in the noise suppres-
sion and the amplifiers of the speakers are turned off to
save power.
If the recognition of speech and exhalation in dres(k) is

very similar and exhalation is detected, in the future, the
perceived exhalation can be attenuated less in the noise
suppression; thus, potentially less dropouts are generated
in the speech passages and a better speech intelligibility
can be achieved.
For the training a large database containing speech sig-

nals recorded in typical fire fighter environments was
created and labeled. This database includes

• For the classes side talkers and pause data of
approximately 1 h

• For the main classes breathing in, breathing out, and
speech data of approximately 5 h

of data. Then, the training set is generated in a fixed-point
feature extraction (bit exact as on the digital signal proces-
sor) and the results are bundled in a class wise way. One
example of such a signal is depicted in Fig. 9. The training
of the network was done using the back propagation algo-
rithm [13, 20], in which the mean square error serves as
the cost function:

E = 1
Q + 1

Q∑

k=0

[
t(k) − a(k)

]2, (26)

with the sets {X in(0), t(0)}, ..., {X in(Q), t(Q)} in which
X in(k) is the input of the network and t(k) indicates the
associated target class for the training vector X in(k) and
the network output of the specific class a(k). The opti-
mization is performed by the gradient descent method.
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Results of the VAD
The classification performance of the neural network is

shown in Table 1. The input classes (the results detected
by the neural network) are on the left of the table while
the target classes are located on the top. The recogni-
tion rates of the target classes are shown in % and for
each target class the overall recognition rate for the input
class is given. The last row shows the average recogni-
tion rate. For proper recognition rates it is important to
have at least a small confusion between breathing out and
speech, because otherwise fricatives for example might be
classified as breathing out and thus would be attenuated.
The recognition rate of 53% for the side talkers is not

particularly good, but only 8% of side talkers is recog-
nized as speech. The recognition of pauses is given by
70% and only 7% are wrongly classified as speech. Breath-
ing in is recognized by 99% which is nearly perfect. The
most important parts are breathing out and speech, where
the recognition rate for breathing out is 83% and 12% of
breathing out is recognized as speech. For the input class
speech the recognition rate is 95% and 2% of speech is
recognized as breathing out. It is essential that no speech
is wrongly recognized, which would lead to attenuation
of speech. The fact that a few parts of breathing out are
audible is acceptable, as the breathing out signal has less
energy than breathing in or speech, which can be seen in
Fig. 9.
In the communication system, non-speech parts are

muted always and only the speech is audible. The result
of the VAD can be seen in Fig. 11 (upper part), showing
the spectrogram of recordedmicrophone data of the com-
munication system. The lower part of Fig. 11 shows the
spectrogram of recorded data with the processing of the
VAD and muting non-speech parts. The comparison of
the figures shows that only the speech parts are retained.

3.3.4 Background noise estimation
Fire fighters often work in areas with background noise.
Examples for noise sources are the engine of a fire truck
or pumps that are necessary to bring the water to the
desired places. This noise is picked up by the micro-
phone, amplified, and played back via the loudspeakers.

Hence, it leads to an increased overall noise level at the
ears of the fire fighter. To avoid this, the noise must be
reduced before playback. The noise suppression itself is
performed using a Wiener-type filter. However, this filter
requires an estimate of the power spectral density (PSD)
of the noise signal Pb(μ, k). We target here only stationary
noise sources, since themain non-stationary noise sources
(breathing in and out) are already covered by the network
approach. The stationary estimation is done by a simple
two-stage procedure. First, we compute the squared mag-
nitude of the input spectrumXmic(μ, k) and afterwards we
smooth it over the time, which is done by a first-order IIR
filter [51]:

Px(μ, k) = αsm
∣∣Xmic(μ, k)

∣∣2 + (1−αsm)Px(μ, k−1).
(27)

The smoothing constant is set to αsm = 0.1482. As a sec-
ond stage, the computation of the estimated noise PSD
Pb(μ, k) is done by comparing the smoothed PSD esti-
mation Px(μ, k) with Pb(μ, k − 1) and by updating the
estimated PSD appropriately afterwards. When Px(μ, k) is
larger than Pb(μ, k − 1), the estimated PSD is multiplied
by an increase constant �inc and otherwise by a decrease
constant �dec:

Pb(μ, k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�inc Pb(μ, k − 1),
if Px(μ, k) > Pb(μ, k − 1),

�dec Pb(μ, k − 1),
if Px(μ, k) ≤ Pb(μ, k − 1).

(28)

Thereby, �dec is chosen larger than �inc, because the
noise estimation only follows temporally stationary noise
and if �inc is large the estimator also follows for exam-
ple speech. In the other case when �dec is too large, the
noise estimation decreases too fast and the estimation
level is too low. The increment constant�inc for this setup
was set to 1.0005 (which corresponds to an increase of
about 1 dB per second) and the decrement constant �dec
to 0.9986 (corresponding to a decrease of about 3 dB per
second).

Table 1 Confusion matrix of the classification approach based on a neural network

Target

Side talker Pause Breathing out Breathing in Speech Recognition

Input

Side talker 53% 23% 14% 2% 8% 53% 47%

Pause 14% 70% 8% 1% 7% 70% 30%

Breathing out 2% 2% 83% 1% 12% 83% 17%

Breathing in < 1% < 1% < 1% 99% < 1% 99% 1%

Speech 2% < 1% 2% < 1% 95% 95% 5%

Average recognition rates 79% 21%
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Fig. 11 Spectrogram of recorded microphone data from the
communication system without (upper part) and with VAD (lower
part), that mutes non-speech passages

3.3.5 Short-term spectral attenuation and comfort noise
Finally, after having for all types of distortions PSD esti-
mations available and by using the VAD results the sup-
pression of background noise and feedback is performed
by either multiplying the error spectrum E(μ, k) obtained
in the feedback cancellation stage by the frequency-
dependent attenuation factor Hatt(μ, k) or by replacing it
with so-called comfort noise to get the enhanced spectrum

Xenh(μ, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E(μ, k)Hatt(μ, k),
if speech or pause was detected,

C(μ, k),
else.

(29)

The computation of Hatt(μ, k) is performed by a modified
Wiener filter [25]

Hatt(μ, k)=max
{
Hmin, 1 − ... (30)

...
βb Pb(μ, k) + βf Pf (μ, k)

∣∣E(μ, k)
∣∣2

}
,

where Pb(μ, k) and Pf (μ, k) are the estimated PSDs of the
background noise (Eq. (28)) and feedback (see Eq. (19)),
respectively. They are weighted with overestimation fac-
tors βb for the background noise and βf for the feed-
back. These factors adjust the bias of the estimation and

thus control the aggressivity of the characteristic. The
result of the summation is divided by the (instantaneous)
PSD of the microphone signal after feedback cancellation
|E(μ, k)|2. When the filter only attenuates some subbands
for a short time, so-calledmusical tones can appear which
is an unwanted distortion. A maximum attenuation fac-
tor Hmin and appropriate overestimation by means of the
factors βb and βf , respectively, are used to avoid this phe-
nomenon. In this setup, the maximum attenuation factor
Hmin is set to − 9 dB, the overestimation factor βb to 2 dB
and the overestimation factor βf to 1 dB. The stationary
parts of the background noise can be suppressed by 6 to
12 dB and the feedback suppression leads to an additional
amplification gain of about 2 dB.
The maximum attenuationHmin would not be sufficient

to suppress distortions that originate from breathing in
or out. Thus, the attenuation based mechanism is sup-
ported by the injection of stationary noise. This noise
is usually produced in the complex subband domain by
white Gaussian noise generators with zero mean and unit
variance, mutually independent for the real and imagi-
nary part of each subband. Before inserting the noise, its
power is adjusted by multiplication with

√
Pb(μ, k) ·Hmin.

This adjustment should match the statistical properties
of the artificial noise to the residual noise after applying
maximum attenuation.

3.4 Gain control and equalization
After suppressing noise and feedback typically two fur-
ther frequency-domain weighting schemes can be applied
(see Fig. 12). On one hand an equalization character-
istic can be applied by means of weighting the input
spectrum with appropriate gain factors Heq(μ). This can
be either achieved in the time-domain (usually for nar-
row notch characteristics, details in Section 3.7) or in a
more smooth way in the frequency domain. On the other
hand. the background noise power can be mapped via a
noise-to-gain characteristic onto an amplification of the
input spectrum. Such a characteristic is usually applied
to the signal coming from the radio unit before being
played back via the ear loudspeakers. Furthermore, the
peak power of the microphone signal can be tracked. An
amplification/compression characteristic can be applied
to normalize the output signal. This is usually done before
emitting the signals of the fire fighters via the tactical radio
link (in the uplink path). Quite often such characteris-
tics are only time but not frequency-dependent, leading
here to gain/attenuation factors Hagc(k). Since such char-
acteristics are well established units, we will not go into
the detail of how to adjust them and refer here to the
literature: [56] gives a very good overview about such
characteristics.
In the path that connects the microphone signal with

the mouth loudspeakers the spectral modification can be



Brodersen et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2019) 2019:21 Page 14 of 19

Fig. 12 Structure of the gain control and equalization as well as of the
decorrelation

described as

Xagc,eq(μ, k) = Xenh(μ, k)Hagc(k)Heq(μ). (31)

In the other pathes, similar schemes are applied. Since
the reduction of large signal peaks has also impact on the
energy consumption we will describe time-domain range
compression in Section 3.7.1.

3.5 Decorrelation
Before converting the enhanced spectra back to the time-
domain a decorrelation stage should be applied (see
Fig. 12). Such decorrelation is necessary in order to help
the feedback cancellation filters to converge to the desired
solution [39]. Beside this effect, also the maximum stable
gain that can be achieved by the communication system
can be improved with the scheme presented now.
The decorrelation is implemented by a frequency shift

of each subband in the frequency domain [23, 28, 43,
55]. The shift in Hz is given by fshift(μ) and the phase
adjustment is realized by ej2πkfshift(μ). This phase adjust-
ment depends on the frame index k; hence, the phase
adjustment D(μ, k) has to be updated each frame:

D(μ, k) = D(μ, k − 1) ej2π fshift(μ). (32)

The update is done by a complex multiplication with con-
stant factors. The initialization of the phase adjustment is
performed according to

D(μ, 0) = 1. (33)

with Xagc,eq(μ, k) representing the input of the frequency
shift and Y (μ, k) being the output it yields to following
equation:

Ydec(μ, k) = Xagc,eq(μ, k)D(μ, k), (34)

where the output signal is shifted by fshift(μ) Hz. For the
decorrelation it is only necessary to shift a few Hz, but if a
larger shifting is possible, the resonance of the feedback is
shifted more and a higher stable gain can be chosen. We
suggest to apply the following shifts:

• Below 1 kHz: shift about 5Hz,
• 1 to 3 kHz: shift about 10Hz,
• above 3 kHz: shift about 20Hz.

Since all the shift frequencies are smaller than the
distance between the center frequencies of neighboring
subbands, we need no subband index increment when
shifting. However, for larger shifts (or filter banks with
more channels) this has to be taken into account.With the
setup presented above, an additional gain of up to 20 dB
can be achieved—mainly due to improved performance of
the feedback cancellation approach.

3.6 Synthesis filterbank and postprocessing
In the last signal processing stage, we go back to the time-
domain using synthesis filterbanks and perform some
final time-domain postprocessing. Such postprocessing
includes deem-phase filters (the inverse of the preem
phase filter that was applied before the analysis filterbank),
time-domain equalization, dynamic range compression,
and a limiter for each output channel in order to equal-
ize the frequency response, compress the signals into the
desired dynamic range, and afterwards to limit the sig-
nals. The detailed signal processing structure is depicted
in Fig. 13.
As in the previous sections, we will describe the algo-

rithms for the path that connects the microphone input
signal xmic(n) with the mouth loudspeaker output signal
ymouth(n). The second synthesis filterbank and postpro-
cessing unit (see Fig. 5) is computed equivalently.

3.6.1 Synthesis filterbank
The synthesis filterbank is mainly the inverse structure of
the analysis filter bank, that was described in Section 3.1.
We have used here an overlap-add based structure with
an appropriated-scaled Hann window that leads for the
parameter setup to a delay of 16 ms. This value can easily
be reduced to 8 ms if the method according to [54] is used.
Using overlap-add-based structures instead of overlap-

save based ones have the advantage, that artifacts that
appear due to gain changes from frame to frame are
smoothed due to the overlapped adding stage of the win-
dowed frames. A second advantage is the better aliasing
properties. This allows to avoid projection stages within
the adaptive filters. However, the price to be paid for this
are the smaller frameshift which removes most of the
computational savings in the adaptive filter stage.
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Fig. 13 Postprocessing—overview

The resulting time-domain signal of the synthesis filter-
bank will be denoted here as yfb(n).

3.6.2 Deem-phase filter
The first time-domain postprocessing part within the
postprocessing framework is the deem-phase filter
that inverts its preem-phase counterpart described in
Section 3.1. Since this was a first-order FIR filter, we have
to use now a first-order IIR filter according to

yde(n) = yfb(n) + βpre-de yde(n − 1). (35)

3.7 Time-domain equalization
The time-domain equalizer is computed as a cascade of
second order recursive filters (so-called biquad filters)
according to [31, 32, 37, 56]:

Heq(z) =
Neq−1∏

i=0
Heq,i(z). (36)

Each subfilter has the following transfer function:

Heq,i(z) = b0,i + b1,i z−1 + b2,i z−2

1 + a1,i z−1 + a2,i z−2 . (37)

These biquad filters are used instead of a finite impulse
response-filter (FIR filter), because the IIR filter structure
allows for a significantly lower order compared to FIR
structures for comparable filter effects. The disadvantage
of the IIR filter is the frequency selective group delay.
The time-domain equalizer can be adjusted to form a

high-pass, low pass, peak, notch, and/or shelving filter. In
our setup, each output channel may comprise up toNeq =

8 filters. The filters are used especially for the voice-
amplification loudspeakers in the front part of the mask,
for example, to boost higher frequencies or to set a notch
filter attenuating a frequency where feedback occurs. The
loudspeakers in front of the mask should preferably play
frequencies that are attenuated by the mechanical mask.
Hence, frequencies above 2.5 kHz are boosted by a shelv-
ing filter, because of the high attenuation caused by the
mask. Frequencies below 1 kHz cannot be transmitted,
because of size constraints of the loudspeaker and the
resonance volume.

3.7.1 Dynamic range compression and limitation
Dynamic range compression (DRC) is an algorithm that
maps the dynamic range of an input signal to a (usu-
ally) smaller range for the output signal [15, 42, 56]. DRC
is necessary for a communication system, because the
dynamic range has to limit the sound pressure level of the
ear speaker. This ensures that the ear is not damaged and
that quiet passages are amplified to a desired loudness.
The DRC algorithm can be split into five parts:

• Compute the absolute magnitude of the input signal
• Estimate the peak level
• Compute the logarithm
• Get the gain from the compression characteristics
• Apply the gain to the input signal

The signal flow graph is shown in the right part of
Fig. 13. The peak estimation is implemented by a first-
order IIR filter with a time-variant smoothing constant
αsm(n) that is applied to the magnitude of the input signal
|yeq(n)|:
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ymag(n)=αsm(n)
∣∣yeq(n)

∣∣ + ... (38)

... + (
1 − αsm(n)

)
ymag(n − 1).

The smoothing constant αsmo(n) is defined by the so-
called attack time constant αatt, if the magnitude signal
|yeq(n)| is larger than the previous smoothed magnitude
signal ymag(n − 1). Otherwise, the so-called release time
constant αrel is applied:

αsm(n) =
{

αatt, if
∣∣yeq(n)

∣∣ > ymag(n − 1),

αrel, else.
(39)

The attack time is much shorter than the release time;
hence, this time-variant filter can be interpreted as a peak
tracker. For the communication system the attack time
αsm is set to 20ms and the release time αrel to 200ms.
Finally, the logarithm is computed to generate the input
value for the compressor characteristic:

ylog(n) = 20 log10
(
ymag(n)

)
. (40)

Please note that the computation of the logarithm as well
as the following steps can be computed in a subsampled
manner, in order to save computational complexity. Due
to the smoothing according to Eq. (39), this has nearly no
impact on the signal quality.
Figure 14 shows the compressor characteristic of the

ear-loudspeakers and Fig. 15 shows the compressor char-
acteristic of the loudspeakers in front of the mask. It
depicts the input signal ylog(n) in dB on the x axis and
the desired output signal ydes,log(n) on the y axis. The
blue curve represents the desired compressor character-
istic and the bisectrix colored in gray represents a linear
transmission.
The gain glog(n) in dB is computed by subtracting the

input level from the output level to get the gap between
both:

glog(n) = ydes,log(n) − ylog(n). (41)

The desired output signal has to be multiplied by this gain
in the linear domain; hence, it is transformed to a linear

Fig. 14 Compressor characteristic of the ear loudspeakers

Fig. 15 Compressor characteristic of the loudspeakers in front of the
mask

gain factor:

g(n) = 10glog(n)/20. (42)

The input signal yeq(n) is multiplied by the linear gain g(n)

to get the desired output signal ymouth(n):

ymouth(n) = yeq(n) · g(n). (43)

As overshoots could occur, it is necessary to apply a limiter
additionally to ensure a limited sound pressure level at the
output to protect the fuse of the device.

4 Results and discussion
For the evaluation of the communication system, a sub-
jective test as well as objective measurements were per-
formed. In addition, the computational complexity was
analyzed and measured when all algorithms are active.
The subjective test is realized as a modified rhyme test.
The objective measurements are determined by measur-
ing the transmission characteristic of the passive mask in
comparison to the mask with an activated communication
system.

4.1 Modified rhyme test
The data for the modified rhyme test (MRT) was recorded
with two artificial heads, one simulating the speaker and
the other one the listener [14, 29]. The heads are sur-
rounded by ambient loudspeakers as shown in Fig. 16.
On the left side, one can see an artificial head from

GRAS (KEMAR 45), which simulates the listener. The
two ear microphones produce binaural recordings. Fur-
thermore, the left and right loudspeakers are installed to
generate ambient noise. On the other side of the GRAS
artificial head, a second torso is placed, which is also an
artificial head, a DRÄGERQuaestor head [1], which fits to
the contours of typical masks. Conventional heads such as
the KEMAR (but also others) are a bit too small for typical
mask sizes.
In the test, a mask with a communication system was

mounted on the Quaestor head, such that in the test the
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Fig. 16 Evaluation setup with and without mask and communication
system

passive mask and the mask with activated communication
system can be compared in a fair manner. The ambient
noise is represented by white noise, which sounds very
similar to a so-called c-pipe, a protective fan and simi-
lar equipment. The SNR was adjusted such that with the
passive mask a value of 0 dB at the ears of the listeners
was achieved. When the communication system is acti-
vated the SNR increases according to the transmission
characteristic as shown in Fig. 17.
The modified rhyme test was performed according to

[14], where in this test eight samples for each of the seven
rhyme classes are used. Thus, 56 samples have been eval-
uated for each variant. The listening test was attended by
15 people and an error rate (ER) for the passive mask of
23.27% was achieved. With the activated communication
system an ER of 17.06% was achieved. Thus, the activated
communication system improves the ER by 5.31%. This is
only a small improvement, but this can be crucial in terms
of clarity in use. The participants have indicated that sibi-
lants are better understood. These can be for example
very important in distinguishing between words that dif-
fer only by the (plural) “s” at the end of the word.With this
difference, the chief of operations has to decide howmuch
support she/he coordinates to the individual fire fighters.

4.2 Transmission characteristic of the communication
system

The described full-face mask without a voice-
amplification unit has a different frequency response

Fig. 17 Evaluation results. a Power spectral densities of the full-face
mask FPS 7000 without a communication system (blue), with an
activated voice amplifier of the communication system FPS-COM
7000 (black), and the artificial head without a full-face mask (red). b
Difference of the power spectral densities from the full-face mask FPS
7000 with an activated voice amplifier of the communication system
FPS-COM 7000 to the full-face mask FPS 7000 without a
communication system

compared to with attached communication system—as
shown in Fig. 17. To show the differences, power spectral
densities were measured. The microphone for those mea-
surements was located 1m in front of the artificial head.
The red curve, shown in part a of Fig. 17, was measured
for a setup without any mask. This power spectral density
can be interpreted as a reference. The measurements were
made with white noise excitation signal, sampling rate of
48 kHz and had a length of 64 k samples. The impulse
response was obtained by means of an NLMS algorithm.
However, keep in mind, that with this reference setup also
no protection is present for the fire fighter.
Using a mask without a communication unit signifi-

cant attenuation (blue curve) can be measured. It starts
around 1.5 kHz and the attenuation of frequencies above
2 kHz is really strong. The black curve shows the full-face
mask with an activated communication system including
all the processing stages presented in this contribution.
The communication system starts to transmit above 1 kHz
having the highest amplification of approx. 22 dB at 3 kHz.
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This amplification is only possible by applying the algo-
rithms described before.

4.3 Computational complexity of the communication
system

The computational complexity is measured with respect
to a 120MHz digital signal processor with fixed-point
arithmetic. All algorithms together have a computational
complexity in total of 50% on this processor, meaning that
the entire system runs in real-time and requires about
60 Mips (million [fixed-point] instructions per second).
In more detail the filterbank uses approx. 1.5%, the VAD
1%, the automatic gain control and equalization less than
1%, the feedback cancellation approx. 25% , the noise
and feedback estimation 1%, the decorrelation less than
1%, the time-domain equalization filter (8 biquad stages)
requires 1% per channel, and the dynamic range compres-
sion uses 1% per channel. In terms of the efficiency, some
algorithms could still be optimized, but they are sufficient
in terms of the workload of the digital signal processor and
have not been considered further.

5 Summary and conclusion
Full-face masks are used to ensure clean air supply for fire
fighters. However, when wearing such masks the speech
signals of the wearer are strongly attenuated due to the
hermetical sealing of the masks—the communication is
impaired. For this reason, communication systems can
be used to clean and amplify the speech signal, which
leads to an enhancement of the communication if applied
appropriately. The presented communication system is
able to improve the communication drastically. However,
this is only possible by applying a cocktail of enhancement
stages that have to be adjusted and optimized in a mutual
manner.
Further improvements can still be made in different

areas. This could be, for example, the extension of the
pattern recognition scheme. Long short-term memory
approaches with deep neural networks could be useful
here—this has not yet been analyzed for reasons of com-
plexity and training data.
With respect to the loudspeakers of the ears and the

mouth, the dynamic range compression could become
frequency-dependent. This allows to respond adaptively
and frequency selectively to background noise variations
[45]. This might improve the speech intelligibility in dif-
ferent situations. To estimate the background noise for
this purpose, a microphone would be needed that is
located on the outside of the communication system.
Another improvement could be the usage of non-linear

signal processing to reconstruct the harmonics of the
speech, which are attenuated by the mask characteristics.
This approach could improve the speech intelligibility on
the mouth loudspeaker and the ear loudspeakers [11].

Finally, the performance of the feedback cancellation
can be improved. This could be achieved either by
improving the quality of the involved transducers (in
order to reduce non-linear effects) and by extending the
processing structures to non-linear approaches, such as
Volterra filters. However, this would lead to a significant
increase of computational complexity. Anyhow, the com-
putational power of embedded hardware is permanently
increasing. Thus, it might just be a question of time until
such solutions would be realizable.
Abbreviations
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