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Abstract

We present a novel model adaptation approach to deal with data variability for speaker diarization in a broadcast
environment. Expensive human annotated data can be used to mitigate the domain mismatch by means of
supervised model adaptation approaches. By contrast, we propose an unsupervised adaptation method which does
not need for in-domain labeled data but only the recording that we are diarizing. We rely on an inner adaptation
block which combines Agglomerative Hierarchical Clustering (AHC) and Mean-Shift (MS) clustering techniques with a
Fully Bayesian Probabilistic Linear Discriminant Analysis (PLDA) to produce pseudo-speaker labels suitable for model
adaptation. We propose multiple adaptation approaches based on this basic block, including unsupervised and
semi-supervised. Our proposed solutions, analyzed with the Multi-Genre Broadcast 2015 (MGB) dataset, reported
significant improvements (16% relative improvement) with respect to the baseline, also outperforming a supervised
adaptation proposal with low resources (9% relative improvement). Furthermore, our proposed unsupervised
adaptation is totally compatible with a supervised one. The joint use of both adaptation techniques (supervised and
unsupervised) shows a 13% relative improvement with respect to only considering the supervised adaptation.
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1 Introduction
Speaker diarization is the task intended to annotate an
input audio document in terms of the speaker talking
at each time. Diarization allows the indexation of audio
streams and databases and supports other tasks such as
speaker recognition or automatic speech recognition as
well. A great effort on diarization research has been moti-
vated by the increasing amount of available data, gathered
in the wild. This type of data, too abundant to be manu-
ally tagged, becomes truly valuable if trustworthy speaker
labels can be inferred. Moreover, diarization is a well-
defined problem with multiple available resources, but
still far from a general solution.
Some diarization overviews, such as [1, 2], provide a

wide point of view of the state of the art in diarization,
being the most popular approach, the bottom-up clus-
tering strategy. This strategy consists of two steps: the
segmentation of some input audio into fragments with
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only one active speaker and the posterior clustering of
the obtained segments in terms of their speaker represen-
tations. These speaker representations have been usually
constructed relying on speaker recognition models (Joint
Factor Analysis or JFA [3], i-vectors [4], and Probabilis-
tic Linear Discriminant Analysis or PLDA [5], etc.) and
combined according to different clustering metrics and
strategies: from Agglomerative Hierarchical Clustering
(AHC) using Bayesian Information Criterion (BIC) [6] to
K-means on eigenvoices [7] or PLDA Variational Bayes
(VB) [8, 9].
Diarization must take advantage of the inter-speaker

variability while compensating the intra-speaker variabil-
ity, its main source of degradation. When considering
broadcast audio, the intra-speaker variability depends on
the show and genre. Unfortunately, there are too many
particular effects from these multiple shows and genres to
be properly compensated during model training. Hence,
the uncompensated variability, specific for each show and
genre, can cause an important loss of performance, also
known as domain mismatch.
To reduce domain mismatch, modern diarization sys-

tems require in-domain data to train and adapt their
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models. Nevertheless, when these in-domain data are
scarce, domain mismatch can only be handled by unsu-
pervised adaptation techniques. This concept is analyzed
in [10, 11], where models are successfully adapted using
unlabeled in-domain data.
Compared to [11], we present a deeper study on the use

of unsupervised model adaptation for speaker clustering
in broadcast diarization. Our aim is to propose an effec-
tive and efficient solution for practical situations. Tradi-
tional supervised approaches require human annotated
data which are very expensive to obtain. Nevertheless, we
propose here to replace expensive hand-transcribed data
by automatically obtained pseudo-speaker labels. For this
purpose, we analyze multiple strategies and compare their
performance with the traditional supervised approach.
Moreover, we also propose hybrid solutions combining
supervised and unsupervised techniques for situations in
which a few labeled data are available.
In Section 2, we analyze the state of the art in

diarization, making emphasis in the broadcast domain.
Section 3 is dedicated to an analysis of variability condi-
tions in broadcast data. The diarization reference system
is described in Section 4. In Section 5, we explain in detail
the concept of unsupervised adaptation, as well as the dif-
ferent strategies to best exploit it. Our experiments are
detailed in Section 6. Finally the conclusions are expressed
in Section 7.

2 Speaker diarization state of the art
Diarization is the activity of tagging some input audio in
such a way that the speech of the different speakers is dif-
ferentiated. This tagging problem can be understood as
the search of the best speaker labels to explain some given
audio.
The automatic estimation of these speaker labels has

motivated a great interest in diarization towards broadcast
data, with multiple contributions in the literature [12–14].
The most popular diarization philosophy is the bottom-
up strategy. This approach starts with a large number
of acoustic segments, each one ideally containing speech
from a single speaker. The final labels are obtained by
clustering these segments in terms of their active speaker.
First, an initial segmentation creates homogeneous

acoustic fragments with a single active speaker. This
acoustic segmentation is also known as Speaker Change
Point Detection (SCPD). Considered solutions to the
segmentation problem are based on metrics (e.g., BIC
[15], �BIC [6], Generalized Likelihood Ratio [16], the
Kullback-Leibler (KL) divergence [17]), statistical models
such as Hidden Markov Models [18], and Deep Neural
Networks (DNNs) [19].
The obtained variable-length segments are usually

transformed into fixed-dimension representations. These
representations are designed to take advantage of the

inter-speaker variability while minimizing the within-
speaker variability. Speaker recognition state-of-the-art
techniques are usually considered for these representa-
tions, including Gaussian Mixture Models [20], JFA [3],
i-vectors [4], and PLDA [5]. In this area, neural networks
also contribute with solutions such as [21, 22].
Afterwards, the clustering stage groups the audio frag-

ments so that those segments from the same speaker are
clustered together. The optimal solution for the clustering
problem is a brute force approach, comparing all possible
arrangements of segments. However, the number of possi-
ble combinations significantly increases with the number
of segments and clusters, making this solution unfeasible
in practice [23]. Therefore, suboptimal solutions must be
considered. Some approaches make clustering decisions
relying on pairwise relationships between representations,
such as AHC [10, 24–26]. Other approaches make use
of relationships among multiple segments in a limited
area, e.g., Mean-Shift (MS) [27–31]. Decisions can also
be made keeping in mind all the acoustic segments, as K-
means [7, 32], variational Bayes [33], and fully Bayesian
PLDAs [8, 9, 34].
The speaker clustering task in diarization must deal

with a set of challenges. The first one is the length
of the homogeneous acoustic segments. State-of-the-art
speaker recognition representations require a consider-
able amount of audio to be robust. However, these rep-
resentations are unreliable when estimated from short
segments as in diarization (10 s or less). The uncertainty
about the number of speakers is another challenge. This
uncertainty influences the tradeoff between cluster and
speaker impurity. On the one hand, an overestimation of
the speaker number divides real speakers into different
clusters, though these clusters are usually purer. On the
other hand, the underestimation of speakers is bound to
detect the largest clusters, i.e., the most talkative speakers,
including spurious audio from the least talkative speak-
ers, who can be lost. This loss of speakers is sometimes
unacceptable, specially when these less talkative speakers
are the most relevant ones. In fact, the distribution of the
amount of speech among speakers is an important factor
to properly determine the number of speakers in a record-
ing. The less uniform the distribution, the less data we
have to properly represent certain speakers, but the lower
amount of speech can be improperly modeled. Broadcast
data include extreme cases reaching up to 60–70 speakers
in a 1-h show, in which 2–3 speakers can be respon-
sible for 70% of the audio. Another problem is caused
by the assumption of homogeneous acoustic conditions
along the whole audio. Factors such as background noise
or reverberation can temporally alter the audio charac-
teristics along a recording. For example, audio broadcast
is recorded in multiple locations such as studio, streets,
and sports events. Besides, broadcasted audio sometimes
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includes background sounds, such as music, applauses,
and laughs, deliberately added loud enough to emphasize
certain show conditions.

3 Analysis of the broadcast audio scenario
Broadcast environment is widely known due to the large
diversity of shows and genres. Each scenario has its
own characteristics, completely different from each other,
including multiple recording locations, or postprocessing
additions, generating a great variability. In fact, there is
also within-show variability, because of the different parts
of the show. An example can be the news, with studio
conditions and outdoor reports.
TheMulti-Genre Broadcast (MGB) Challenge 2015 [14]

dataset is a suitable choice to analyze variability in broad-
cast data. The dataset includes about 1600 h of audio
taken from the British Broadcasting Corporation, com-
ing from about 500 different shows and divided into three
subsets: train, development, and test. This large amount
of data makes this dataset a good choice to study how
different factors impact performance because of the wide
range of shows and genres. Two important factors are the
variability in the number of speakers and the distribution
of the amount of speech among speakers. The larger the
uncertainty in the number of speakers, the larger is the
possible error in its estimation and its impact in the per-
formance. This variability is influenced by the distribution
of the amount of speech among speakers. The more avail-
able audio from one speaker, the easier to identify him or
her. Therefore, quiet speakers are poorly represented and
can be easily lost.
We present Fig. 1 to show the variability in the speaker

count for each show in development and evaluation sub-
sets. The involved shows in the development subset are
“DoctorWho” (DW), “UEFA Euro 2008Match” (UE08M),
“The Alan Clark Diaries” (TACD), “Springwatch” (SW),
and “Last of the Summer” (LOTS). The evaluation set con-
sists of episodes from “Celebrity Masterchef” (CM) and
“The Culture Show Uncut” (TCSU). Each column ana-
lyzes a single show, illustrating the spread of the number
of speakers along its episodes. As we can see, the num-
ber of speakers presents significant differences among the
different shows (up to 30 speakers between median values
of shows UE08M and TCSU) and within the shows, with
deviations up to 20 speakers between episodes of the same
show (CM and TCSU).
In Fig. 2, we illustrate the ratio of speech for the most

talkative speaker in each episode from both develop-
ment and evaluation subsets. Again, a large uncertainty
is shown, having differences between shows up to 60%
(shows TACD and LOTS) and presenting deviations of
10% from the median. Besides, no correlation can be
observed between the variability caused by the number of
speakers and the speech distribution variability.

Fig. 1 Number of speakers per show. Shows DW, UE08M, TACD, SW,
and LOTS correspond to development set. CM and TCSU shows
belong to evaluation set

This analysis can be expanded by moving to single
episodes. In Fig. 3, we illustrate the ratio of speech activ-
ity per speaker for two episodes with a very different
speaker distribution.While Fig. 3a depicts an episode with
a dominant speaker (almost 70% of the speech), Fig. 3b
reflects a more even speech distribution, in which no
speaker exceeds a 20% of total speech and 10 speakers
make significant contributions (more than 5% of speech).

4 Baseline diarization system
The reference diarization system [34] makes use of the
standard bottom-up strategy, first dividing the input
audio into segments with only one active speaker and
clustering them according to the i-vector [4] PLDA [5]

Fig. 2 Proportion of speech for the most active speaker per show.
Shows DW, UE08M, TACD, SW, and LOTS correspond to development
set. CM and TCSU shows belong to evaluation set
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Fig. 3 Distribution of speech per speaker for two episodes: a An
episode with a dominant speaker. b An episode with a more even
speech distribution

framework. Its schematic block diagram can be seen
in Fig. 4.
First the system converts the input audio into a stream

of Mel Frequency Cepstral Coefficients (MFCCs). Simul-
taneusly, Voice Activity Detection (VAD) is carried out.
In our system, the VAD mask is inferred by means of a

Fig. 4 Reference diarization system schematic

DNN. This network analyzes the input features along a
short-duration sliding window, moved along the stream
of MFCC frames. In each window, the DNN estimates
a VAD label per input MFCC feature vector. The con-
sidered DNN makes use of Bidirectional Long Short
Time Memory (BLSTM) [35] layers, a type of Recurrent
Neural Networks which analyze the MFCC stream as a
sequence. These BLSTM layers consists of two Long Short
Time Memory [36] layers, which analyze the same input
sequence but in opposite directions.
Given the features and the VAD mask, we perform a

BIC-based [6] segmentation. BIC [15] is a model selec-
tion criterion, i.e., a method to choose the model which
better describes some given data X. BIC is a likelihood
criterion penalized by the model complexity, the number
of parameters in the model. For SCPD, we use �BIC [6]
to determine the model that best describes some given
data X. In hypothesis H0, we model the data with a single
Gaussian distribution, as if it comes from a single speaker.
H1 assumes that data X contains frames from two speak-
ers, separated by a single speaker boundary. Each speaker
is then modeled by its own Gaussian distribution. In our
experiments, these Gaussian distributions for bothH0 and
H1 have full-rank covariance matrix. The formulation for
�BIC is:

�BIC(X, λ) = log(P(X|H1)) − log(PX|H0) − λR (1)

where R represents the penalty term to compensate the
excess of parameters inH1 models with respect toH0, and
λ is a finetuning parameter. The described comparison
is repeated along the feature stream using a sliding win-
dow, considering multiple samples per analysis window as
candidate boundaries.
For each obtained segment, we compute an i-vector.

I-vectors are centered, whitened, and length-normalized
[37] (normalized so its Euclidean norm is equal to 1),
obtaining the set of N i-vectors �n = {φn1, ..,φnN } for
episode n.
These i-vectors are then clustered to obtain the final

partition�n = {θn1, .., θnN }. The i-vector clustering is per-
formed in terms of a PLDA model. Figure 5 illustrates
the clustering step. An initial clustering is constructed
with AHC based on PLDA pairwise log-likelihood ratio.
A posterior resegmentation is performed by means of a
fully Bayesian PLDA with soft speaker labels [9], which

Fig. 5 Clustering step. Given some set of i-vectors �n and a PLDA
modelMdiar, diarization labels �diar are obtained
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redistributes the segments along the clusters given by
the initialization. In order to mitigate the initialization
influence, multiple evaluations are simultaneously per-
formed. K different initial partitions �′k

n are obtained by
means of the agglomerative clustering. These initializa-
tions come from different levels in the AHC dendrogram,
containing a different number of speakers. Each initializa-
tion �′k

n is resegmented obtaining the diarization labels
�k

n. The final diarization labels �diar are chosen by max-
imizing the variational Evidence Lower Bound (ELBO)
[38], which measures how well the model fits the given
data. Although the prior over � should penalize mod-
els with more complexity (more speakers), we empirically
observed that the ELBO criterion overestimates the num-
ber of speakers. Consequently, a modified ELBO with a
penalty term to compensate different model complexities
[39] is considered instead.

4.1 Fully Bayesian PLDA
PLDA is a statistical generative model proposed in [5].
This model represents a population of N i-vectors φj gen-
erated by M speakers, with Ni i-vectors from the speaker
i. Each i-vector φj produced by the speaker i is modeled as

φj = μ + Vyi + εj (2)

where μ represents the overall mean of the training
dataset. yi is a speaker dependent latent variable, an eigen-
voice. All i-vectors from the same speaker share the same
value for this variable, and its expected value given an
audio can be used to represent the identity of an individ-
ual. This variable is assumed to follow a standard normal
distribution. V is the matrix describing the inter-speaker
variability subspace of dimensionD. Finally, εj is the intra-
speaker variability term, unique for each i-vector j, and
modeled as a zero-mean normal distribution with W−1

full-rank covariance matrix. The Gaussian assumption
about the priors makes the conditional probability of the
i-vector φj with respect to the latent variables to follow a
Gaussian distribution as:

P(φj|yi) = N
(
φj|μ + Vyi,W−1) (3)

The corresponding Bayesian network for this model is
illustrated in Fig. 6a.
A Bayesian PLDA is proposed in [8, 9], upgrading

the model by formulating the fully Bayesian PLDA with
speaker labels modeled by latent variables. This model
substitutes the fixed speaker assignment by a set of dis-
crete latent variables� = {θ1, θ2, .., θN }. This modification
assumes that a set of N i-vectors � = {φ1,φ2, ..,φN }
is produced by M speakers, so that each i-vector comes
from an unknown speaker i = 1, ...,M. All the speak-
ers are modeled by an eigenvoice yi, conforming the set
Y = {y1, .., yM} ∈ R

D. The assignment of i-vectors to the
speakers is controlled by the new latent variable θij. For

Fig. 6 Bayesian network of the employed PLDAs. a Simplified PLDA. b
Fully Bayesian PLDA

this purpose θij takes the value of one if the i-vector φj
belongs to the speaker i and zero otherwise. The definition
of the likelihood for an i-vector φj is:

P(φj|Y, θj) =
M∏

i=1
N (φj|μ + Vyi,W−1)θji (4)

where latent variable � follows a multinomial distribu-
tion. This distribution has a prior on its parameter πθ ,
which a priori determines the expected probability of
assignment to each cluster. This prior distribution πθ

follows a Dirichlet distribution.
Furthermore, the model parameters (μ, V, W) are sub-

stituted by latent variables too. We opt for a Gaussian
prior for the mean μ. The matrix V is defined in terms of
its columns, each one with a Gaussian prior. Finally, we
place a Wishart prior for the matrix W. A more detailed
explanation of the model parameter priors is available in
[9]. Figure 6b depicts the Bayesian network of this PLDA
model.
The complexity of the proposed model makes its train-

ing and evaluation not straightforward. Instead, a VB
decomposition is proposed approximating the joint pos-
terior distribution P(Z|�) by a factorial distribution q(Z),
where Z represents the whole set of latent variables in
the original model (Y, �, πθ , μ, V and W). For simplic-
ity, q(Z) is formulated as a product of distributions, also
known as factors. Each factor is the approximate posterior
of a limited subset of latent variables with respect to the
given data. The posterior of our proposed PLDA model is
factorized as:

P(Y,�,πθ ,μ,V,W,α|�)

≈q(Y)q(�)q(πθ )q(μ,V)q(W)q(α) (5)
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In this situation, the log-likelihood of the original model
consists of the sum of two terms,

lnP(�) = L (q(Z)) + KL (q(Z)||P(Z|�)) (6)

the Variational Lower Bound, also known as ELBO, and
the KL divergence of the true posterior with respect to
its approximation. Both the training of this model and
the evaluation are carried out by the iterative reevaluation
of the described factors, maximizing the ELBO. While
training needs the reevaluation of all the factors, during
evaluation only those factors related to the speaker labels
q(�) (q(Y), q(�) and q(π θ )) are required to be iteratively
updated.
This variational Bayes method provides a useful tool for

diarization. We can assume that the best diarization labels
�diar are those which best explain the given i-vectors �,
measured by the ELBO. By reevaluating the factor q(�)

(and the related q(Y) q(πθ )) we can maximize the ELBO
term. A collateral effect of this VB solution is that it per-
forms its own estimation of the number of speakers. The
VB decomposition distributes i-vectors among the dif-
ferent hypothetical clusters. In the meanwhile, the VB
solution can consider a cluster not responsible for any
contribution, deciding that the given data is well explained
using fewer clusters. These empty clusters are discarded.
The variational Bayes decomposition allows a closed-

form solution for a simplified version of the original
model. Unfortunately, it also creates a strong dependence
on the initialization values for the latent variables, espe-
cially the clustering ones. We include a solution to mit-
igate this drawback, deterministic annealing [40]. This
technique smooths the ELBO function. This concept
assumes the real and smoothed ELBO should have close
global maxima. Under this assumption, latent variables
converge according to a simpler version of the ELBO func-
tion, being fine-tuned afterwards as the smoothing gets
relaxed.

5 Methods for domainmismatch reduction
PLDA performance is known to suffer from strong degra-
dation when facing a domain mismatch between training
and evaluation conditions. The same kind of mismatch
we previously observed in broadcast data when studying
the differences among episodes, shows, and genres. The
large number of different domains makes training partic-
ular models unfeasible, so domain adaptation is the best
option.
Adaptation in models with speaker awareness (e.g.,

PLDA) requires some speaker labels �ADAPT, as illus-
trated in Fig. 7a. This is also referred as supervised adap-
tation. However, in many situations, perfect labeled in-
domain data is either limited or just unavailable. For those
situations, in [11], it was proposed the unsupervised adap-
tation with pseudo-speaker labels (Fig. 7b). The necessary

Fig. 7 Schematic for the a supervised and b unsupervised adaptation.
MREF represents the source model andMADAPT the adaptedmodel.
�ADAPT and �ADAPT are the i-vectors and labels to adapt, respectively

speaker labels �ADAPT were estimated only considering
the evaluation data.
In [11], it was presented our basic unsupervised adap-

tation block, based on the adaptation approach proposed
in [9]. Given a PLDA model trained with out-of-domain
data, we want its parameters tuned to explain another
domain making use of some unlabeled data. Due to the
fact that our model follows a Bayesian approach, we must
obtain the tuned distributions for the parametersμ,V and
W, as well as for their priors (α). Because we use unlabeled
data, some inferred labels must be used. These labels are
not totally reliable, so our adaptation approach must also
take into account some out-of-domain data as well. A
maximum likelihood solution for our adaptation approach
is not analytically tractable; thus, we make use of an
approximation by means of VB. According to this approx-
imation, the joint posterior distribution is factorized as
follows:

P(Y,Yd,�,πθ ,μ,V,W,α|�,�d) ≈
q(Y,Yd)q(�)q(πθ )q(μ,V)q(W)q(α) (7)

where � represents the in-domain i-vectors. These i-
vectors are explained by the latent variable �, which
plays the role of the adaptation labels �ADAPT. The latent
variable � is explained in terms of its prior πθ . Y is
the speaker-dependent latent variable for the in-domain
i-vectors. �d symbolizes the out-of-domain i-vectors,
explained with perfect labels. Yd is the speaker latent
variable to explain these i-vectors. Moreover, the model
parameters (μ,V andW) are also latent variables, some of
them with its own prior latent variable (α).
The adaptation is done by maximizing the ELBO term

of the whole solution. Although factors q can follow
any distribution, the maximization of the lower bound
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forces optimal factor distributions q∗, which have a closed
form formulation [38]. This formulation imposes that fac-
tors are distributions whose parameters depend on the
remaining factorized distributions, forcing them to be
tied. Therefore, the final model is obtained by the iterative
update of the factors.
The adaptation process starts with some initial values

for the speaker label latent variable �. The optimal factor
q∗(Y,Yd)k for the speaker latent variablesY andYd is then
estimated as:

ln q∗(Y,Yd) =
E[ lnP(�,�d ,Y,Yd,�,πθ ,μ,V,W,α)] (8)

taking the expectations with respect to all the latent vari-
ables except for Y and Yd.
Once we have updated the speaker dependent factor,

we now start updating those related with the parameters.
First we update the optimal factor q∗μ,V

ln q∗(μ,V) =
E[ lnP(�,�d ,Y,Yd,�,πθ ,μ,V,W,α)] (9)

whose expectation involves all latent variables with the
exception of μ and V. Then, we update the optimal factor
for the variableW

ln q∗(W) =
E[ lnP(�,�d ,Y,Yd,�,πθ ,μ,V,W,α)] (10)

calculating the expectation with respect to all the latent
variables except forW.
Because we are in a Bayesian solution, we similarly

update those factors related with priors (q∗α and q∗πθ ),
estimating the expectations with respect to all the vari-
ables except for the factor variable.
Finally, the last factor to be updated is the speaker label

optimal factor q∗�, calculated as:

ln q∗(�) =
E[ lnP(�,�d ,Y,Yd,�,πθ ,μ,V,W,α)] (11)

where we again make the expectation for all variables
except �. This factor is responsible for the newer ver-
sion of the speaker labels, necessary to keep iterating the
optimization process.
The initial values for the speaker labels � have a signif-

icant impact on the performance. In [11], we proposed a
method to obtain these initial labels from the same audio
to diarize by means of naïve clustering techniques. This
work was an exploratory work about how to unsupervis-
edly extract speaker information for its posterior use in
adaptation.
In this work, we study multiple adaptation approaches

based on this unsupervised adaptation block. This adap-
tation is conditioned by two elements: the initial labels
for the adaptation and the source model to adapt. With

respect to the initial labels, our proposed approaches
study the impact of speaker awareness in the pseudo-
speaker label estimation. Two main options, cosine sim-
ilarity, which lacks of any knowledge about the speaker
subspace, and PLDA likelihood ratio are tested. Efficient
clustering techniques are considered, such as AHC and
MS [28–31].
Regarding the source model, we study its influence dur-

ing the adaptation step depending on whether it is aware
of the evaluation domain or not. In the scenario where the
source model has partial knowledge about the evaluation
domain, we also analyze the impact of how this awareness
is obtained. On the one hand, we can consider just unla-
beled data for a previous adaptation. On the other hand,
this previous adaptation can also count with scarce human
labeled information.
All these approaches are validated by direct compari-

son with the traditional supervised adaptation, performed
with the same limited data. The proposed modalities are
very oriented to broadcast scenarios, where the tradeoff
between expenses and labeled resources is an important
factor in decision making. The proposed alternatives are
as follows:

• Independent unsupervised strategy
Our first proposal is the independent unsupervised
adaptation strategy, which individually performs the
adaptation, episode by episode. A conceptual
representation is illustrated in Fig. 8. For each
episode n, we adapt the out-of-domain PLDA model
MOOD only taking into account the i-vectors �n
from episode n. The result is the adapted modelMn.

• Longitudinal unsupervised strategy
Broadcast content from a show usually involves
multiple episodes (i.e., a season). These multiple
episodes are a priori likely to have similar acoustic

Fig. 8 Schematic for unsupervised independent adaptation for the
episodes n − 1, n, and n + 1.MOOD represents the out-of-domain
model andMn−1,Mn , andMn+1, and the adapted models for
each episode.�n−1,�n and�n+1 are the i-vectors from each episode
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information (same speakers and similar acoustic
conditions). Therefore, we can take into account
more than one episode to perform the PLDA
adaptation, supervised or not. In the longitudinal
approach, episode n is adapted considering the result
of the adaptationMn−1 from the previous episode
n − 1 as a reference model. This strategy is illustrated
in Fig. 9. By this way, we expect that successive
adaptations could retain show-dependent
information to improve the performance.

• Independent semi-supervised strategy
We also propose semi-supervised architectures,
assuming that a few labeled data are available. In real
applications, a perfectly labeled small subset of data
may be available. Therefore, we want to test whether
we can combine the knowledge acquired from a small
subset of supervised data (e.g., one or two episodes)
with the one obtained by the unsupervised adaptation.
Our first hybrid proposal considers a model
adaptation stage in terms of the supervised labeled
data followed by an unsupervised domain adaptation,
independent for each episode. In this approach, the
out-of-domain modelMOOD is first adapted with the
in-domain perfectly labeled data, obtaining the in-
domain modelMID. This model is later specifically
adapted to each episode using the unsupervised
adaptation block. The architecture is shown in Fig. 10.

• Longitudinal semi-supervised strategy
We also test a semi-supervised longitudinal strategy
when dealing with multiple episodes from the same
show. The out-of-domain modelMOOD is
supervisedly adapted with the limited labeled data
(i-vectors �ID and labels �ID), generating an
in-domain modelMID. This model is then adapted
in an unsupervised longitudinal way, i.e., the resulting
adapted model for episode n will work as reference
model for episode n + 1. Its schematic is illustrated in
Fig. 11.

6 Results and discussion
In this section, we present our experiments and results.
This analysis has been carried out considering the
MGB 2015 [14]. First, we explain the performance met-
ric DER. Then, we establish the baseline results with
the system shown in Section 4. Later, we analyze the
different proposed strategies based on our unsuper-
vised adaptation, starting with the totally unsupervised

strategies and studying the semi-supervised approaches
afterwards.

6.1 Diarization error rate
Diarization error rate (DER) is the standard metric for the
diarization task in recent times. This measure considers
the ratio of the misclassified amount of audio LERROR with
respect to the total amount of speech in the audio L
.

DER = LERROR
L


(12)

The misclassification in the diarization process can be
assigned to one of the following reasons:

• Some speech is considered non speech (miss error).
• Some non-speech is thought to contain voice (false

alarm error).
• Some speech is assigned to a mistaken speaker

(speaker error).
• Some period of time is not recognized to contain

speech from more than one speaker (overlap error).

The sources of error are totally independent, so we can
introduce them into the DER formula, and decompose the
global term into different error terms to be added:

DER =LMISS + LF.A. + LSPK + LOV
L


(13)

=EMISS + EF.A. + ESPK + EOV (14)

where EMISS, EF.A., ESPK, and EOV are the DER error
terms forMiss Error, False Alarm Error, Speaker Error and
Overlap Error respectively.
For evaluation purposes, we make use of the scoring

tool released by the organization. This tool is based on
the National Institute of Standards and Technology md-
eval scoring tool, contained in the Speech Recognition
Scoring Toolkit [41]. The configuration considers a 0.25-s
collar around reference borders and excludes from the
evaluation any audio with overlapped-speech.

6.2 Performance of the reference system
Our baseline system is the one described in Section 4.
The diarization system considers 20-coefficient MFCCs
as acoustic features, without derivatives. Short time cep-
stral mean and variance normalization is performed.
According to these features, we use a 256-Gaussian 100-
dimension i-vector extractor, trained with the train sub-
set. A 50-dimension PLDA model is trained with the

Fig. 9 Schematic for unsupervised longitudinal adaptation for the episodes n − 1, n, and n + 1.Mn−2,Mn−1,Mn , andMn+1 represent the
adapted models for episodes n − 2, n − 1, n, and n + 1. �n−1, �n , and �n+1 are the i-vectors from each episode
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Fig. 10 Semi-supervised adaptation strategy based on the
unsupervised independent adaptation approach for the episodes 1, 2,
and 3.MOOD represents the out-of-domain model,MID depicts the
show in-domain model, andM1,M2, andM3 the adaptedmodels
for each episode. �ID and �ID symbolize the in-domain i-vectors and
its speaker labels. �1, �2, and �3 are the i-vectors from each episode

development subset, the only subset with oracle speaker
labels. The results were obtained with a DNN-based VAD.
This VAD consists of a 3-BLSTM-layer neural network,
with 256 neurons per layer. This network is trained on
the development set, inferring the VAD labels for seg-
ments of audio up to 3 s, i.e., analyzing sequences of 300
frames. Table 1 shows the results with the diarization ref-
erence system according to this configuration, analyzing
the system with AHC PLDA, with and without VB reseg-
mentation. We also include the three best results in the
original MGB 2015 evaluation [14] for comparison.
Table 1 shows the poor performance of the agglom-

erative clustering and the significant benefits of the VB
resegmentation. These results are slightly worse than
those obtained by Cambridge, the winner system of the
evaluation. According to its description, Cambridge sys-
tem specially outperforms its competitors thanks to its
VAD estimation, obtained by a DNN trained on a careful
data selection from the unreliable train subset. This VAD
obtains 4.3% error in the dev.full subset [43] outperform-
ing ours, which obtains 13.1% error on the same subset. In
general, the poor performance of all teams reveals the dif-
ficulty of the challenge.Moving to amore detailed analysis
with our own results, not all the shows behave similarly.
Results in Table 2 present a deeper analysis of the base-

line results show by show. They reveal the different behav-
ior of the out-of-domain initial model depending on the

show it is applied to, having a relevant impact on the final
results (some shows are up to five times more accurate
than others). While some shows are very well diarized,
others obtain much poorer performances.

6.3 Independent unsupervised adaptation
The previous results have shown the influence of domain
mismatch when PLDA models are considered. We now
evaluate the novel independent totally unsupervised adap-
tation strategy. We propose exploring the four possible
pseudo-speaker label initializations described in [11]: two
clustering modalities, AHC and MS, working with two
similarity metrics, cosine similarity (COS) and PLDA log-
likelihood ratio (PLDA). The results for this experiment
are shown in Table 3.
The direct comparison of Table 2 (its last line) and

Table 3 show the benefits of the unsupervised adaptation.
The first step in the diarization system (the agglom-
erative clustering with PLDA log-likelihood ratio) evi-
dences approximate 10–20% relative improvements when
adapted models are considered, regardless the pseudo-
speaker labels. Besides, these results are improved by
means of the variational Bayes refinement (VBPLDA
resegmentation), also considering the adapted models.
However, not all the pseudo-speaker labels are equally
useful. Some of these labels lead to local DER minima
from which the variational Bayes posterior resegmenta-
tion does not provide any extra improvement.
All the experiments with cosine similarity pseudo-

speaker labels have outperformed the PLDA-based coun-
terparts and perform better than the baseline. In fact,
PLDA-based pseudo-speaker labels are harmful for adap-
tation purposes, getting degraded with respect to the
baseline results. Moreover, in all cases MS has obtained
better results than AHC.

6.4 Longitudinal unsupervised adaptation
Some of the results included in Table 3 show a significant
improvement with respect to our baseline. This improve-
ment is obtained despite considering a small amount of
in-domain information (up to one hour of audio). Tak-
ing into account, multiple episodes (all the episodes from
a show) with our longitudinal proposal we expect to get
bigger improvements. Table 4 shows the results of the

Fig. 11 Semi-supervised adaptation strategy based on the longitudinal unsupervised adaptation approach for the episodes 1 and 2.MOOD

represents the out-of-domain model,MID depicts the show in-domain model andM1 andM2 the adapted models for each episode. �ID and
�ID symbolize the in-domain i-vectors and its speaker labels. �1 and �2 are the i-vectors from each episode
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Table 1 DER(%) for the reference system

Dev. set Eval. set

Experiment

AHCPLDA 33.47 49.39

AHCPLDA+VBPLDA 23.89 41.58

MGB 2015 results

Cambridge [42] N/A 40.2

ViVoLAB [34] N/A 43.0

LIUM [14] N/A 44.7

longitudinal unsupervised adaptation approach for the
evaluation set. AHC and MS are studied with cosine sim-
ilarity. The longitudinal adaptation is done along all the
episodes from a show.
The results in Table 4 also outperform the reference,

especially when MS is used. However, as in the indepen-
dent adaptation, AHC behaves significantly worse than
MS. For both cases, AHC and MS, the longitudinal unsu-
pervised adaptation shows a small degradation versus
the independent counterpart. This small degradation can
be attributed to the consecutive adaptations with noisy
data. In consequence, it is important to determine if this
longitudinal strategy overcomes the independent one con-
sidering less episodes in a row. For this reason, we analyze
the results episode by episode, shown in Fig. 12. We illus-
trate the difference between DER results obtained with
the independent approach versus the longitudinal one
(�DER = DERINDEP − DERLONG) for each episodes from
both shows.
Figure 12 reveals that the longitudinal approach com-

pared to the independent adaptation suffers from a degra-
dation which affects similarly all the episodes. Besides,
the analysis indicates this behavior is shared for both
the agglomerative hierarchical pseudo-speaker labels and
the MS ones. The results indicate that the degradation
already appears in the second episode from both shows.
Therefore, a longitudinal adaptation in few episodes is not
expected to take any advantage.

Table 2 DER (%) results per show with baseline system

Dataset Show AHCPLDA AHCPLDA+VBPLDA

Dev. Show 1 64.23 50.07

Show 2 28.53 12.58

Show 3 31.04 21.30

Show 4 11.60 9.28

Show 5 51.80 38.50

Total 33.47 23.89

Eval. Show 1 52.27 42.04

Show 2 44.70 40.80

Total 49.39 41.58

Table 3 DER(%) for the unsupervised adaptation in the
evaluation set

Adapt labels AHCPLDA AHCPLDA+VBPLDA

AHC COS 41.16 39.01

MS COS 40.08 34.95

AHC PLDA 44.39 44.36

MS PLDA 43.15 41.79

6.5 Use of in-domain-labeled data and semi-supervised
adaptation

In previous sections, we have reported a significant
improvement of the DER measure due to the unsuper-
vised adaptation with pseudo-speaker labels, especially
with those created with MS and cosine similarity. How-
ever, we cannot compare these results with the traditional
supervised adaptation becauseMGB dataset does not pro-
vide extra in-domain-labeled data for this purpose. There-
fore, we propose an alternative dataset arrangement. We
divide the evaluation set into two parts. The first one is
dedicated to supervised adaptation, containing the first
episode from each show to evaluate. The new evaluation
subset contains all the remaining episodes from the same
shows. This modification of the evaluation subset makes
unfair any comparison with the previous results and those
obtained in the original MGB 2015 challenge. Hence, both
the baseline system and the fully unsupervised approaches
must be reevaluated.
With the new distribution of data, we compare the

classical supervised adaptation, with our new proposed
alternatives, both the independent and the longitudinal
approach. In this experiment, we have evaluated super-
vised adaptation with only 1-h episode for each show as
in-domain information. The results are shown in Table 5.
The results in Table 5 show that our proposed

unsupervised adaptations (independent and longitudinal
approaches) outperform the supervised adaptation with
the baseline system when a few in-domain data are used
(1-h episode from each show). Again, the independent
unsupervised adaptation approach gets the best results,
obtaining up to 9% relative improvement. This result is
specially noticeable because in-domain information auto-
matically estimated from the data we are diarizing can
be more informative than small amounts of manually
annotated in-domain data.

Table 4 DER(%) results for the unsupervised adaptation with
longitudinal model propagation in the evaluation set

Experiment DER(%)

Baseline 41.58

AHC COS 41.46

MS COS 36.27
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Fig. 12�DER (%) performance episode by episode for the two shows
of the evaluation set. Defined as �DER = (DERINDEP − DERLONG).
AHC refers to the agglomerative clustering pseudo-speaker labels. a
Show 6: Masterchef celebrity. b Show 7: The culture show uncut

Table 5 DER (%) results of supervised and unsupervised
(independent and longitudinal) adaptation with the new data
distribution in the evaluation set

Adaptation DER(%)

Baseline 41.65

Supervised 39.00

Unsup. Independent 35.39

Unsup. Longitudinal 37.00

The new data distribution provides perfectly labeled in-
domain audio. Hence, semi-supervised approaches can
also be analyzed, first applying some supervised adapta-
tion of the models with the available labeled data and
then adapt to the evaluation audio in an unsupervised
fashion. In Table 6, we compare the baseline system with
respect to all the proposed adaptation techniques (super-
vised, unsupervised independent, unsupervised longitu-
dinal, semi-supervised independent, and semi-supervised
longitudinal), evaluated with this new data distribu-
tion. Only cosine-similarity MS pseudo-speaker labels are
considered.
According to Table 6, all our totally unsupervised

approaches (independent and longitudinal), obtain some
boost in performance by including a supervised adapta-
tion step, becoming semi-supervised approaches. In fact,
all the results without any supervised adaptation (the
baseline and the totally unsupervised adaptations) are
improved similarly (approximately 2% absolute improve-
ment). Hence supervised and unsupervised adaptations
are complementary.

7 Conclusions
This paper provides a detailed analysis of domain adap-
tation as a solution for the problem of domain mismatch,
noticeable in broadcast data. Different approaches based
on supervised and specially unsupervised PLDA adapta-
tions, including hybrid solutions, were tested. Our main
goal is the validation of our novel unsupervised adapta-
tion methods, which allow the substitution of manually
obtained speaker labels by automatically obtained pseudo-
speaker labels. This technology reduces the need for
in-domain labeled data, with its respective reduction of
expenses.
The most important result is that our novel unsuper-

vised adaptation approaches are able to outperform a
supervised adaptation when perfectly labeled in-domain
data is scarce. Our results revealed up to 9% rela-
tive improvements when comparing the new totally
unsupervised approaches versus a supervised adapta-
tion. Therefore, in-domain information automatically
estimated from the data we are diarizing can be more
informative than small amounts of manually annotated
in-domain data. Besides both adaptations, supervised and

Table 6 DER (%) results in the evaluation set with multiple
adaptations of configuration: none, independent, or longitudinal
unsupervised adaptation and with or without previous
supervised adaptation

Unsup. Adapt. No Prev. Sup. Adapt With Prev. Sup. Adapt

None 41.65 39.00

Ind. Adapt 35.39 33.88

Long. Adapt 37.00 35.68
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our unsupervised one, are totally compatible. The results
indicate that improvements are accumulated if both adap-
tation approaches are applied. Our hybrid adaptations
implied up to 13% relative improvement compared to con-
sidering only a supervised adaptation. All these improve-
ments offer multiple opportunities. On the one hand, the
reduction of the need formanually labeled data is possible,
partially substituting hand-transcribed data with unsu-
pervised pseudo-speaker labels. On the other hand, this
technique can offer a significant boost of performance
by just making a more efficient use of the available data,
including the evaluation audio itself.
Despite outperforming the baseline and the supervised

adaptation, not all the proposed architectures performed
similarly. The results show that those strategies which
deal independently with the episodes (independent adap-
tation) obtained better results than considering all of them
(our longitudinal approach). In the context of MGB 2015,
the former obtained a relative 16% improvement while
the latter got a relative 13% improvement with respect
to the baseline. This general loss of performance with
respect to the independent adaptation approach indicates
that our proposed longitudinal adaptation takes no fur-
ther advantage of automatically labeled in-domain data,
being degraded by the accumulated errors. Further work
should find strategies that successfully make use of this
available extra information.
Finally, our results reassure that simple techniques such

as AHC andMS are accurate enough to generate improve-
ments working as initialization. However, not all these
labels are equally useful. All our results indicate that
MS performs significantly better than the AHC, and
the cosine similarity pseudo-speaker labels outperform
PLDA-based ones.
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