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source separation, Minus one

In this paper, we propose a score-informed source separation framework based on non-negative matrix factorization
(NMF) and dynamic time warping (DTW) that suits for both offline and online systems. The proposed framework is
composed of three stages: training, alignment, and separation. In the training stage, the score is encoded as a
sequence of individual occurrences and unique combinations of notes denoted as score units. Then, we proposed a
NMF-based signal model where the basis functions for each score unit are represented as a weighted combination of
spectral patterns for each note and instrument in the score obtained from a trained a priori over-completed
dictionary. In the alignment stage, the time-varying gains are estimated at frame level by computing the projection of
each score unit basis function over the captured audio signal. Then, under the assumption that only a score unit is
active at a time, we propose an online DTW scheme to synchronize the score information with the performance.
Finally, in the separation stage, the obtained gains are refined using local low-rank NMF and the separated sources are
obtained using a soft-filter strategy. The framework has been evaluated and compared with other state-of-the-art
methods for single channel source separation of small ensembles and large orchestra ensembles obtaining reliable
results in terms of SDR and SIR. Finally, our method has been evaluated in the specific task of acoustic minus one, and
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1 Introduction

Sound source separation (SS) seeks to segregate con-
stituent sound sources from an audio signal mixture. Once
separated, the sources can be processed separately and
reassembled eventually for many purposes such as denois-
ing, remastering, or desoloing.

During the last decade, there has been a growing
demand for streaming music content, to such an extent
that currently there are several entertainment platforms
such as MyOpera Player! and Medici. TV?, which broad-
cast live classical music with enriched features. These
classical music services could be improved using SS
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techniques to develop applications such as 3D rendering,
acoustic emphasis, acoustic scenarios recreation, and
minus one.

Many approaches have been addressed in the last
two decades in order to achieve this separation. The
most commonly used consists of decomposing a time-
frequency representation of the mixture signal using
methods such as non-negative matrix factorization
(NMEF), independent component analysis (ICA), or prob-
abilistic latent component analysis (PLCA). Among these
factorization techniques, NMF has been widely used for
music audio signals, as it allows to describe the sig-
nal as a non-substractive combination of sound objects
(or “atoms”) over time. However, without further infor-
mation, the quality of the separation using the afore-
mentioned statistical methods is limited. One solution
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is to exploit the spectro-temporal properties of the
sources. For example, spectral harmonicity and tem-
poral continuity can be assumed for several musical
instruments while percussive instruments are character-
ized by short bursts of broadband energy [1]. Speech
source spectrogram can be modeled using a source-filter
model [2]. Other approaches also used spatial local-
ization of the sources [3-5]. Besides, when training
material is available, it is possible to learn the spectro-
temporal patterns and the methods are referred to as
supervised [6].

Best separation results are obtained when information
about the specific sources in the mixture is provided a
priori. For example, in [7], information about the spatial
location for each source in the mixture is known a priori.
In [8], the authors combined prior information from an
aligned score with a panning and time-frequency-based
method for SS of synthetic music signals. In fact, due to
the widespread availability of musical scores, mostly in
MIDI format, an increasing number of score-informed SS
approaches have been conducted lately. Ganseman et al.
[9] uses score synthesis to initialize a signal decomposi-
tion monaural SS system using a PLCA model. Similarly,
in [10], the musical score is used to initialize a para-
metric NMF of the mixture spectrum. Ewert and Muller
[11, 12] use the score to constraint the basis functions and
the time-varying gains assuming harmonicity and allow-
ing some misalignment using a tolerance window over the
score note activity. The approach in [6] uses score infor-
mation to adapt the model parameters using an NMF -
based approach. In Miron et al. [13], score information are
used to initialize the time-varying gains in a multichan-
nel NMF model for orchestra music SS. More recently,
novel deep learning (DL) strategies have been developed
combining deep neural networks (DNN) with score infor-
mation to estimate soft masks for specific instrument
classes [14—16].

In the mentioned approaches, the score of the pieces
must be previously aligned to the recording; this synchro-
nization is usually performed beforehand and is typically
obtained using a twofold procedure: (1) feature extrac-
tion from audio and score and (2) temporal alignment
[17]. In the former, the features extracted from the audio
signal characterize some specific information about the
musical content. Different representations of the audio
frame have been used such as the output of a short-time
Fourier transform (STFT) [18], chroma vectors [19, 20], or
multi-pitch analysis information [21, 22]. On the latter, the
alignment is performed by finding the best match between
the feature sequence and the score. In fact, classical offline
systems rely on cost measures between events in the score
and in the performance. Two methods well known in
speech recognition have been extensively used in the lit-
erature: statistical approaches (e.g., hidden Markov model
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(HMM)) [22-26] and dynamic time warping (DTW)
(19, 27-29].

Although several online audio-to-score approaches have
been developed in the literature [22, 28, 29], only the
works in [6, 22, 30] combined score alignment with SS
in an online fashion. In [22] and in its extension [6],
the alignment is performed using a hidden Markov pro-
cess model, where each audio frame is associated with
a 2-D state of score position and tempo. The observa-
tion model is defined as the multi-pitch likelihood of
each frame, i.e., the likelihood of seeing the audio frame
given the pitches at the aligned score position. Then,
particle filtering is employed to infer the score posi-
tion and tempo of each audio frame by the time it is
captured. Regarding the SS, [22] uses a soft masking
strategy based on a multipitch estimator, whereas the
method in [6] used a frame-level NMF with a trained
dictionary which is updated during the factorization. On
the other hand, in our preliminary work [30], we pro-
posed to use the source separation procedure presented
in [13] along with the real-time implementation of the
online alignment method from [31] presented in [32].
The signal model used in [30] was the same than in
[13] but restricted to single-channel signals. However,
with this original signal model, the separation perfor-
mance was unreliable when dealing with large ensembles
datasets.

In this paper, we propose a score-informed SS frame-
work, which suits for both online and offline applications,
based on NMF and DTW. Similar to [6, 30], we use a
priori learned dictionary composed of spectral templates
(a.k.a basis functions) for the instruments presented in
the score. However, in this work, the score information
is encoded within the signal model under the assump-
tion that a music signal can be described as a sequence
of unique occurrences of individual and concurrent notes
from several instruments (here denoted as score units).
Then, the cost function for the alignment procedure can
be obtained by computing the projection for each score
unit over the frame level spectrum and the minimum
cost path is estimated using the online DTW frame-
work proposed in [29] and based on the original work
presented by Dixon et al. [28]. To account for possi-
ble misalignments, the time-varying gains of the optimal
score units and its neighbors are refined using a local
low-rank NMF scheme. Finally, a soft-filter strategy is per-
formed to obtain the separated sources. The proposed
framework has been evaluated for both online and offline
SS tasks and compared with other state-of-the-art meth-
ods showing reliable results, specially in terms of SDR
and SIR.

Unlike a previous work presented by the authors in
[29, 30], where synthetic signals generated from the MIDI
score are used to learn spectral patterns for the alignment
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process, here, we use isolated notes of real solo instru-
ment recordings to learn a dictionary of spectral patterns.
Using this dictionary of isolated notes allows to model
the relative amplitude contribution of each instrument
in order to obtain a velocity model for each note and
instrument. Additionally, in contrast to [6, 30], we pro-
pose a new signal model where the score information
is encoded in the form of score units. Consequently,
the novelty of this work lies in developing a method
for single-channel and multi-timbral (i.e., with multiple
instruments) signal SS, which uses the score information
encoded within the signal model. Finally, an extension of
the method has been developed in order to be applied
to a practical music scenario, concretely minus one
application.

The structure of the rest of the article is as follows.
In Section 2, we briefly review the NMF and DTW
approaches. The proposed framework is presented in
Section 3. A minus one application strategy based on our
framework is presented in Section 4. In Section 5, the
evaluation setup is presented and the proposed method
is tested and compared with other reference systems.
Finally, we summarize the work and discuss the future
perspectives in Section 6.

2 Background

2.1 NMF for source separation

NMF ([33] is an unsupervised factorization technique
used for linear representation of two-dimensional non-
negative data that has been successfully applied to the
decomposition of audio spectrograms [34—38]. In the con-
text of audio signal processing, the popularity of this
technique is related to its ability to obtain parts-based
representation of the most representative objects (e.g.,
notes and chords) by imposing non-negative constraints
that allow only additive, not subtractive, combinations
of the input data unlike many other linear representa-
tions such as ICA [39] and principal component analysis
(PCA) [40].

Given an input audio signal x(¢) which is constituted
by the mixture of / sources and whose magnitude (or
power) spectrogram X € RiXT is composed of f =
1,..,F frequency bins, ¢ = 1,..,T time frames, and
a linear combination of L components (see Table 1
for the notations we adopted in this paper), NMF

Y X(f, )logx L2 — X(f, 1) + X(f, 0)

Dg(X|X) = XD

X(f.b) X
2si ko T18%5y 1
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Table 1 Nomenclature, symbols, and notation

M Matrices in bold upper case

M; () Entry vector M; from a matrix M (bold upper case)
® The Hadamard (element-wise) multiplication

o The convolution operation

B Over a matrix indicates that it is a binary matrix

Over a matrix indicates that it is an estimated matrix

finds an approximate factorization X € RiXT as
follows:
X(f,6) ~ X(f,t) = Y Wif)Gi(2) (1)
!

being W € RerL the basis matrix whose columns are
meaningful elements called basis functions (or spectral
patterns) and G € RiXT the activation matrix that
shows the temporal activity for each [ individual basis
function. Note that the number of components (a.k.a
rank) L is generally chosen such that FL + LT « FT
in order to reduce the dimensions of the data associ-
ated to the input spectrogram. In the context of musical
sound separation, we assume that each pair of spectral
pattern and activations describes a sound from a sin-
gle instrument. Then, each source spectrogram can be
obtained by grouping all the sounds belonging to the same
source.

The model parameters in Eq. (1) are obtained by mini-
mizing a cost function D(X|)A() defined in Eq. (2), using a
so called factorization procedure,

DXIX) =Y dX(f,1)|X(f,1) 2)
fit

where d(a|b) is a function of two scalar variables. The
most popular cost functions are the Euclidean dis-
tance (EUC), the generalized Kullback-Leibler divergence
(KL), and the Itakura-Saito divergence (IS) [41]. The
B-divergence [42] (see Eq. (3)) is another commonly
used cost function that encompasses the three previously
mentioned cost functions in its definition, i.e., EUC (8
=2), KL (8 = 1), and IS (8 = 0), and is defined as
follows:

Yy w7 (XG0P + 8 = DX( 0P — BX(F,0X(F, 0P 1) e @D UL2)

p=1 @)
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In order to obtain the model parameters that mini-
mize the cost function and ensure the non-negativity of
the bases and the activations, several approaches were
developed. In the original formulation of NMF [33],
D(X|X) was minimized using an iterative approach based
on the gradient descend algorithm. The multiplicative
update rules are obtained by applying diagonal rescaling
to the step size of the gradient descent algorithm. The
multiplicative update rule for each scalar parameter Z is
given by,

5 (vgmpr)
vV D(X|X)

where V, D and V; D are the negative and positive terms
of the partial derivative of the cost function VzD.

Unfortunately, without further constraints, the expres-
siveness (i.e., the disjointness) of the basis functions is
limited. This property can be usually maximized by con-
sidering the sparsity of the representations (except when
the energy time-frequency distribution of the sources
completely overlap). Sparsity is the property of a signal
that relates to the amount of non-zero coefficients in
a given representation. Several criteria for sparsity have
been proposed in the literature [43, 44]. Other approaches
use restrictions on the spectro-temporal structure such as
harmonicity of the basis functions [45] or temporal conti-
nuity of the gains [43, 46]. While such extensions typically
lead to a significant gain in separation quality over classic
NME, they do not fully solve the problem.

Alternatively, when dealing with music signals and when
the score information is available, certain priors can be
imposed to the signal model parameters in order to favor
sparsity. A review of the typical score-informed con-
straints in the literature will be presented in Section 2.3.

2.2 Deep learning approaches for source separation
Recently, DL approaches have outperformed NMF in
audio source separation challenges [47]. In contrast to
the NMF methods, DL methods are less computation-
ally expensive [48] at the separation stage, as estimating
the sources involves a single feed forward pass through
the network rather than an iterative procedure. State-of-
the-art DL methods typically estimate a soft mask for
each specific source in the time-frequency domain, even
though there are approaches that operate directly on
time-domain signals and use a DNN to learn a suitable
representation from it (see e.g., [16, 49]).

Using a soft-masking strategy, the time-frequency rep-
resentation Si € RF*T for each source i in the mixture can
be expressed as:

Si(f, ) = My(f, OX(f, £) (5)
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where M; € RIXT represents the soft mask for each
source i within the time-frequency mixture signal X €
REXT, Typical time-frequency signal representations are
the short-time Fourier transform (STFT), constant-Q, or
mel spectrogram.

In the case of single-channel source separation, the
quality of the separation relies on modeling the spec-
tral structure of sources. In fact, DL methods can be
classified in two categories: (1) methods that aim to pre-
dict the soft mask M; based on the mixture input X
[48, 50, 51] and (2) methods that aim to predict the
source signal spectrum S; directly from the mixture input
[52]. Consequently, supervised learning process learns the
relation between the input mixture time-frequency rep-
resentation and the target out, which could be either the
oracle mask or the clean signal spectrum.

Several DL architectures have been used for the SS task
including the use of standard methods such as convo-
lutional [15] and recurrent [51] layers which have the
advantage of modeling a larger time context. Novel DL SS
systems propose specialized models which propose build-
ing an NMF logic into an autoenconder [53] or cluster
components over large time spans [54].

2.3 Score-informed constraints

The number of digital scores freely available in the Inter-
net is continuously growing. In fact, most of the classical
music pieces are available without copyright in reposito-
ries such as IMSLP3, Mutopia®, or Classical Archives®.
The most common format is MIDI, which includes infor-
mation about the actual instruments in the score and the
onset/duration of the played notes for each instrument.
Recently, some other formats such as musicXML, MEI,
or Lylipond have emerged to keep the attributes of the
original paper sheet.

Traditionally, NMF methods using score information
enforced the sparsity by imposing certain constraints on
the basis functions S and/or the time-varying gains A.
For example, the musical structure of the score can be
exploited to penalize activations of notes or combinations
of notes which are not present in the score [34, 55]. Addi-
tionally, if the score is pre-aligned with the interpretation,
it is possible to set to zero those gains associated to the
basis functions of non-active notes. In fact, once an entry
in S or A is initialized to zero, it will remain zero-valued
during the subsequent multiplicative update steps [33].
Unfortunately, in music, imposing sparsity constraint only
over the gains does not ensure the dissociation of the basis
functions, since concurrent notes in the score are often
harmonically related.

3https://imslp.org/
“http://www.mutopiaproject.org/
Shttps://www.classicalarchives.com/
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To overcome this problem, it is usual to apply con-
straints simultaneously on both basis functions and acti-
vations. In the case of the basis functions, the most
common approach is to assume that the templates in S
posses a harmonic structure. In general, a harmonic sound
is one whose energy in a time-frequency representation
is distributed around integer multiples of the so-called
fundamental frequency (a.k.a harmonics). To enforce this
harmonicity, it is common to set to zero all the fre-
quency bins of S between harmonics [34, 56]. Note that
perfect tuning is very uncommon (i.e., the exact frequen-
cies are not known). Therefore, a range of frequencies
around the perfectly tuned FO is kept non-zero valued
in the basis functions. Some methods in the literature
proposed to use a semitone frequency resolution by inte-
grating all the bins belonging to the same semitone to
avoid possible problems related to FO deviations [57]. As
a drawback, a low frequency resolution does not allow
to separate pitches from overlapping harmonics from dif-
ferent instruments. Using a higher frequency resolution
could mitigate this problem, but then, a FO tracking is
required [13].

Score information has been also used to improve the
separation results of DL methods. For instance, in [14],
the authors used weak label information from the score by
introducing a score-unit-based dropout variant that dis-
cards those combinations of notes which not present in
the score. In [15], the authors used pre-aligned score infor-
mation to refine the output soft mask of their CNN-based
network. Finally, in [16] label-conditioned information is
used to inform the network about the active and inactive
instruments in the mixture.

2.4 Dynamic time warping for audio to score alignment
In the previous section, we assumed that we had a tempo-
ral alignment between the score and performance times.
In fact, manual alignment is very tedious since the musi-
cian usually interprets each piece in a personal way by
introducing variations in the tempo, dynamics, and/or
articulation. To automate this process, there are several
methods for estimating a temporal alignment between
score and audio representations, a task also referred to as
score-audio synchronization.

Up to date, DT W-based methods have demonstrated to
provide the best alignment results in the MIREX Real-
time Audio to Score Alignment® task, and therefore, as
will be explained in the next section, we have chosen this
approach as the basis of the alignment procedure in our
system.

6The Music Information Retrieval Evaluation eXchange (MIREX) is an annual
evaluation campaign for MIR algorithms. Real-time Audio-to-Score
Alignment (a.k.a. Score Following) is one of the evaluation tasks. http://www.
music-ir.org/mirex
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Let us define U = (u1,...,u4r,...,ur,) and V. =
V1,.- 5 Ve...,vT,) as two vectors of features that repre-
sent the time series to be aligned, where t and ¢ are the
indexes in the time series. The first step in the DT'W algo-
rithm is the estimation of a local distance matrix (cost
matrix) D(t,t) = W(ur,v;), where D € RJTF’”XT’ repre-
sents the match cost between every two points in the time
series. The function W could be any cost function that
returns cost 0 for a perfect match, and a positive value oth-
erwise. In the field of audio to score alignment, this cost
function is typically computed from the score synthesized
audio signal and the recorded audio from the perfor-
mance, for example by computing the cosine distance
between their STFT magnitudes [58] or the Euclidean dis-
tance between their chroma vectors [28]. Secondly, the

warping matrix C € ]Ri’” “Tr s filled recursively as follows:

C(T - 1,t- 1) + GI,ID(T: t)
C(t —2,t —1) + 09,1D(7,0)

C(t —apt—1) 4 04,1D(z,8) ¢ (6)
C(t —1,t —2) + 012D(1,¢)

C(t,t) = min

C(t — 1,t — o) + 01,4,D(7, )

where the step size at each dimension has a range from 1
to ar and 1 to «y, respectively. o; and «; are the maximum
step size at each dimension. Parameter o controls the bias
toward diagonal steps. C is the accumulated cost of the
minimum cost path up to (7, ¢) and C(7, 1) = D(t, 1), Vr.

Finally, the minimum cost path w = wy,.., wj,..,wr,
where each w; is an ordered pair (7j,¢;) meaning that
instant 7; must be aligned with ¢; , is obtained by trac-
ing the recursion backwards from C(zz, T;), where 7;, =
arg min, C(z, T;). Since the audio query is usually a small
fragment of the whole composition, the first and the last
elements of the path can be at any point along the 7
axis. Globally, the path has to satisfy the following three
conditions:

1. Boundary condition: w; = (t,1) and wy = (7, T})
2. Monotonicity condition: ;41 > ryand 41 > &
3. Step size condition: 1747 < 17+ a7 and 111 < £+ oy

In the next section, we present a signal factorization-
based system that uses DTW during the factorization to
perform both synchronization and SS in a joint manner.

3 Proposed method
In this paper, we propose a score-informed audio SS
framework that is suitable for both online and offline
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systems. In particular, we propose a signal decomposition-
based model that enables the alignment between the score
and the performance jointly with the SS of the different
type of instruments in the mixture.

The block diagram of the proposed method is dis-
played in Fig. 1. First, in the training stage, we initilize the
basis functions using a set of pre-trained spectral patterns
for the instruments in the score and estimate the rela-
tive amplitude between instruments from the synthetic
input score. Second, in the alignment stage, we used a
NME-based signal decomposition approach to estimate
the model parameters by minimizing the signal recon-
struction error. Then, an online DTW scheme on the
resulting cost matrix is used to estimate the alignment
between the score and the performance. Third, at frame
level, a low rank factorization stage is used to refine the
model estimated parameters accounting to the most prob-
able active notes in the score at this frame. Finally, a
generalized Wiener filtering strategy is used to obtain the
sources reconstruction.

3.1 Signal model

In this work, score information and elementary spectral
patterns for the target sources (i.e., the instruments pre-
sented in the score) are combined within the signal model.
First, a piano-roll matrix HE ¢ NPI*Tm g inferred from
the input MIDI score, where p €[1...P] represents the
notes in the MIDI scale, j €[1...J] are the instruments in
the score, and © €[1...T},] is the MIDI time (in frames).
Then, the score information is encoded into score units
using an approach similar to [29]. In particular, score units
k €[1..K] are defined from each unique occurrence of
individual or concurrent notes in the score. Note that,
for most of the scores, the number of score units will
be much lower than the number of notes (generalizing
K < P). Under this representation, the score can be seen
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as a sequence of states, where each state is defined by a
single unit. Note that multiple states can be represented
by the same unit, whereas the units are unique. Therefore,
K < M, where M is the number of states.

The proposed score model is defined as follows:

Hp (1) = Z Eﬁ,j,k Z Q,, Ph (1)
k m

AP (D)

where the piano-roll matrix H? is decomposed as a notes-
to-unit matrix E2 € NPY*K that encodes the active
instruments j and the notes p at each score unit k and a
unit activity matrix A® € NK*Tw that represents the active
score units at each MIDI frame 7. Note that the super-
script 2 over a matrix indicates that it is a binary matrix.
Besides, the unit activity can be subsequently decomposed
into a units-to-states matrix Q% € NX*M which encodes
the active unit k at each state m and a states-time matrix

P2 € NM*Tw that represents the activity of each state m
at each MIDI time frame t. The presented score model in
Eq. (7) is displayed in Fig. 2. Note that, for the definition of
the score model parameters, only the MIDI events note-
on and note-off messages are used from the MIDI file.
These messages together specify the start and end time of
notes played at a given pitch of a given instrument. There-
fore, timing information such as beat resolution or tempo
changes are not used in our definition.

The proposed signal model combines spectral patterns
for each instrument together with the score model once it
is synchronized with the audio time (v — ¢). Therefore,
the signal model presented in Eq. (8) consists of factor-
izing the time-frequency spectrogram of the audio mixed

Fig. 1 Block diagram of the proposed system
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Fig. 2 Example of score matrix decomposition. a Piano-roll matrix HZ. b Note-to-units matrix EZ. ¢ Unit-to-states matrix Q. d States activation
matrix P€. The instruments (dimension j) in a and b are displayed using different colors

signal into the product of three nonnegative matrices S €

RUPE € RPVK and A € RE*T as

Hp,(®)

X(f,0 % X(f,6) = Y Spi() QO EpjxAr(®)  (8)

pJ k

where X € Rix T is the mixture signal spectrogram

with f €[1..F] frequency bins and ¢ €[1..7T;] frames,

X € ]RﬂrrX T+ is the estimation of this magnitude spec-
trogram, S is the basis matrix, E is the matrix that
represents the relative amplitude contribution of each
instrument and note at each score unit, and A is the
time-varying gains matrix. Notice that this proposed sig-
nal model is an extension of the baseline model presented
in [30],

X(f,6) =Y S, (HHy(0) 9)

12
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where H € R/ is the matrix which holds the gains of
the basis S corresponding to the note p and instrument j
at frame ¢.

Please note that in this model, we do not consider
the possible improvisations or errors (e.g., note deletion,
insertion, and substitution) during the performance but
rather assume that the musician will follow the written
score. In fact, large deviations may cause an underperfor-
mance of the proposed method for both alignment and
separation procedures.

The proposed score-informed signal model is illustrated
in Fig. 3.

3.2 Training stage
In this stage, we learn the spectral basis function S and the
relative amplitude of the notes-to-unit matrix E in Eq. (8).
First, the spectral basis function S for each instrument j
in the score is selected from a pre-trained dictionary of
spectral patterns for all the notes and instruments from
the Real World Computing (RWC) Musical Instrument
Sound Database [59, 60]. In this work, we have used an
approach similar to [57], where the instrument-dependent
bases are learned in advance and fixed during the separa-
tion process. This approach has been shown to perform
well when the conditions of the music scene do not differ
too much between the training and the test data [61].
Second, the relative amplitude of the notes-to-unit
matrix E in Eq. (8) is initialized to account for the velocity
of each note from a particular instrument. To this aim, we
synthesize the MIDI score signal X € Rix Tm and propose
the following signal decomposition model:
X, 1) 2 Xy 1) = ) S (NEpjkAx(T) (10)

k.p,j

where © €[1...T},] represents the time (in frames) of the
score, the spectral patterns S are known a priori, and the
unit activity matrix A € RS is directly initialized to
the binary piano-roll matrix A® from the score model
in Eq. (7). Note that spectral patterns S are kept fixed,
whereas the optimal value for the notes-to-unit matrix
E and the unit activity matrix A are obtained using the

gradient descend algorithm to minimize the §-divergence
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cost function Dg (X, X,).In particular, the update rules to
obtain the parameter E and A are defined in Egs. (11) and
(12), respectively and computed iteratively until the cost
function converges.

Ep

k < Ep,j,k

i

(Zﬁr SpNIX(f, D2 © Xolf, ) Ak(T))
2 fe Sy (X (f, DB 1Ak (T)
(11)

Y1 Spi DX, P2 © X (f, 0] Ep,j:")

Ar(t) < Ak(T) © ( <
vapvf Sp,j(f)xs(f, r)ﬂilEP)jvk

(12)

In addition, scaling the parameters is necessary to
ensure that E models only the relative amplitude between
instruments. The scaling procedure is presented as
follows:

E,jk
€k = \/ZT;M v Epjk = 71;; , Ar(T) = erAr(T)
pJj

(13)

As Fig. 1 outlines, after this training process, both the
spectral basis function S and the relative amplitude of the
notes-to-unit matrix E are initialized for the separation
stage.

3.3 Alignment stage

In this stage, the aim is to synchronize the audio signal of
the musical performance with its corresponding score to
guide the separation process. The proposed method can
be carried out in an offline or online manner depending
on the application.

In this work, the alignment is performed using a similar
scheme than in [31]. As a novel proposal, a single spec-
tral pattern for each score unit is first computed from the
trained parameters in Section 3.2 as follows:

Bi(f) = _Spi(NEpjk (14)
pJ

Then, generalizing the concurrent notes in the score as
units, the score can be seen as a sequence of individual

X S E A
[T e
f ~ - LR
! p o :
[T [T )
g [T k
t J [T
P J
Fig. 3 Proposed signal model parameters. Zero values are displayed in white and non-zero values in gray
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units. In other words, for a particular frame ¢ in the real-
world mixture signal spectrogram X;(f), we can assume
that only a single unit k can be active. Under this assump-
tion, the time-varying gain g, for each score unit k and
frame t can be obtained minimizing the 8-divergence of
the single-unit constrained signal model:

Dg(X:(f) gk, Bi () =

> T ﬁl_ D [Xe (NP + (B — D@ Br (NP — BXe () (@Br ()]
f

(15)

Therefore, the value of the gain for unit k and frame ¢ is
obtaining as the projection of its corresponding spectral
pattern Bi(f) over the observed signal spectrogram X, (f)
as,

Y X () Br(H P~V
gt = > Be(f)P

Then, the distortion matrix for each unit k at the current
frame ¢ is defined by,

@ s = Dg(Xe () |k, Br(f))

where Dg(:) is the B-divergence function and 8 can take
values in the range € [0,2].

(16)

17)

As can be inferred, the distortion matrix ® € RS*™"
provides information about the similitude of each k-th
unit spectral pattern with the real signal spectrum at each
frame ¢. Using this information, the cost matrix between
the score and the performance time, 7 and ¢, respectively,

can be obtained as follows:

D(r,t) = Y AF(T)®xy
k

(18)

where A® is the unit activity matrix in Eq. (7) extracted
from the score information and @ is the distortion matrix
in Eq. (17) computed from the real-world mixture signal.

Note that the cost matrix is computed as the projec-
tion of each score unit spectral pattern over each captured
audio frame. This computation is a non-iterative process,
which enables fast runtimes. However, for the case of
long musical compositions, this implementation requires
to estimate the cost function for each score unit at each
frame making the system unsuitable for real-time appli-
cations. To mitigate these computational requirements, a
temporal window from the optimum unit in the previous
frame can be used, estimating the cost function only for
the score units within that threshold.

As can be seen, the proposed framework operates at
frame level, and therefore, depending on the application,
the alignment can be performed offline (i.e., once the
whole input signal has been processed) or online with a
fixed latency of one frame. In this work, the synchroniza-
tion between score and performance is done using DTW
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(see Section 2.4). For each frame ¢ in the performance, a
warping matrix C € ]R_T("X is computed from the cost
matrix D € Ri’”XT’ using Eq. (6). In this work, the step
size oy and «; range from 1 to 4 which in terms of music
performance means that a performer can play four times
faster or slower than the reference speed of interpretation
(ar = 1,0, = 1). Besides, the control parameter oy, o, has
been set to one for all the combinations of («¢, ;) which
in turn bias the path towards the diagonal.

In the offline scheme, the optimum path is computed
using backtracking after the warping matrix for the whole
real performance input signal is computed (see detail
information in [31]). Consequently, the alignment deci-
sion for every state cannot be known until the whole piece
is processed.

Alternatively, in the online scheme, the signal is par-
tially unknown, and therefore, the global path constraints
cannot be directly computed. In this work, the online
alignment system has a fixed latency of just one frame, and
thus, backtracking is not allowed, that is, the decision is
made directly from the information at each frame ¢. Here,
we have used the online DTW in [29], where the optimal

path vector W € ]RJTF”’ for frame ¢ is computed as,

T,

1 if T = arg min_ Cs(7)

0 otherwise (19)

Wi(r) = {
Subsequently, the coefficients of the time-varying gains
matrix at frame ¢ can be computed from the optimal path
matrix W as,
AR =" AR (T)Wi(T) (20)
T
As can be inferred, the matching precision is going to
have influence in the separation stage. In fact, attend-
ing to the MIREX Score Following results presented in
[29], the best alignment performance is obtained using a
tolerance window of 1 s. In other words, the estimated
alignment could deviate up to a maximum of 1 s from the
reported note onset. To account for this misalignment, the
gains matrix At ¢ NX*Tr js extended using a temporal
window around the frame ¢ selected by the alignment,

Ar(®) = A1) o 13, 1)

where 1, is a ones window with length A = 1 s and symbol
o stands for convolution.

Figure 4 illustrates an example of this widen proce-
dure for the initialized gains for the second passage from
A. Bruckner Symphony no. 8, II movement (detailed in
Section 5.1). The estimated optimal path is displayed in
subplot (Fig. 4a). In subplot (Fig. 4b), a temporal window
of 1 s is applied extending each score unit in several time
frames. Note that this extended gains allows more than
one active unit per frame.
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Fig. 4 A initialization for a music signal from the test database in Section 5.1 (A. Bruckner's Symphony no. 8, Il movement, bars 1-61). a Aligned

piano-roll. b Extended aligned piano-roll

As can be observed in Fig. 1, after this alignment
process, the time-varying gains matrix A € NKXTr g
initialized for the following stage.

3.4 Separation stage

At this point, all the parameters of the signal model in
Eq. (8) (see Section 3.1) are initialized. In particular, the
basis functions S are obtained from a computed a priori
dictionary for all the instruments/notes in the score, and
the score information is encoded into the notes-to-unit
matrix E and initialized from the synthetic signal obtained
from the score in Section 3.2. Finally, the time-varying
gains A are initialized from the alignment procedure in
Section 3.3.

In this section, separation is performed in two steps.
First, the time-frequency spectrogram for each sound
source is estimated using a signal factorization procedure.
Second, a Wiener soft-masking strategy is used to obtain
the time-domain separated source signals.

3.4.1 Signal model parameter estimation

Here, we present a NMF approach to estimate the
spectrogram (magnitude or power) for each source
in the mixture. To this end, we applied the gradi-
ent descend algorithm to minimize the cost function
between the observed and the estimated signal
spectrogram DgX(fs 1 g p,j Spi NEp ik Ak ()))
(see Eq. (2)).



Munoz-Montoro et al. EURASIP Journal on Audio, Speech, and Music Processing

The multiplicative update rules for each parameter of
the signal model in Eq. (8) are defined using Eq. (5) as
follows:

Y SpiOIX G, 0P 2 0 X(f, )] Ak<t)>

E ik ~—E ik [C) < —~
e e S (DX, 0P 1AL (D)

(22)

Ar(@) < Ar(H) O ( -
0 SpiOXE OPIE, i

(23)

Moreover, scaling the parameters is necessary to ensure
that E models only the relative amplitude between instru-
ments. The scaling procedure is presented as follows:

Eyjk
€k = \/Zleﬂk v Epjk = 7‘:; » o Ar() = erAr (D)
pJ

(24)

Note that the relative amplitude between the differ-
ent instruments that compose the mixture signal usu-
ally remains constant throughout the music performance,
and therefore, E is common for all the audio frames. In
other words, the notes-to-unit matrix can be updated
only for the offline scheme (i.e., when the whole signal
is processed). Alternatively, when the signal is partially
unknown (i.e., the online scheme), the factorization con-
sists of updating only the parameter A, whereas E is a fixed
parameter.

To allow a real-time implementation of the online
scheme, we propose to use a low-rank NMF method sim-
ilar to [62]. In particular, the method in [62] consist of
decomposing an input image as a set of subimages rep-
resented using a reduced set of components for each
subimage. In our approach, we perform the factorization
at frame level, and thus, the number of active score units is
sparse. Therefore, we propose to compute the signal fac-
torization at frame ¢ using only the subset of score units k’
active after the initialization of A in the alignment stage as
displayed in the example of the Fig. 4b.

The whole offline and online signal factorization proce-
dures are summarized in Algorithm 1 and Algorithm 2,
respectively.

3.4.2 Reconstruction

Once the model parameters have been optimized, we
perform the SS using generalized Wiener filtering. In
fact, SS consists of estimating the complex amplitude
at each time-frequency cell for each source. Generalized
Wiener masks are highly used in the SS literature [6, 56].
The Wiener filter method computes the relative energy
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Algorithm 1 Offline signal factorization scheme

1 Initialize S from the trained a priori dictionary and
keep it fixed.
2 Initialize E from the input score (see Section 3.2).
Initialize A from the offline alignment procedure in
Section 3.3.
Compute the signal model using Eq. (8).
while not convergence and iter < no. of iters do
Update A according to Eq. (22).
Recompute the signal model using Eq. (8).
Update E according to Eq. (21).
Scale E to /1-norm and compensate by rescaling A
using Eq. (23).
10 Recompute the signal model using Eq. (8).
11 end while

w

O 0 NN Ul

contribution of each source with respect to the energy of
the mixed signal x(#). The Wiener soft mask o; for each
time-frequency bin (f, ¢) is defined as,

IX;(f, )

(1) = = (25)
> 1%(,0)]

where «; represents the relative energy contribution of

each source and Xj € Rix Tr is the magnitude spectro-

gram per instrument, computed as,

Xj(f,t) = Z Sp,i(EpkAx(t)

pk

(26)

The sum of all the estimated source power spectrograms
IX;(f,£)|* is the power spectrogram of the mixed signal

|X(f ,t)|2. Then, to obtain the estimated source magnitude
spectrogram Xj, Eq. (27) is used.

Xi(f,t) = Jes(f, 1) - X(f, 1)

Algorithm 2 Online signal factorization scheme

(27)

1 Initialize S from the trained a priori dictionary and
keep it fixed.

2 Initialize E from the input score (see Section 3.2).

3 for each time frame ¢ do

4 Initialize A from the online alignment procedure in
Section 3.3.

5  Select the subset of active score units k’ from A.

6  Compute the signal model for the input signal spec-
trum at frame ¢ using Eq. (8).

7 while not convergence and iter < no. of iters do

8 Update A according to Eq. (22).

9 Recompute the signal model using Eq. (8).
10 end while
11 end for
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Finally, using the phase spectrogram of the input mix-
ture and computing the inverse overlap-add STFT of the
estimated magnitude spectrogram )A(,', we estimate the
source §;(t).

4 Minus one application

Minus one is a music application which consists in remov-
ing a concrete instrument from an orchestra signal. This
technique allows professional musicians to play an instru-
ment accompanied by a real orchestra. In general, music
is distributed in a monophonic or stereophonic audio
stream where all the instruments are mixed together, thus
making the material unsuitable for minus one usage. This
is the case of repositories such as IMSLP which stores in
these formats most of the classical music pieces. Recently,
some commercial platforms which implement this tech-
nique have appeared, such as Nomadplay’. However, they
only offer a little set of compositions and instruments
to play, as accompaniments are produced in recording
studio by professional musicians, which is costly and
time-consuming. In this way, developing a method to
generate the accompaniment for user-selected instrument
and audio is required. Thus, we propose to use our SS
framework for the minus one application.

The goal is to provide as output the original mixture
without the selected-by-the-user instrument. This can be
carried out by first performing a downmix via SS and
then upmixing the rest of instruments. Unfortunately,
the proposed NMF/DTW+Wiener method follows an
additive model, and thus, the interference caused by the
removed instrument over the minus one signal might be
perceptible, especially in those time-frequency regions
where the removed instrument was prominent. To mit-
igate this problem, we have used the psychoacoustical
masking model presented in [63] that incorporates the
across-frequency integration observed within the human
auditory system. The perception of an audio signal is the
consequence of various physiological and psychological
effects. In fact, auditory system models are frequently
used to calculate a spectral masking threshold [64].
In this manner, any additive signal components, whose
power spectral density lies completely below the masking
threshold, will not be perceived by a human listener.

In this work, we propose to estimate a masking model
for the resulting minus one upmixing. Then, the percep-
tual interference can be minimized by removing those
time-frequency bins (f,t) where the amplitude of the
undesired instrument is above the time-frequency mask-
ing threshold y,,. This masking threshold is computed
for each Minus One mixture using the implementation
described in [63].

7https://nomadplay-app.com/
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Denoting by X; € Rix " the magnitude spectrogram
of the selected instrument signal, X, € ]Rix ' the mag-
nitude spectrogram of the minus one mixture, defined as

Xn(f,0) = Y Xi(f,0), (28)
0<j<J
J#i

and y,, the time-frequency masking threshold for the
minus one mixture, the spectrogram of the minus one
signal can be refined by:

0 if Xi(f,8) = Vi (£, 1)
Note that those bins (f, £) where X; is above the masking

threshold y,, (i.e., perceptible in the minus one mixture)
are canceled in the estimated magnitude spectrogram

hﬁﬁz{ (29)

Y, € Rix ' In this way, we can minimize the interfere
caused by the removed instrument.

Finally, as in Section 3.4.2, the time-domain signal for
the minus one is obtained using the phase spectrogram
of the input mixture and computing the inverse overlap-
add STFT of the estimated magnitude spectrogram Y, in
Eq. (29).

5 Experimental results and discussion

In this section, the proposed method in Section 3 is eval-
uated for the task of single-channel instrumental music
SS using a well-known dataset of small ensembles and
a more complicated large ensembles orchestra dataset.
Besides, the performance of our method has been com-
pared to other state-of-the-art algorithms to demonstrate
the reliability of our proposal.

5.1 Datasets

In this work, we assess the performance of our pro-
posed method considering two different databases. Firstly,
we have used the University of Rochester Multimodal
Music Performance (URMP) dataset developed by Li et al.
[65]. This dataset is compounded by 44 classical cham-
ber music pieces ranging from duets to quintets (11 duets,
12 trios, 14 quartets, and 7 quintets) and played by 14
different common instruments in orchestra. The musi-
cal score, the audio recordings of the individual tracks,
the audio recordings of the assembled mixture, and the
ground-truth annotation files are available for each piece.
Although URMP is not an orchestra dataset, it has been
used to evaluate the behavior of our proposal in ensembles
with a reduced number of instruments.

Secondly, we have used the orchestra database devel-
oped by Piétynen et al. [66] and processed by Miron et al.
[13]. It consists of four excerpts of approximately 3 min
each one composed of symphonic music from Classical
and Romantic style. The four pieces vary in terms of num-
ber of instruments sections, style, dynamics, and size of
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the orchestra. The first piece is from L. van Beethoven’s
(1770-1827) Symphony no. 7, I movement, bars 1-53,
corresponding to the late Classical period. Its main fea-
tures are big chords and string crescendo, what make
reverberation tail of a concert hall clearly audible. The sec-
ond passage is from A. Bruckner (1824—1896) Symphony
no. 8, II movement, bars 1-61, and represents the late
Romantic period characterized by large dynamics and the
size of the orchestra. The third passage is from G. Mahler’s
(1860—1911) Symphony no. 1, IV movement, bars 1-85. It
represents also the Romantic period and is another exam-
ple of work for large orchestras. The last piece is a soprano
aria of Donna Elvira from the opera Don Giovanni by
W. A. Mozart (1756—1791). This performance represents
the Classical period and presents small orchestra charac-
teristics, including a soloist segment. More details of the
database are provided in Table 2, including measurements
of the complexity of the compositions calculated from
the score, such as the polyphony density (average number
of simultaneous notes per frame) and the inter-onset
duration (average time gap between onsets).

5.2 Experimental setup

Many signal processing applications adopt frequency log-
arithmic discretization. Although it is not the only way to
reduce the memory requirements, using logarithmic res-
olution in frequency is a common approach to minimize
the dimensionality and the memory footprint in matrix
operations. For example, uniformly spaced subbands on
the equivalent rectangular bandwidth scale are assumed
in [57].

In this work, a resolution of 1/4 of a semitone in fre-
quency is used as in [37, 67]. The time-frequency rep-
resentation is obtained using 8192-point STFT and inte-
grating the frequency bins corresponding to the same 1/4
semitone interval. The frame size and the hop size for the
STFT are set to 5644 (128 ms) and 1412 (32 ms) samples,
respectively, and the sampling rate is equal to 44.1 kHz.

Regarding the signal factorization scheme, we have
studied the performance of the proposed method as a
function of parameter 8 from the S-divergence cost func-
tion defined in Eq. (3). To this end, we have evaluated our
algorithm over the dataset in Section 5.1 varying the value
of B in the range [0, 2], finding the optimal value around
B = 1.3. This value is in line with other works in the state-
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of-the-art [13, 68, 69]. Besides, for our constrained by
the score signal model, we have observed that the recon-
struction error converges after 50 iterations. Therefore,
we have chosen this value as the maximum number of
iterations for the decomposition procedure.

5.3 Evaluation metrics
In this paper, we propose a SS system that perform both
score alignment and source separation. First, to evaluate
the alignment performance of the proposed method, we
have used the same evaluation metrics as in the MIREX
Score Following task. In this way, for each piece, an
aligned rate (AR) or precision is defined as the proportion
of correctly aligned notes in the score and ranges from
0 to 1. If a note onset does not deviate more than a
threshold (a.k.a tolerance window) from the reference
alignment, this note is considered to be correctly aligned.
Then, to evaluate the separation performance, we have
used the BSS_EVAL [70] and the PEASS [71] toolboxes
to evaluate the performance of our method for the task
of SS. These metrics are commonly accepted in the field
of SS and thus allow a fair comparison with other state-
of-the-art methods. In particular, each separated signal
is assumed to produce a distortion model that can be
expressed as follows:

§(0) — 5(t) = & () + ™ M(1) + &) (30)

where §; is the estimated source signal for instrument j,
sj is the original signal of the instrument j, e8! is the
error term associated with the target distortion compo-
nent, e js the error term due to interference of the
other sources, and e*!if is the error term attributed to the
numerical artifacts of the separation algorithm. The met-
rics provided by BSS_EVAL for each separated signal are
the source to distortion ratio (SDR), the source to interfer-
ence ratio (SIR), the source to artifacts ratio (SAR), and the
source image spatial distortion ratio (ISR) [70]. Besides, to
predict the subjective quality of estimated source signals,
the PEASS toolbox [71] provides four scores: the overall
perceptual score (OPS), the target-related perceptual score
(TPS), the interference-related perceptual score (IPS), and
the artifacts-related perceptual score (APS). These scores
are obtained by making use of auditory-motivated metrics
provided by the PEMO-Q auditory model [72] to assess
the perceptual salience of the target distortion (qTarget),

Table 2 Characteristics of the orchestral dataset used for the evaluation of our SS system

Composer Piece name Dur. Tracks Notes Poly. dens. Inter-onset dur.
Beethoven Symphony no. 7 3min1ls 20 3075 8.7 (49 0.215(0.195)
Bruckner Symphony no. 8 1min27s 39 2789 10.6 (4.5) 0.215(0.08s)
Mahler Symphony no. 1 2min12s 30 2822 59(3.5) 0.245(0.23s)
Mozart Don Giovanni 3min47s 10 2724 50(24) 0.265(0.179)

For the polyphony density and the inter-onset duration, both the mean and the standard deviation (in parentheses) are included
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interference (qInterf), and artifacts (qArtif), computing
also a global metric (qGlobal). Finally, a nonlinear map-
ping using neuronal networks trained with a set of differ-
ent audio signals is performed in order to get the set of
objective measures.

5.4 Algorithms for comparison

In order to show the benefits of proposal, we have com-
pared the separation performance of our method with
other state-of-the-art algorithms. Besides, we present two
“unrealistic” baseline methods to state the extreme sepa-
ration performances, here denoted as ideal separation and
energy distribution. The different approaches compared
here are the following:

5.4.1 Ideal separation

This method computes the optimal value of the Wiener
mask at each frequency and time component assuming
that the signals to be separated are known in advance.
Therefore, this approach represents the upper bound for
the best separation that can be reached with the used
time-frequency representation.

5.4.2 Energy distribution (ED)

This procedure uses the mixture signal divided by the
number of sources as input for the evaluation. This
evaluation provides a starting point for the separation
algorithms.

5.4.3 Miron method

We have included in the evaluation the results of the
method proposed by Miron et al. in [13]. Although
Miron’s method proposes an offline system for score-
informed audio SS for multichannel orchestral recordings,
we have evaluated its method for only one channel. For
single channel SS, this method uses the signal model intro-
duced in Eq. (9). Similar to our approach, this method
used a 1/4 semitone resolution and the basis functions
are learned in advance from training material (using real
audio samples from the RWC database). However, in
Miron’s method, the time-varying gains are initialized
using pre-aligned score information and refined using
image processing techniques.

5.4.4 Ganseman method

This method was introduced by Ganseman et al. in [9].
Ganseman proposes a method based on PLCA for SS
according to source models. Here, the gains are initial-
ized from a previously aligned MIDI score and the basis
functions learned from synthetic material.

5.4.5 Fritsch method
We have also incorporated results for the method pro-
posed by Fritsch in [73]. It consists of using the
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IS NMF of the power spectrogram with multiplica-
tive updates for SS. As in the Ganseman method,
they have a previous stage where the score is aligned
and synthesized for the learning of the basis functions
dictionary.

5.4.6 Soundprism system

We evaluate the results of the online method proposed
by Duan et al. in [22]. The authors proposed a system
that addresses score-informed music SS that is suitable for
real-time implementation. It consists of two parts: (1) a
multipitch + HMM-based score follower that align each
time frame of the audio performance and (2) a source sep-
arator which reconstructs the source signals informed by
the score.

5.4.7 REMASSeparation system

We have also included the results of our preliminary
online SS work [30]. In this work, we proposed to use
the real-time alignment implementation based on [31]
and presented in [32] together with the source separation
procedure described in [13]. Note that the signal model
used was the same as in [13] but restricted to single-
channel signals. Unlike Miron’s method, here, the time-
varying gains are initialized using the online alignment
described in [31].

5.4.8 Deep learning approaches

In order to compare the performance of the sig-
nal decomposition-based methods with the novel DL
approaches, we have reviewed three state-of-the-art DL
approaches for classical music SS. In particular, we have
used two extensions of the well-known Wave-U-Net DL
model presented in [16]: (1) Exp-Wave-U-Net is a slight
modification of the original model presented in [47] that
allows separation of a dynamic number of sources (orig-
inal model in [47] was designed only for 2 or 4 sources).
(2) CExp-Wave-U-Net [16], in this variant, the authors
proposed to use instrument labels to inform the network
about the instruments presented in the mixture. Note that
both, Exp-Wave-U-Net and CExp-Wave-U-Net methods,
have been evaluated over the URMP dataset in [16] and
the source code is also available for reproducible research.
Finally, the third method in [15] is a score-informed con-
volutional neural network (CNN) based method which
estimates the optimal soft-mask for each instrument and
refines them using the pre-aligned score. Here, we have
used the author implementation, and we have extended
the training data (from RWC instrument sound database)
to account for all the instruments from the URMP dataset.
As in [15], the generated training data is obtained using
sample-based synthesis with samples from the RWC
instrument sound database. The method synthesizes orig-
inal scores at different tempos and dynamics, considering
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local timing deviations and using different timbres to
generate a wide variety of renditions of given pieces.

5.4.9 Variants of the proposed model

We are also going to present results of several variants of
our own model. In that sense, a set of configurations have
been considered when comparing the models in order to
know the influence of adapting different parameters. As
mentioned in Section 3.1, our signal model is decomposed
in three parameters: S, E, and A.

In our tests, the matrix S is trained in the previous
stage and is fixed for the separation process. The gains
matrix A is always adapted to the test signal in the sep-
aration process, but we have experimented with different
initializations: (a) a random matrix (non-informed), (b)
the output path of the offline DTW, and (c) the output
path of the online DTW.

In the case of the notes-to-unit matrix E, we have the
following scenarios:

e scorefree: E is initialized as a binary matrix that
relates each set of active notes with their
corresponding score unit inferred from the MIDI
score. Therefore, no assumption on the relative
amplitude between notes/instruments is made in the
initialization of this parameter. Instead, these relative
amplitudes are learned during the update of
parameter E in the separation stage.

e scoreSynthFree: Opposite to the ScoreFree setup, in
this configuration, E is initialized with the relative
amplitudes between notes/instruments belonging to
the same score unit. This information is learned in
advance from the MIDI score using a synthesizer that
accounts for perceptual parameters annotated in the
MIDI file such as the velocity (i.e., how fast/hard each
note is pressed/released), channel volume, pan,
modulation, or effects. Moreover, parameter E is also
updated during the factorization to adapt the
information to the actual performance.

e scoreSynthFix: In this configuration, E is initialized
from the synthesized MIDI score as in the
scoreSynthFree setup. However, different than in
scoreSynthFree, this parameter is kept fixed during
the separation stage.

Notice that updating parameter E during the factoriza-
tion in the separation stage allows to adapt the velocity of
the instruments in the mixture to the actual performance.
Consequently, the scoreSynthFree variant allows to mit-
igate velocity deviations from the MIDI score, whereas
in the case of the scoreSynthFix, the performance will
underperform for large deviations.

Additionally, we have evaluated an oracle variant
denoted as ground-truth (GT) annotation which uses the
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manually annotated by musicologist score as a hard prior
initialization for the times varying gains A. This variant
give us a measure to evaluate the reliability of the score
alignment procedure in Section 3.3 over the evaluated
dataset.

All of these variants are summarized in Table 3.

In the spirit of reproducible research, the code of this
experimental study is available online®.

5.5 Evaluation of small ensembles single-channel signals
This section first presents the results of the evaluation of
the score alignment where a comparison with other refer-
ence methods is carried out for the URMP dataset. Then,
the SS results for the signal decomposition-based models
presented in Section 5.4 are shown. Finally, a comparison
of our proposal with novel DL approaches is performed
for this small ensembles dataset.

5.5.1 Score alignment results
To analyze the performance of our alignment methods
(offline and online), a comparison has been carried out
with four reference methods: (a) Carabias’s offline [31],
(b) Carabias’s online [31], (c) Ellis’ offline [74], and (d)
Soundprism [22]. Figure 5 shows the alignment results in
terms of precision values of the analyzed methods as a
function of the onset deviation threshold. The threshold
value varies from 50 to 2000 ms. As can be observed, all
the offline approaches reach similar results. Note that the
number of instruments in this ensembles are limited (2 to
5 instruments), so the uncertainty here is lower than in
a full orchestra scenario. Regarding the online methods,
our online approach obtains a more precise alignment
than the Carabias’ online and the Soundprism approaches.
The best performance of our model with respect to
Carabias’ proposal is because the spectral patterns for
each score unit are computed using the parameter S
(see Eq. 14), which is learned in advance using isolated
notes of real solo instrument recordings, while Carabias
uses the synthesized MIDI signal to learn these spectral
patterns.

According to Fig. 5, we can see that our methods require
a tolerance window of at least 1 s to converge to the opti-
mum alignment. Using a lower threshold could be bene-
ficial to minimize the interference between instruments.
However, it can also provoke the lost of the onsets/offsets
causing a poor separation performance. As a compromise
between reducing the intereference between instruments
and avoiding the lost the onset/offset information, in this
work, we chose a temporal window of 1 s to extend the
gains matrix At around each frame ¢ (as described in
Section 3.3).

8https://github.com/AntonioJMM/OISS_Minus-One.github.io
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Table 3 Algorithm notation
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Abbr.

Description

Separation stage

Trained parameters

Free parameters

Fixed parameters

scorefree

scoreFree-DTWoff

scoreSynthFree

scoreSynthFree-DTWoff

scoreSynthFix

scoreSynthFix-DTWoff

scoreSynthFix-DTWon

GT

E is initialized from the MIDI score and set as
a free parameter in the separation stage. A is
initialized to random values.

E is initialized from the MIDI score and set as
a free parameter in the separation stage. A
is initialized to the output path of the offline
DTW.

E is initialized from the synthesized MIDI
score and set as a free parameter in the
separation stage. A is initialized to random
values.

E is initialized from the synthesized MIDI
score and set as a free parameter in the sep-
aration stage. A is initialized to the output
path of the offline DTW.

E is initialized from the synthesized MIDI
score and kept fixed in the separation stage.
A is initialized to random values.

E is initialized from the synthesized MIDI
score and kept fixed in the separation stage.
A is initialized to the output path of the
offline DTW.

E is initialized from the synthesized MIDI
score and kept fixed in the separation stage.
A is initialized to the output path of the
online DTW.

E is initialized from the synthesized MIDI
score and set as a free parameter in the sepa-
ration stage. A is initialized using a hard prior
from the ground-truth annotated score.

S

S E

S E

S E

S E

S E

S E
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E A
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E A
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Fig. 5 Alignment evaluation over the URMP dataset in terms of precision values in function of the tolerance window
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Fig. 6 Objective and perceptual results of the variants of the proposed model using the BBS_EVAL metrics and the PEASS metrics for the URMP
dataset

5.5.2  Source separation results constraints in the gains provokes a slight underperfor-
In this section, we have studied the separation perfor- mance in terms of SAR (see Appendix 2) which could
mance of the proposed method as a function of parame-  be associated to loss of time-frequency coefficients (i.e.,
ters E and A. The obtained results for each configuration  set to zero) in the reconstructed signal. A similar behav-
described in Section 5.4.9 are presented in Fig. 6. The ior can be observed by analyzing the results obtained
lower and upper limits of each box (in blue) represents the ~ with the perceptual similarity measures (PSM) provided
25th and 75th percentiles of the sample. The red line in by the PEMO-Q auditory model (qGlobal, qInterf, qAr-
the middle of each box is the median. The lines extend-  tif, and qTarget). However, it must be highlighted that
ing above and below each box represent both the best attending to PEASS metrics (OPS, TPS, IPS, and APS),
and the worst performance, respectively, for each variant.  there is no correlation between these metrics and PSM
For the sake of brevity and better understanding, only the  ones. A possible reason could be that the nonlinear
main metrics used in the comparison are displayed, while = mapping provided by the PEASS neural network is not
the other metrics introduced in Section 5.3 are given in  optimized to evaluate musical ensembles (see test mate-
Appendix 2. rial in [71]). We encourage the readers to listen to the
As can be observed, initializing the time-varying gains  audio demos’.

with information from the DTW-based alignment pro-

vide better separation results than random initialization

of A in terms of SDR and SIR. However, imposing sparsity  °https://antoniojmm.github.io/OISS_Minus-One.github.io/
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Regarding the performance as a function of param-
eter E, better results are obtained when the notes-
to-units matrix E is initialized using the synthetized
MIDI score. In fact, scoreSynthFree-DT Woff obtains the
best performance in terms of objective and perceptual
measures. In other words, under a proper initializa-
tion, adapting the parameters to the input signal outper-
forms the SS performance. scoreSynthFix-DT Woff and
scoreSynthFix-DT Won provide similar separation results
and rank second among the compared variants. Note
that E is a global parameter (i.e., requires the full signal
to be updated), and therefore, online DTW can only be
implemented assuming E as a fixed parameter.

In the case of random gains initialization, scoreSynthFix
provide better results than scoreSynthFree and scoreFree
configurations in terms of SDR, SIR, and PSM. In fact,
the model estimation is more biased towards local minima
when the number of free and unconstrained parameter
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increases. Therefore, reliable adaptation of the parameters
can only be made using a proper initialization.

Figure 7 illustrates a comparison of the best perform-
ing offline and online configurations of the proposed
method (scoreSynthFree-DTWoff and scoreSynthFix-
DTWon) and the state-of-the-art methods presented in
Section 5.4.

As can be seen, the energy distribution (ED) baseline
method obtains the worst results in terms of SDR and
SIR which seems logical since no actual separation is per-
formed. However, it obtains the best results in terms of
SAR (see Fig. 13 in Appendix 2). As commented in [4],
it is usual that constrained signal decomposition-based
models underperform unconstrained models in terms of
SAR. In fact, enforcing the system to model only the
score information may cause an unreliable modeling of the
recording conditions or the background noise, if present.
On the contrary, using suitable constraints provides better
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dataset
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results in terms of SDR, SIR, and perceptual measures
which are more in line with the actual listening qual-
ity of the separation. Regarding the obtained results in
terms of PEASS metrics, we can see that they are not
in line with the PSM. In fact, as we commented before,
the testing material used to train this metrics does not
include classical ensembles music signals, and therefore,
the obtained results for these metrics might not represent
the actual listening quality of the separation (listen to the
demos website®). As can be seen in Fig. 7, in general, the
distribution of the compared methods using the energy-
based (BSS_EVAL) and the perceptual (PSM) measures is
similar. Therefore, for the sake of brevity, we will use the
SDR and the SIR as the main metrics in order to compare
the performance of the evaluated methods for the rest of
the paper.

The best results are obtained with the baseline ideal sep-
aration method (SDR = 12 dB, SIR = 23.01 dB). This
measure informs us about the best separation that can be
achieved using the selected 1/4 semitone time-frequency
representation. Besides, our oracle alignment (GT) vari-
ant achieves the best separation results (SDR = 6.80 dB,
SIR = 15.35 dB) among the compared methods. This
oracle approach provides information about the best sepa-
ration results that can be obtained using our method when
perfect annotation is available. In fact, the proposed vari-
ants, scoreSynthFree-DTWoff (SDR = 5.23 dB, SIR =
12.05 dB) and scoreSynthFix-DTWon (SDR = 5.47 dB,
SIR = 11.84 dB), provide competitive separation results in
terms of SDR and SIR in comparison with the oracle GT
solution. This performance can be observed also in the
perceptual metrics. Note that GT uses a hard-prior ini-
tialization of the gains, whereas the variants using score
alignment use a soft-prior initialization (i.e., a tolerance
window) to account for the possible missalignment at the
onset and offset frames.

Regarding the state-of-the-art algorithms, the signal
factorization-based methods Fritsch (SDR = 3.58 dB,
SIR = 10.30 dB) and Ganseman (SDR = 3.64 dB, SIR =
6.68 dB) provide similar separation results. In the case of
Miron (SDR = 4.96 dB, SIR = 10.69 dB), the obtained
results are slightly below the proposed variants in terms
of SDR and SIR, while they are slightly above our online
variant in terms of qGlobal and qInterf and similar to our
offline variant in terms of qGlobal and sligthly worse in
terms of qInterf.

Concerning the online approaches, the Soundprism
[22], REMASSeparation, and scoreSynthFix-DTWon
methods are the only ones which can be implemented
into a real-time system. As can be seen, our proposal out-
performs both Soundprism (SDR = 3.15 dB, SIR = 9.43)
and REMASSeparation (SDR = 4.49 dB, SIR = 9.84).

Note that all the compared offline score-informed
methods in Fig. 7 use the same alignment DTW-based
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strategy presented in Section 3.3. Therefore, they have
the same time-varying gains initialization, including the
tolerance window, to allow a fair comparison between
their separation performance. Attending to the compared
online methods, Soundprism uses its own alignment-
separation scheme, whereas the time-varying gains matrix
in REMASSeparation is initialized to the online alignment
method described in [31], including the tolerance window.

A reason of the superior results obtained by our method
is due to the fact that in our method, each basis repre-
sents a unique combination of notes (score unit), whereas
in the compared state-of-the-art, signal decomposition-
based algorithms propose an iterative separation method
where each component from the spectral basis repre-
sents a single note. Consequently, during the factorization
within the tolerance window, these algorithms allow con-
current activation of notes that might not happen in the
score nor in the performance, worsening in situations of
successive short duration notes. In contrast, our method
might only be active in the combinations of notes (score
units) that are defined in the score.

5.5.3 Comparison with novel deep learning approaches

In this section, we compare the performance of our
method with the DL approaches described in Section 5.4.
Results with respect to the number of sources in the mix-
ture are presented in Table 4 which are classified in three
modules by continuous lines .

First, we analyze the results provided by Exp-Wave-U-
Net method and our scoreSynthFix variant. Both meth-
ods know in advance the specific instruments which
compound the mixture, but are not informed by the
instrument activity. scoreSynthFix obtains better results
than Exp-Wave-U-Net in terms of SDR and SIR for
all the polyphony cases, while it is inferior in SAR.
Regarding the methods informed by the alignment score,
scoreSynthFree-DT Woff clearly outperforms the DL-
based methods in terms of SDR, SIR, and SAR. CExp-
Wave-U-Net obtains poor results despite knowing which
instruments are presented in the mixture (i.e., condi-
tioned labels). Note that the baseline Wave-U-Net method
was designed for source separation of leading voice
and accompaniment mixtures and obtained remarkable
results in the SISEC campaign [47]. However, extending
the original method for source separation of music ensem-
bles without exploiting the instrument activity informa-
tion does not provide reliable results as depicted in [16].
CNN method achieves good results for low polyphony,
reaching 5 dB in SDR for two simultaneous sources.
However, it underperforms our proposal around 3 dB
in SDR and 10 dB in SIR for all the polyphony cases.
Note that in [15], the evaluation was performed over a
dataset compounded by four monophonic instruments
(Bach chorales), whereas the evaluated dataset in this
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Table 4 Comparison between methods based on deep learning
technigues and our proposed variants in terms of SDR, SIR, and
SAR with respect to the number of sources in the mixture

Method nSources  SDR[dB]  SIR[dB]  SARI[dB]
Exp-Wave-U-Net 2 —042 1.75 10.98
3 —3.85 —2.74 11.97
4 —5.90 —533 12.87
scoreSynthFix 2 4.65 882 9.22
3 423 830 7.86
4 223 457 554
CExp-Wave-U-Net 2 —0.16 4.62 748
3 —068 2.88 591
4 —2.56 044 6.35
CNN 2 5.00 7.66 8.74
3 3.03 547 6.03
4 1.83 1.37 552
scoreSynthFree-DTWoff 2 821 16.86 10.15
3 6.46 14.16 8.03
4 4.65 11.79 577
scoreSynthFix-DTWon 2 7.60 16.06 9.69
3 6.20 13.39 7.84
4 4.54 11.01 570

“The best results for each module appears in italics.

paper is more complex and compounded by a combina-
tion of 14 different polyphonic instruments.

Finally, we present the results for our online variant.
As can be observed, scoreSythFix-DT Won obtains simi-
lar results to the offline variants, losing less than 1 dB in
terms of SDR, SIR, and SAR for all the cases.

5.6 Evaluation of large ensembles

In this section, the evaluation performed for a highly
polyphonic large ensembles orchestra dataset is pre-
sented using the metrics defined in Section 5.3. Then,
we show the results obtained for the acoustic minus one
application.

5.6.1 Orchestra source separation results

Orchestra SS results are illustrated in Fig. 8. As in the
URMP dataset, the best results are obtained with the base-
line ideal separation method (SDR = 7 dB, SIR = 14.08 dB)
and the GT variant achieves the best separation results
(SDR = 2.05 dB, SIR = 7.33 dB) among the compared
methods. scoreSynthFree-DTWoff (SDR = 1.81 dB,
SIR. = 643 dB) and scoreSynthFix-DTWon
(SDR = 1.78 dB, SIR = 4.38 dB) provide similar separa-
tion results in comparison with the oracle GT solution
and clearly outperform the state-of-the-art algorithms
in terms of SDR and SIR. Fritsch (SDR = 0.53 dB,
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SIR = 1.90 dB), Ganseman (SDR = 0.91 dB, SIR = 0.78 dB),
and Miron (SDR = 0.32 dB, SIR = —1.17 dB) provide
similar separation results. Attending to the percep-
tual metrics, the superiority of our proposed methods
becomes more evident in terms of both qGlobal and
qInterf.

Regarding the online approaches, REMASSeparation
obtains 0.01 dB and 2.63 dB in terms of SDR and
SIR, underperforming our proposal. On the other hand,
Soundprism provides the worst results among the com-
pared methods (SDR = —9.11 dB, SIR = — 8.31 dB). A pos-
sible reason of this behavior is because Soundprism uses
a multi-pitch estimation model without timbral informa-
tion together with a HMM to estimate the score position
for each frame of real audio. This model obtains reliable
results for monotimbral (i.e., just one type of instrument)
signals and low polyphony multitimbral mixtures. How-
ever, in the case of high polyphony multimbral dataset
(see Table 2), the alignment is severely degraded, and
consequently, Soundprism provides unreliable separation
results. This result is in line with the MIREX 2010 task
of real-time audio to score alignment where Soundprism
obtains a 49.11% of total precision, whereas the align-
ment scheme used in our proposed ISS method provides
a total precision of 95.53% over the same dataset, but in a
different MIREX campaign (MIREX 2015'1).

Finally, we have studied the performance of the com-
pared approaches as a function of the instrument. Since
the separation quality varies among the different instru-
ments which compound the mixture, we have considered
using the delta-metrics ASDR and ASIR as in [75, 76].
These metrics inform about the difference between the
performance of the ideal Wiener separation (i.e., using
true source spectrograms) and the separation score. The
obtained results are depicted in Fig. 9. Note that in Fig. 9,
the best performance corresponds to the value 0 dB (i.e.,
the ideal Wiener separation). As can be observed, on aver-
age, our proposed variants are over the state-of-art level in
terms of ASDR and obtain significantly superior results in
terms of ASIR, reaching in both cases values very close to
the GT variant. Similar averaged results are obtained for
Fritsch (ASDR = — 7.54 dB, ASIR = — 18.27 dB), Ganse-
man (ASDR = —7.18 dB, ASIR = — 19.69 dB), and Miron
(ASDR = — 6.74 dB, ASIR = —17.51 dB).

Comparing our variants, better results are obtained
in the offline case. In fact, adapting the relative ampli-
tude between instruments in the notes-to-units matrix E
improves the separation results. Note that E is a global
parameter, and thus, it requires the whole audio signal to
be adjusted offline.

10https:/ /www.music-ir.org/mirex/wiki/2010:Real-time_Audio_to_Score_
Alignment_(a.k.a._Score_Following)_Results
11 https://www.music-ir.org/mirex/wiki/2015:Real-time_Audio_to_Score_
Alignment_(a.k.a._Score_Following)_Results
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Fig. 8 Objective and perceptual results for the comparison of the SS methods using the BBS_EVAL metrics and the PEASS metrics for the orchestra

5.6.2 Results for minus one application

In this section, we present the results obtained for the
acoustic minus one application. The goal is to provide an
audio signal where one of the sources is removed from
the mixture. In this sense, minimizing the interference
produced by the removed instrument, which implies max-
imizing SIR and qlnterf of the target signal, is the main
task to obtain the best minus one performance.

In order to study the performance of the minus one
application, we have evaluated all the all-except-one
instrument combinations using the orchestra dataset
presented in Section 5.1. The overall results are
presented in Fig. 10. Here, we compared the best
performing separation methods for offline and online
approaches applying the psychoacoustic model pre-
sented in Section 4 (scoreSynthFree-DTWoff-psycho
and scoreSynthFix-DTWon-psycho) with the baseline

methods (ideal separation and energy distribution) to
set the “unrealistic” extreme results. In order to evalu-
ate the reliability of the psychoacoustical masking proce-
dure, we have included the scoreSynthFree-DT Woff and
scoreSynthFix-DT Won variants of our proposed method,
which are computed, in this minus one context, by com-
bining all-except-one instruments obtained in the separa-
tion process.

As can be observed, the baseline ideal method
(SDR 16.5 dB, SIR 22.1 dB) obtains the best
results. This measure indicates the best minus one
composition that can be achieved using the frequency
resolution presented in Section 5.2. Regarding the effect
of the psychoacoustic mask on the proposed variants
scoreSynthFree-DT Woff and scoreSynthFix-DT Won, we
can observe that the masking model underperforms in
terms of SDR (~ 2 dB and ~ 3 dB in the offline and online
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Fig. 9 Overall ASDR and ASIR results per instrument over the orchestra dataset for the methods presented in Section 5.4

variants, respectively). However, using the psychoacoustic
model outperforms in terms of SIR (~ 3 dB and ~ 3.5 dB
in the offline and online variants, respectively). Note that
Eq. (29) involves setting to zero those time-frequency bins
(f, t) where the interference of the source to be removed
might be noticeable. As a consequence, some artifacts are
generated in the minus one signal, resulting in worse SAR
and SDR values. Nevertheless, the listening performance
of the minus one signals obtained with the phychoacous-
tic model is superior; some examples can be found at
demo website® . This page contains the audio sources from
the test database and the corresponding files obtained
by using the proposed method. We have also included
an example where the melody line has been removed
from the Mozart’s composition. In the case of Mozart’s
piece, the main melody is guided by the bassoon and clar-
inet. Both instruments have been removed in the mixture
applying the psychoacoustical mask described in Eq. (29).
This example shows the improvement achieved when the
psychoacoustical mask is applied instead of just mix-
ing the corresponding instruments after the separation
process.

6 Conclusions

In this paper, we present a signal decomposition-
based method for score-informed SS that is suitable for
both offline and online applications. Our framework is

composed of three stages. First, the score information is
encoded as a sequence of individual occurrences of unique
combinations of notes (score units). The basis functions
for each unit are obtained from a trained in advance dic-
tionary of spectral patterns for each note and instrument
in the score. Secondly, a cost function is obtained from
the projection of each unit over the whole spectrogram
of the input mixture signal and a DT W-based scheme to
estimate the activations of each score unit. Finally, a local
low-rank NMF approach is used to estimated the time-
varying gains, and the source signal is reconstructed using
a soft-filter-based strategy.

The proposed method has been evaluated for SS of
small and large ensembles single-channel signals obtain-
ing reliable results in terms of SDR, SIR, and perceptual
measures in comparison with other signal decomposition
and score-informed deep learning approaches. To our best
knowledge, the proposed method is the only informed SS
method that can be implemented in real-time and obtains
reliable results for highly polyphonic large ensembles.

In addition, we have evaluated the proposed method for
the task of minus one. To this end, the soft-filter strat-
egy has been modified using a psychoacoustic sinusoidal
model. It consists of applying an auditory spectral mask-
ing to reduce the interference introduced by the source
removed from the audio mixture. The proposed minus
one model provide robust results and outperforms in
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Fig. 10 Objective and perceptual results for minus one application using the BBS_EVAL metrics and the PEASS metrics for the orchestra dataset
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Fig. 12 Additional objective and perceptual measures for Fig. 6

terms of SIR the best performing variants of our proposed
method using the soft-filter strategy.

Finally, for future work, we would extend the cur-
rent framework to a multichannel approach and the use
of phase information to mitigate the overlapping partial
problem of accompaniment instruments.

Appendix 1: Listening tests
In this section, listening tests were conducted to subjec-
tively assess the audio quality of our SS methods. For
this purpose, the MUIti Stimulus test with Hidden Refer-
ence and Anchor (MUSHRA) has been employed, which is
an ITU-R Recommendation BS.1534-1 [77] implemented
in [78].

The MUSHRA listening test [77] is a commonly used
method for the subjective evaluation of audio quality. It
does not require a huge number of participants to obtain

a statistically significant result [79, 80] reference. For this
reason, we have used the MUSHRA listening test to eval-
uate the subjective quality of the SS results of the URMP
database. In the MUSHRA test, the participants are pro-
vided with the signals under test as well as one reference.
The listeners have to grade the different signals on a qual-
ity scale between 0 and 100. The participants were allowed
to listen to each test signal several times and always had
access to the clean reference.

Forty-two listeners, whose ages are from 20 to 40 years
old, participated in the MUSHRA test. Five classical music
pieces per each participant were randomly chosen from
the 44 arrangements of the URMP database, and the
separation of the proposed methods (scoreSynthFree-
DTWoff and scoreSynthFix-DTWon) and the state-of-
the-art methods presented in Section 5.4 were compared
for each classical music piece.
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Fig. 13 Additional objective and perceptual measures for Fig. 7
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After all the listeners had graded the test signals, a sta-
tistical analysis of the results was conducted. Figure 11
shows the average results of SDR and the MUSHRA listen-
ing test for all compared methods. As can be observed, the
subjective results are in line with the objective ones. Note
that the proposed methods yield higher average MUSHRA
scores than the other reference methods.

Appendix 2: Complementary material
This section presents additional measures related to
Figs. 6, 7, 8, and 10.
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