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Abstract

This paper presents a new approach based on recurrent neural networks (RNN) to the multiclass audio segmentation
task whose goal is to classify an audio signal as speech, music, noise or a combination of these. The proposed system
is based on the use of bidirectional long short-term Memory (BLSTM) networks to model temporal dependencies in
the signal. The RNN is complemented by a resegmentation module, gaining long term stability by means of the tied
state concept in hidden Markov models. We explore different neural architectures introducing temporal pooling
layers to reduce the neural network output sampling rate. Our findings show that removing redundant temporal
information is beneficial for the segmentation system showing a relative improvement close to 5%. Furthermore, this
solution does not increase the number of parameters of the model and reduces the number of operations per
second, allowing our system to achieve a real-time factor below 0.04 if running on CPU and below 0.03 if running on
GPU. This new architecture combined with a data-agnostic data augmentation technique called mixup allows our
system to achieve competitive results in both the Albayzin 2010 and 2012 evaluation datasets, presenting a relative
improvement of 19.72% and 5.35% compared to the best results found in the literature for these databases.
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1 Introduction
In the last few years, there has been a huge increase in the
generation of multimedia content and large audiovisual
repositories. That is the reason why automatic systems
that can analyse, index and retrieve information in a fast
and accurate way are becoming more and more relevant.
In this context, audio segmentation systems are intro-
duced. The main purpose of audio segmentation is to
obtain a set of labels in order to separate an audio sig-
nal into homogeneous regions and classify them into a
predefined set of classes, e.g., speech, music or noise.
This definition is really wide, and it includes several
kinds of systems depending on the classes taken into
account in the classification. For example, a speech activ-
ity detector (SAD) is considered if a binary speech/non-
speech segmentation is performed. Another example of
audio segmentation is the speaker diarisation task, that
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aims to separate different speakers in an audio stream
defining one class per speaker. In this paper, we focus on a
more generic segmentation task where our objective is to
classify the audio signal as speech, music, noise or a com-
bination of these. Other speech technologies applications
such as automatic speech recognition (ASR) or speaker
recognition can benefit from audio segmentation as a first
pre-processing stage improving its performance in real-
world environments by being provided with an accurate
labelling of audio signals.

This works presents an approach to the multiclass audio
segmentation task based on the use of recurrent neural
networks, namely the well-known long short-term mem-
ory (LSTM) networks. Furthermore, we introduce a new
block in the neural architecture seeking to remove redun-
dant temporal information, reducing the number of oper-
ations per second and without increasing the number of
parameters of the model.

The remainder of the paper is organised as follows: a
review on some of the previous work on audio segmen-
tation is done in Section 2. Our proposed RNN-based
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audio segmentation system is described in Section 3. The
database description and the metrics used to evaluate our
results are exposed in Section 4. The experimental results
obtained with our system are explained in Section 5.
Finally, a summary and conclusions are presented in
Section 6.

2 Previous work

2.1 Audio segmentation approaches

A generic audio segmentation system comprises two dif-
ferent steps: the feature extraction method and the seg-
mentation and classification strategy. A wide review of
the features and the segmentation methods applied in the
literature is provided by Theodorou in [1].

Feature extraction is the first step in an audio segmen-
tation system. The correct representation of the different
acoustic classes is influenced by the set of acoustic fea-
tures used in the system, both in frequency and time
domains. If we focus on the time span they represent,
features can be classified into frame-based and segment-
based features. On the one hand, frame-based features
represent short periods of time (10 to 30 ms) and are usu-
ally considered in speech related tasks, where each short
segment can be considered to be stationary over that
frame. Traditional Mel Frequency Cepstrum Coefficients
(MFCC) or Perceptual Linear Prediction (PLP) are proposed
in a great amount of works [2—4]. A musical approach
to feature extraction is proposed in [5], where timbre,
rhythm, pitch and tonality coefficients are computed for
each frame. On the other hand, segment-based features
are computed over longer periods of time (0.5 to 55).
For example, in [6] segment features are extracted by fit-
ting frame-based features to a reference model using a
histogram equalisation transformation. The variation of
the spectrum flux and the variation of the zero cross-
ing rate are proposed in [7] as segment-based features.
In [8], the zero crossing rate averaged in segments of
2s is used to discriminate speech and music in radio
recordings.

Once feature vectors are extracted, the next step is deal-
ing with the detection and classification of the segments.
Depending on how the segmentation is performed, audio
segmentation systems can be classified into two main
groups: the segmentation and classification approach and
the segmentation by classification approach. In the follow-
ing lines, both of them are explained:

e Segmentation and classification: In this group of sys-
tems, segmentation is performed in two separate steps.
First, class boundaries are detected using a distance
metric and then each delimited segment is classi-
fied in a second step. This approach is also known
as distance-based segmentation in the literature. One
of the best known distance metric is the Bayesian
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Information Criterion (BIC). For example, [9] applies
a BIC-based segmentation to generate a sequence of
language-dependent segments. In [10], BIC is used to
generate a break point for every speaker. We can cite
additional examples of distance metrics used in the lit-
erature such as the generalised likelihood tatio (GLR),
that is computed to segment speaker and music infor-
mation in real time in [11], or the cosine distance,
combined with a local self-similarity analysis in [12]
to detect speech/music transitions. Recent work has
introduced the use of neural distance metrics, like the
one proposed in [13] for speaker change detection.

e Segmentation by classification: in this approach the
segmentation is performed by classifying consecutive
fixed length audio segments, so that labels are pro-
duced directly by the classifier as a sequence of deci-
sions. A set of well-known classification techniques
have been developed for this task. A Gaussian Mix-
ture Model (GMM) approach is proposed in [14]
together with a maximum entropy classifier. In [15],
authors use support vector machines (SVM) to sepa-
rate speech and music in radiophonic audio streams.
Multistage decision trees are used in [16] with the
same objective of discriminating speech and music.
The factor analysis (FA) technique, usually applied in
speaker verification, is adapted to audio segmenta-
tion domain by Castén et al. in [17] obtaining relevant
results for broadcast domain data.

In both approaches to audio segmentation, original
segmentation boundaries are usually refined applying a
resegmentation model. This is done to prevent sudden
changes in segmentation labels. Some resegmentation
strategies rely on hidden Markov models (HMM), like
in [18] where different features from a previous stage
are combined using an ergodic HMM to produce the
final segmentation hypothesis. A less sophisticated solu-
tion is proposed in [19] where transitions happening in
fragments smaller than 1 s are filtered.

2.2 Neural networks in audio segmentation

Recently, scientific community has experienced the expo-
nential growth of neural networks due to the advances in
hardware and the higher availability of data for training.
Since the early 2010s, they are being increasingly applied
to speech technologies. For example, several works focus-
ing on acoustic modelling for ASR have been presented
[20, 21]. In speaker recognition, the use of deep neu-
ral network-based representations is an active research
topic [22, 23]. If we focus on the audio segmentation
task, various authors have already proposed a segmenta-
tion by classification system based on neural networks.
Concerning feed forward networks, some examples can
be cited: a multilayer perceptron is trained using genetic
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algorithms in [24] to perform a multiclass audio segmen-
tation. Meinedo presents in [25] a multilayer perceptron-
based classifier integrated in a system that combines SAD,
speaker segmentation and clustering. More recently, a
SAD for broadcast domain is proposed in [26] using the
same multilayer perceptron model. Convolutional neural
networks (CNN), commonly related to image recogni-
tion and image classification applications, are also being
applied to audio segmentation and classification. These
implementations usually rely on time-frequency repre-
sentations of the audio signal that are treated as chan-
nels in an analogy with image processing systems. This
is done, for example, in [27], where a database consist-
ing of different environmental sounds is classified using
CNNs extracting mel-spectograms from the input signals.
In [28], CNNs are applied to a speech/music segmenta-
tion task showing a significant improvement over SVM
and GMM systems. A recent work has also applied
Mel-based convolutional kernels to the music detection
task [29].

Recurrent neural networks are significantly useful when
dealing with temporal sequences of information because
they are able to model temporal dependencies intro-
ducing a feedback loop between the input and the out-
put of the neural network. The long short-term mem-
ory (LSTM) networks [30] are a special kind of RNN
that introduces the concept of memory cell. This cell
is able to learn, retain and forget [31] information in
long dependencies. This capability makes LSTM net-
works a very powerful tool to carry out long- and short-
term simultaneously. Two LSTM networks are combined
in a bidirectional LSTM (BLSTM) network to model
causal and anticausal dependencies. One of them pro-
cesses the sequence in the forward direction, while the
other one processes the sequence backwards. Both LSTM
and BLSTM networks have been successfully applied in
speech technologies in several sequence modelling tasks
such as ASR [32], language modelling [33] or speaker
verification [34].

Concerning audio segmentation tasks, most of the
LSTM-based systems deal with speech/non-speech classi-
fication. The first approach to SAD using LSTM network
was presented in [35], where authors demonstrated the
feasibility of this approach in a real-life noisy speech from
Hollywood movies. A similar neural architecture is used
in [36] to implement a noise-robust vowel-based SAD.
A more recent paper combines both speech and music
detection using recurrent LSTM networks [37]. Our lat-
est work in SAD, used in the first DIHARD diarisation
challenge [38] and the Albayzin 2018 diarisation challenge
[39], is also based on a BLSTM classifier. Our proposal
ranked in 4th position out of 10 participant teams in track
2 [40], and 1st out of 6 participant teams in the closed
condition set [41], respectively.
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2.3 Audio segmentation challenges

The field of music information retrieval has actively
contributed to the improvement of audio segmentation
research. The Music Information Retrieval Evaluation
eXchange (MIREX) [42] is a set of music-related tech-
nological evaluations hosted annually since 2005. The
different tasks proposed have changed since its first edi-
tion. Here, we cite some of the proposed in the most
recent MIREX 2019: audio fingerprinting, audio classi-
fication, chord estimation or cover song identification.
Concerning audio segmentation, MIREX 2018 proposed a
music and/or speech detection task consisting in finding
segments of music and speech in a signal. Several sub-
tasks were considered for this task, ranging from separate
detection of music or speech, a combination of both or
relative loudness estimation of music. The winners of the
music detection task used an approach based on a CNN
combined with some rule-based smoothing techniques
[43]. For the music and speech detection task, the best
performing system fused different features using a mul-
tilayer perceptron model [44]. It must be mentioned that
the use of external data sources for training is allowed in
the MIREX evaluations.

It is also interesting to mention the Detection and
Classification of Acoustic Scenes and Events (DCASE)
challenge that aims to advance research in the recognition
of sound scenes and individual sound sources in realis-
tic soundscapes. The most recent version (DCASE2019)
[45] proposed five different tasks in this domain. In the
sound event localisation and detection task, direction-
of-arrival (DOA) estimation and audio segmentation are
combined. Eleven different acoustic classes were consid-
ered such as speech, car noise or dog barks. State of the
art results are obtained with a consecutive ensemble of
convolutional recurrent neural networks (CRNNs) [46].
The sound event detection in domestic environment task
is the closest to the task proposed in this paper, where
starting and ending times must be given for each class in
the audio signal. The best performing system in this task
used a neural architecture based on CNNs, implementing
an attention mechanism to extract an acoustic embedding
used then for classification in a teacher-student frame-
work [47]. For the two tasks presented here, the use of
external data was not allowed for the development of the
submitted systems.

Dealing with broadcast domain content can be chal-
lenging because such documents contain different audio
sequences with a very heterogeneous style. Several speech
conditions and domains can be found, from studio record-
ings to outdoor speech to telephonic quality, with several
noises overlapped in all cases. A variety of acoustic effects
and background music are also likely to appear. Many
international evaluation campaigns have already faced the
challenge of working with broadcast data: the ESTER
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evaluations campaigns [48] aimed to evaluate automatic
broadcast news rich transcriptions system for the French
language proposing a transcription task, a segmentation
task and an information extraction task. In the COST278
multilingual evaluation [49] for segmentation and speaker
clustering, a database consisting of broadcast news from
10 European countries was used.

Concerning the Iberian languages, the Albayzin inter-
national campaigns have proposed a wide range of chal-
lenges from speech transcription to spoken term detection.
The audio segmentation task was first introduced in the
Albayzin evaluations in 2010 for a broadcast news envi-
ronment [50]. The objective was to segment an audio
signal into five classes: speech, music, speech with noise,
speech with music and others. In this context, our paper
is focused on this task, aiming to incorporate recurrent
neural networks (RNN) as the main component of the
segmentation system.

More recent Albayzin challenge corpora was released in
2012, namely the CARTYV dataset [51], with around 20h
of audio from Aragén radio archive. The annotation for
this dataset is slightly different from the one proposed
in the Albayzin 2010 as labels can be music, speech and
noise. Furthermore, the overlap of two or more of them is
allowed. Taking into account this differences and the fact
that data is coming from a different acoustic domain, we
report the results of our final system on this dataset too,
in order to explore the generalisation capabilities of our
proposal.

3 System proposal

Proven the performance of LSTM networks in a binary
classification task like SAD [35, 36], our previous work
in audio segmentation aimed to replicate these results in
a multiclass environment, like the one proposed in the
Albayzin 2010 audio segmentation evaluation. Preliminary
results in [52] have shown the feasibility of LSTMs in this
task. That is why in this paper we aim to explore the
behaviour of recurrent neural architectures for this task
in a wider sense, including improvements on our previ-
ous results, both in performance and in computational
complexity. Our proposal to enhance the neural architec-
ture is the incorporation of a new block that we named
“Combination and Pooling” block, that is described in the
following subsections.

Furthermore, as several works have shown the improve-
ment in performance obtained when using data augmen-
tation techniques in audio classification [53, 54], we aim
to incorporate this kind of techniques in our system too.
Due to the data restriction imposed by the Albayzin 2010
evaluation, no further data can be used in training in order
to be comparable with other systems. In this context,
we introduce the mixup augmentation [55], which com-
bines linearly pairs of examples to generate new virtual
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examples. In this work, we also explore the behaviour of
this technique in our segmentation system.

We propose an RNN-based segmentation by classifi-
cation system. Our approach combines the modelling
capabilities of BLSTM networks with a resegmentation
module to get smoothed segmentation hypothesis. In the
following lines, we describe the three different blocks
our system comprises: feature extraction, an RNN-based
classifier and the final resegmentation module.

3.1 Feature extraction

Concerning the feature extraction, we are using a frame-
based approach where we combine a traditional percep-
tual set of features with some musical theory motivated
features that may help our system discriminate classes that
contain music. In a preliminary preprocessing step, the
audio is resampled at 16 kHz and converted to a single
channel input. Then, log Mel filter bank energies and the
log energy of each frame are extracted. Considering an
audio input sampled at 16 kHz, Mel filters span across the
frequency range in between 64 Hz and 8 kHz.

Additionally, Mel features are combined with chroma
features [56]. These features are a time-frequency rep-
resentation specially suited for music where the entire
spectrum is projected onto 12 bins representing the 12
distinct semitones of the chromatic musical scale. Due
to its robustness to variations in tone or instrumenta-
tion, combined with its capability to capture melodic
and harmonic information, chroma features have been
applied in different musical information retrieval applica-
tions. For example, chroma are usually extracted in most
chord recognition applications [57, 58]. Chroma features
are extracted using the openSMILE toolkit [59].

All features are computed every 10 ms using a 25ms
Hamming window. First- and second-order derivatives of
the features are computed using 2 FIR filters of order 8 to
take into account the dynamic information in the audio
signal. Finally, feature mean and variance normalisation
are applied at recording level.

3.2 Recurrent neural network
The central idea of our proposed segmentation system
is the use of RNNs as the classification algorithm in a
segmentation by classification approach. We propose two
different variations of this RNN classifier: the first one,
already proposed in [52] and that is going to be consid-
ered as our baseline system, is described in Fig. 1. As
shown, the neural architecture is mainly composed by one
or more stacked BLSTM layers with 256 neurons each.
The outputs of the last BLSTM layer are then indepen-
dently classified by a linear perceptron sharing its values
(weights and bias) among all time steps.

The details of the proposed “Combination and Pooling”
block are presented in Fig. 2. The main idea behind it is
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Fig. 1 BLSTM-based neural architecture description for the baseline
RNN classifier

to reduce the redundant temporal information through a
time pooling mechanism, while at the same time, a more
appropriate representation is learned through a 1D con-
volutional layer. Furthermore, we propose three different
variations of this block. The first one combines both the
temporal pooling and the 1D convolutional layer, while
the other two variations only use time pooling or a 1D
convolutional layer respectively, to evaluate its separate
influence on the system too.

In Figure 3, we present the second approach to the RNN
classifier, incorporating our proposed “Combination and
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Pooling” block. The linear layer is configured in the same
conditions as in the baseline system.

All systems have been trained and evaluated using finite
length sequences (3s, 300 frames), limiting the delay of
dependencies that the network may take into account.
These sequences have a length of 3s with an advance
of 2.5s, thus 0.5s are overlapped. In order to gener-
ate the final prediction, the first half of this overlapped
part is taken from the previous window, and the sec-
ond half is taken from the next window. This way the
labels corresponding to the boundaries of each fragment
are discarded as they may not be reliable. However, the
neural network emits a segmentation abel for each frame
processed at the input for the first system, and one seg-
mentation label for each N frames processed when using
the pooling setup, being N the temporal pooling factor
applied.

The neural networks are trained using adaptive moment
estimation (Adam) optimiser due to its fast convergence
properties [60]. Also, cross entropy criterion is chosen as
loss function, as usually done in multiclass classification
tasks. Data are shuffled in each training iteration seeking
to improve model generalisation capabilities. All the neu-
ral architectures in this paper have been evaluated using
the PyTorch toolkit [61].

In addition to the emitted RNN segmentation labels,
we are also considering the final linear layer scores for
each class in order to perform the resegmentation step. In
our results, we evaluate two different points in our sys-
tem: the neural network output by using the RNN-emitted
labels and the final labels produced by the resegmentation
module.

Conv1lD
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=
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Fig. 2 Description of the proposed “Combination and Pooling” block and its three variations in this study
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Fig. 3 Alternative BLSTM-based neural architectures including the
proposed combination and pooling block

3.3 Resegmentation module

The RNN output may contain high-frequency transitions
which are unlikely to occur in highly temporal correlated
signals such as human speech or music. Aiming to avoid
spurious changes in the segmentation hypothesis, we
incorporate a resegmentation module in our system. Our
implementation is based on an ergodic hidden Markov
model where each class is modelled trough a state in the
Markov chain. Every state is represented by a multivari-
ate Gaussian distribution with full covariance matrix. No
a priori information is required for this block to be fully
functional because statistical distributions are estimated
using the labels hypothesised by the RNN for each file in
the database.

The neural network output may result in a noisy estima-
tion of class boundaries. Aiming to avoid high-frequency
transitions, neural network scores are downsampled by
a factor L using an L order averaging filter. This filter is
implemented as a zero-phase FIR filter [62] to avoid delays
in the output signal. Moreover, each state in the Markov
chain consists of a left-to-right topology of Ny tied states
that share the same statistical distribution. These two
strategies allow us to impose a certain amount of inertia
in the output, forcing a minimum segment length before
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a class change occurs. This length can be computed as
follows:

Tmin = TsLNts ( 1)

where T is the neural network output sampling period, L
is the downsampling factor, and Ny is the number of tied
states per state in the Markov chain.

4 Experimental setup

The experimental setup for our experiments is based on
the proposed originally in the Albayzin 2010 audio seg-
mentation evaluation. A complete description of the task,
results obtained by the participants and a description
of the different approaches used can be found in [50].
In the following lines we describe the database used in
the evaluation and the metrics taken into account in our
experiments. We also present the CARTV database intro-
duced in the Albayzin 2012 evaluation [51], and that is
used in the final part of our experimentation to check the
generalisation capabilities of our proposal.

4.1 Databases description

As it has been explained previously, the Albayzin evalua-
tion campaigns have proposed several speech and audio
processing related tasks in the last decade. Audio segmen-
tation is one of the proposed tasks from 2010 to 2014,
focusing mainly on separating speech, music and noise.
For this purpose, two datasets were released: the 3/24
TV dataset, released for the 2010 evaluation and com-
ing from broadcast television domain, and the CARTV
dataset, used in the 2012 evaluation and obtained from
radio recordings. They share a set of common characteris-
tics and some minor differences that are explained in this
subsection.

The Albayzin 2010 database is part of a set of broadcast
news recordings broadcast originally in 2009 by the Catalan
TV channel 3/24 TV. Data was originally collected by
the TALP Research Centre from the Universitat Politécnica
de Catalunya. The full database includes around 87 h of
manually annotated audio sampled at 16kHz and it is
divided in 24 files of around 4-h length each. Two thirds
of the database are available for training, making a total
of 58 h in 16 different sessions, while the remaining third,
29h in 8 sessions, is used for test purposes. Furthermore,
we reserve 15% of training subset for training validation,
which translates to a total of 49h of audio for training
and 9h for validation. The evaluation plan defines five
different acoustic classes distributed as follows: 37% for
clean speech (sp), 5% for music (mu), 15% for speech over
music (sm), 40% for speech over noise (sn) and 3% for
others (ot). The class “others” is not evaluated in the final
scoring.

In the following lines we describe each of the acous-
tic classes defined: the class “speech” contains speech
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under studio recording conditions using a close micro-
phone. The “music” class contains music understood
in a general sense. The “speech over music” class is
defined as the overlap of classes “speech” and “music”
The “speech over noise” class contains all the speech that
is not recorded under studio conditions or overlapped
with any kind of noise. Two voices overlapping are also
defined as “speech over noise”. Finally, “others” contains
any audio that does not match the four previously defined
classes.

As it can be appreciated, there is a clear unbalance
in the class distribution because most of the data con-
tains speech (92% combining speech, speech over noise
and speech over music). However, classes that contain
music are underrepresented (only 20% combining music
and speech over music). The main language of the 3/24
TV channel is Catalan, with the 87% of the speech seg-
ments coming from Catalan speakers and the remaining
13% coming from Spanish speakers. Concerning the gen-
der distribution, 63% of speech fragments are from male
speakers and 37% are from female speakers.

Additionally, we describe the data released in the
Albayzin 2012 audio segmentation evaluation [51] that is
used in the final part of our experimentation to check
the generalisation capabilities of our proposal. The new
audio introduced in this version is taken from Aragén
radio archive, separated in 3 different subsets: two devel-
opments sets of 2h each (devl and dev2), and a test set
consisting of 18h. All the audio is sampled at 16 kHz.
The use of previous data released in the 2010 version was
allowed in order to train the segmentation systems for the
2012 Albayzin evaluation.

As in the 2010 Albayzin evaluation, the main goal is
segmenting an audio document indicating where speech,
music and/or noise is present. However, in the 2012 ver-
sion, no prior classes are defined and a multiple layer
labelling is proposed, allowing 3 possible overlapped
classes, speech, music and noise, to be present at any time
in the audio document. This format slightly differs with
the experimental setup presented for the Albayzin 2010
evaluation, but it is equivalent to a multiclass segmenta-
tion task if a set of non-overlapped labels are generated
considering the different combinations of speech, music
and noise. A more detailed explanation of this process is
given in Subsection 5.6.

4.2 Metrics

The main metric used to evaluate our results is the seg-
mentation error rate (SER). This metric is inspired by
the diarisation error rate (DER), a metric used in NIST
speaker diarisation evaluations [63], and it can be seen
as the ratio of the total length of the incorrectly classi-
fied audio to the total length of the audio in the reference.
Given a dataset to evaluate €2, each document is divided
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into continuous segments and the segmentation error
time for each segment # is defined as:

En) = T(”)[max(Nref(n)» Nsys(n)) — Neorrect(1)]  (2)

where T'(n) is the duration of the segment n, Nycf(n) is the
number of reference classes that are present in segment #,
Niys(n) is the number of classes predicted by the system
that are present in segment 7 and Neorrect (#2) is the number
of reference classes that are present in segment # and were
correctly assigned by the segmentation system. This way,
the SER is computed as follows:

ZneQ & (l’l)
ZneQ(T(”)Nref(”))

Additionally, the original metric proposed in the
Albayzin 2010 evaluation is considered in our exper-
iments in order to favour the comparison with pre-
vious publications. This metric represents the average
class error over all the classes. Let C be the set of the
five acoustic classes defined in the evaluation, C =
{mu, sp, sm, sn, ot}. This way the error metric can be com-
puted according to the following equation:

SER = (3)

dur(miss;) + dur(fa;)
A = 4
vg error dar(et) (4)

where dur(miss;) is the total duration of all miss errors for
the ith acoustic class, dur(fa;) is the total duration of all
false alarm errors for the ith acoustic class and dur(ref;)
is the total duration of the ith acoustic class according to
the reference. Using this metric, an incorrectly classified
segment computes as a miss error for an acoustic class
and a false alarm error for another. Due to the fact that
class distribution is clearly unbalanced, errors from differ-
ent acoustic classes are weighted differently according to
the total duration of the class in the database. This met-
ric was originally proposed in the evaluation because, by
computing the average of the error over all the acoustic
classes, participants are encouraged not to focus only on
the best represented classes in the database.

In both metrics, SER and average class error, a collar of
=+ 1 second around each reference boundary is not scored
in order to avoid uncertainty about when an acoustic
class ends or begins, and to consider inconsistent human
annotations.

In our final analysis, we also report other metrics tradi-
tionally shown for classification tasks such as the overall
accuracy, and the precision, recall and F; score per class.
For the set of classes C defined previously, they can be
computed as shown in the following equations:

tpi + tni
Accuracy = — Z
|C] C tp; Tt + fp; + fn;

ic

(5)
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tp.
Precision; = _ i (6)
tp; + p;
tp.
Recall; = _ i (7)
tpi + fn,'

Precision; - Recall;
Fii=2 — ®)
Precision; + Recall;

where tp; represents the number of true-positive predic-
tions for the class i, tn; is the number of true-negative
predictions for the class i, fp; is the number of false-
positive predictions for the class i, and fn; is the number
of false-negative predictions for the class i.

5 Results

5.1 Feature analysis

Two different kinds of errors can be differentiated in
our system: a classification error due to an incorrectly
labelled frame, and a segmentation error due to a tempo-
ral mismatch between the hypothesis and reference class
boundaries. In a first set of experiments only the clas-
sification errors are taken into account because ground
truth segments are given to the system. A classifica-
tion label is emitted then as the class maximising the
score averaged for the whole ground truth segment.
Then, the classification error is computed simply divid-
ing the number of oracle segments incorrectly classified
by the total number of oracle segments. In the follow-
ing set of experiments both segmentation and classifica-
tion errors are shown as no boundaries are given to the
system.

In order to validate experimentally our proposal, dif-
ferent frontend configurations were assessed. Our setup
started with a 64 band Mel log filter bank; then, fre-
quency resolution was gradually increased evaluating an
RNN classifier with 80 and 96 band Mel log filter bank
as input. As explained before, chroma features were also
incorporated aiming to discriminate correctly the music
classes. Eventually, first- and second-order derivatives
were computed to include information about the audio
signal dynamics. All these cases use a simple setup con-
sisting of an RNN classifier based on a single BLSTM
layer.

In Table 1, we show the classification error obtained
with the RNN classifier using oracle boundaries for differ-
ent frontend configurations.

It can be seen that increasing the frequency resolution
leads to a consistent improvement in the classification
accuracy while the number of parameters of the model
is also increased. However, when incorporating chroma
features the improvement obtained is significantly better
than the one obtained with a bigger frequency resolution.
If we compare the best log Mel filter bank setup (96 bands)
with the best one with chroma (80 bands + Chr) it can
be seen that, with a similar number of parameters, the
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Table 1 Classification error with oracle boundaries for the
TBLSTM RNN classifier on the test partition for different frontend
configurations (Chr, chroma; A, AA, 1st and 2nd order
derivatives)

Features Classification error (%) # Parameters
64 bands 16.22 200K
80 bands 16.20 217K
96 bands 16.05 233K
64 bands + Chr 13.40 213K
80 bands + Chr 13.80 229K
96 bands + Chr 14.51 246K
64 bands + Chr+ A, AA 1335 368K
80 bands + Chr+ A, AA 13.34 418K
96 bands + Chr+ A, AA 1337 467K

error drops significantly. Finally, first- and second-order
derivatives are computed, achieving the best result in
our experiment at the cost of increasing the number of
parameters in the model.

Additionally, in Table 2, we present the segmentation
error rate and the error per class obtained with the RNN
classifier. This results now takes into account both classi-
fication and segmentation error.

In this case, the best Mel log filterbank configuration is
achieved using 80 bands. Increasing the frequency resolu-
tion seems to not be so relevant when dealing with the seg-
mentation task compared to the classification one. We can
notice that, by incorporating chroma features, the error
in the class “Speech over music” and “Speech over noise”
decreases significantly when comparing the 64 bands to
the same one with chroma, with a relative improvement

Table 2 SER, error per class and average class error for the
1BLSTM RNN classifier on the test partition for different frontend
configurations (Chr, chroma; A, AA, 1st and 2nd order
derivatives)

Class error (%)

Feats SER Avg
mu sp sm sn

64 bands 1818 1854 3243 3248 3576 29.80
80 bands 17.70 18.19 31.33 31.41 34.91 28.96
96 bands 1793 2068 3084 3209 3425 2946
64 bands + Chr 16.97 18.83 30.88 29.92 32.76 28.10
80 bands + Chr 1789 19.77 3223 2955 3392 2887
96 bands + Chr 1765 1975 3068 3162 3366 2893
64 bands + Chr+ A, AA 1661 1746 2993 2926 3260 2731
80bands+Chr+ A, AA 16.25 16.82 30.00 26.75 32.07 26.41
96 bands + Chr+ A, AA 1646 1738 2992 2798 3270 27.00




Gimeno et al. EURASIP Journal on Audio, Speech, and Music Processing

of 8.55% and 9.15% respectively. This is due to the capa-
bilities of chroma features to capture musical information,
which helps our system to discriminate noise and music
in a more accurate way. This behaviour is also consistent
with the classification accuracy improvement observed
when using chroma features in the ground truth boundary
experiments. The best result is obtained with the frontend
that combines 80 bands, chroma features and the first and
second order derivatives with a SER of 16.25%, equivalent
to an average class error of 26.41%. Furthermore, it can be
observed that including first and second order derivatives
shows a greater relative improvement when considering
the segmentation errors compared to the case where only
classification errors are considered. We can infer then,
that the dynamic information incorporated by the 1st and
2nd order derivatives may be more relevant to generate
the class boundaries than to the classification task itself.

So far, only an architecture with a single BLSTM layer
has been evaluated. In the following experiment our goal
is to determine the most appropriate number of BLSTM
layers for our system. Choosing the best feature frontend
(80 Mel + chroma + 1st and 2nd derivatives), we evalu-
ate now our system stacking two and three BLSTM layers.
Results for this experiment are presented in Table 3.

Including 2 stacked BLSTM layers shows a slight relative
improvement of around 2.20% compared to the case of
using a single BLSTM layer. However, no further improve-
ment is observed when including a third layer. That is
why we choose the architecture using 2 BLSTM stacked
layers as our baseline in futures experiments. An aver-
age class error of 25.84% is obtained, equivalent to a SER
of 15.91%. This results are the one we compare against
in the following sections to evaluate the different neural
architectures proposed. In the following sections, the per-
formance of our full system combining the RNN classifier
and the HMM resegmentation module is evaluated with a
new set of experiments.

5.2 HMM resegmentation

With the objective of illustrating the influence of the
inertia imposed by the resegmentation module on the
segmentation system, Fig. 4 shows the scatter plot of the
relative improvement in performance using the HMM

Table 3 SER, error per class and average class error for the RNN
classifier on the test partition for the best frontend configurations
and different number of stacked BLSTM layers

Class error (%)

Layers SER Avg
mu sp sm sn

1 BLSTM 16.25 16.82 30.00 26.75 3207 2641

2 BLSTM 15.91 16.28 28.82 26.32 3194 25.84

3 BLSTM 16.02 1571 2746 30.09 30.74 26.00
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resegmentation versus the minimum segment length
(Tmin) for different values of the downsampling factor. It
can be seen that the best performing configurations have
a minimum segment length between 0.5 and 1.5 seconds,
values which are in the order of magnitude of the 2s
collar applied in the evaluation. A fast decrease in per-
formance is observed when the minimum segment length
is increased for values above 3s. With such configura-
tion, our system is not able to capture some of the fast
transitions happening in the audio; thus, a considerable
amount of errors are likely to happen, and the perfor-
mance is decreased. However, no configuration showed a
decrease in performance when compared to the case of not
using the HMM resegmentation.

In Table 4, we show the results on the test partition
for the full segmentation system that combines the RNN
classifier and the HMM resegmentation for the best fea-
ture configuration and different values of downsampling
factor, L, and minimum segment length, Tin.

Compared to the best results in Table 2, it can clearly
be seen that the HMM resegmentation reduces signifi-
cantly the system error by forcing a minimum segment
length for the class labels. This error reduction is equiv-
alent to a 21.68% relative improvement in terms of SER
for the best configuration. Again, it can be observed that,
as long as the Ty, value stays in the range between 0.5
and 1.5s, the performance of the system is not highly
affected by the variations in the downsampling factor.
The SER metric in the four parameters configuration pre-
sented in Table 4 varies from 12.46 to 12.57%, an absolute
difference of only 0.11% between the best and the worst
case. This way, reducing the high frequency transitions
through imposing a certain amount of inertia in the neu-
ral network output, our segmentation system achieves a
SER of 12.46%. This value serves also for comparison in
the following lines, where new neural architectures are
evaluated.

5.3 Combination and pooling experiments

Our initial experiments using the HMM resegmentation
module proved that reducing the temporal resolution of
the output is beneficial for the segmentation system. Our
goal introducing the “Combination and pooling” block is
that this downsampling could be implemented inside the
neural network itself.

The temporal pooling layers are configurable via a pool-
ing factor parameter, N, that controls the length of the
output sequences compared to the input length. The
pooling layers separate an input sequence in N different
subsequences with the same length and no overlaping.
Then, the output is computed applying a given pooling
mechanism for each of these subsequences. In all cases,
a single element is returned for every N frames in the
input. On the other hand, the 1D convolutional layer is
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Fig. 4 Relative improvement over the RNN classifier using the HMM resegmentation module for the best feature configuration versus minimum
segment length forced by the system

configured to have the same number of input and output
channels in all cases, a kernel size of 1 and no padding.

In Table 5, we present the results obtained when using
the “Combination and Pooling” block in all its variations
before the first BLSTM layer. For this experiment, we con-
sider an average pooling mechanism with a pooling factor
of N = 10.

Experimental results show that using temporal pooling
before the first BLSTM layer strongly degrades the per-
formance of the segmentation system. The degradation
is even stronger when first combining the input features
using a 1D convolutional layer with a relative degradation

Table 4 SER, error per class and average class error for the RNN
classifier combined with the resegmentation module over test
partition for the best feature configuration and different values of
the down-sampling factor, L, and minimum segment length, Trin

Class error (%)

of 11.80% compared to the baseline RNN classifier. This
may come motivated by an early reduction of the input
dimensionality, before the neural network has been able
to process any kind of information. Bearing in mind these
results we can discard this type of configurations in future
experiments.

In the following lines, we present the results for the
other two remaining configurations implemented: the one
using the “Combination and Pooling” block between the
first and second BLSTM layers and the one with the
block right after the last BLSTM layer. Figure 5 shows
the relative improvement compared to the RNN baseline
classifier for the setup using the combination and pooling
block between both BLSTM layers and the setup using the
combination and pooling block after the last BLSTM layer.

Table 5 Average class error and relative improvement over the
baseline system for the RNN classifier with the combination and

L, Tonin SER Avg

mu sp sm sn pooling block before the first BLSTM layer on the test partition
25,1255 12.49 14.55 21.99 19.08 24.88 2013 Config Avg class error (%) Rel. improvement (%)
35,145 1248 14.31 2226 18.70 25.10 20.10 Conv Pool BLSTM; » 29.30 —11.80
45,095 12.46 14.19 22.14 18.82 25.04 20.05 Conv BLSTM; » 26.26 —1.60
55,0555 1257 16.12 22.00 18.94 24.95 20.50 Pool BLSTM » 2831 —8.72
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Fig. 5 Relative improvement over the baseline RNN classifier for the setup using the combination and pool block between both BLSTM layers and
the setup using the combination and pooling block after the last BLSTM layer
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In these architectures, we have experimented with three
different values for the pooling factor: 5, 10 and 25, and
an average pooling mechanism. We also present in green
straight lines the architectures using only a 1D conlutional
layer used, with an independent behaviour of the pooling
factor.

Concerning the convolutional only architectures (green
lines), it can be observed that recombining internal BLSTM
representations does not show a significant improve-
ment in performance, with the BLSTM;ConvBLSTM;
system really close to the baseline classifier and the
BLSTM;,Conv showing a relative improvement of
around 1.8%. The best results are obtained consistently
among three evaluated pooling factors for the BLSTM;
PoolBLSTM; configuration (red circles), where a tem-
poral pooling layer is used in between the first and the
second BLSTM layers. The best case achieves a relative
improvement of 3.8% compared to the baseline system.
Furthermore, this new approach does not add more
parameters to the model and it decreases computational
complexity because the second BLSTM layer is working at
a smaller sampling rate.

Being proved that the best performing setup is the one
using only a pooling layer in between the first and second
BLSTM layers, in the following experiment we perform
a deeper analysis of this neural architecture, considering
now two different pooling mechanism: average pooling
and max pooling, and a wider variation range of the pool-
ing factor, from 10 to 100. In Fig. 6 we present the results
for all the evaluated configurations in terms of the relative
improvement obtained when compared to the baseline
RNN classifier output using the best feature configura-
tion (80 bands + chroma + derivatives). Two differentiated
behaviours can be observed: the average pooling configu-
rations (blue line) show a general improvement between
3 and 4% without a strong dependence on the pooling
factor. However, max pooling (red line) degrades its per-
formance significantly when increasing the pooling factor,
even showing worse results than the baseline for pooling
factors greater than 25. Bearing this results in mind, only
the average pooling configurations are taken into account
in the following experiments.

In Table 6 we show the detailed results for the average
pooling setup experiments in terms of SER, error per class
and average class error.

The best result is obtained for the pooling factor 10,
immediately followed by the configurations of 5 and 100.
These results show a relative improvement of 3.82%, 3.77%
and 3.69% respectively, without increasing the number of
parameters in the neural network and reducing the com-
putational load of our system because the second BLSTM
layer is working at a smaller sampling rate.

Finally, results of the BLSTM;Poo/BLSTM; system
combined with the HMM resegmentation module are
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Table 6 SER, error per class and average class error for the
BLSTM1PoolBLSTM, RNN classifier on the test partition for
different pooling factors (N) and average pooling

Class error (%)

N SER Avg
mu sp sm sn
5 1549 1557 2871 2463 3071 2490
10 1547 1555 2916 2434 3051  24.89
25 1551 1685 2707 2623 3006 2508
50 1553 1640 2860 2492 3085 2519
75 1554 1687 2797 2555 2988 2507
100 1549 1822 2677 2491 2980 2492
Nopool 1591 1628 2882 2632 3194 2584

shown in Table 7. Compared to the RNN baseline sys-
tem using the HMM module, no significant improve-
ment is observed, with the SER decreasing from 20.05
to 19.90% in the N = 10 setup. A performance degra-
dation is even observed for bigger pooling factor setup.
This could be motivated by the fact that the pooling
layer has already performed part of the smoothing that
the HMM did in the RNN baseline architecture, so the
combination of both pooling layers and HMM module
could not lead to a significant improvement. However,
this architecture is interesting because this way we can
decrease the computational load of the HMM module that
now is working at a sampling rate ten times smaller.

5.4 Mixup data augmentation

Mixup is a data-agnostic data augmentation routine [55]
that generates new virtual training examples. These vir-
tual examples are generated according to the following
equations:

{iz,\xi+(1 — N)xj ©)

Yy = Ayi + (1 = Ay;j

where (xj,Xj) are two feature vectors randomly drawn
from the training dataset and (yj, yj) are their correspond-
ing one hot encoding labels, and A €[0, 1]. In the practical
implementation A ~ Beta(a, «), with a being the mixup

Table 7 SER, error per class and average class error for the
BLSTM;Poo/BLSTM> RNN classifier combined with the HHM
resegmentation on the test partition for different pooling
factors (N) and average pooling

Class error (%)

N SER Avg
mu sp sm sn

5 1248 1431 2216 1869 2512 2007

10 12.41  12.87 2258 1916 24.99 19.90

100 1347 2285 2432 1931 2620  23.17

Nopool 1246 1419 2214 1852 2504 2005
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hyperparameter that controls the strength of the interpo-
lation for the pairs of examples. Furthermore, this tech-
nique is simple to implement and it does not require a high
computational overhead. It is important to note that the
use of mixup augmentation leads to no addition of more
external datasets, so the proposed system is still under the
conditions imposed by the Albayzin 2010 evaluation.

Mixup augmentation has been shown to improve model
generalisation capabilities in different domains, including
some audio classification tasks [64]. In our set of exper-
iments, mixup augmentation is applied directly in the
feature space.

Table 8 shows the results obtained training the
BLSTMPoolBLSTM; architecture using mixup data aug-
mentation for different o values compared to the same
system trained without mixup augmentation. It can be
seen that the result is not higly dependent on the «
hyperparameter. Best result is obtained for «=0.2, how-
ever all the evaluated configuration show similar results.
In general terms, mixup augmentation is able to achieve
a relative improvement of 5% compared to a system not
trained using mixup.

It can be noted that mixup augmentation shows a signif-
icant improvement on the “Speech over music” class with
an absolute improvement of 2.23%. This class is the one
defined as a pure combination of other two classes in the
dataset. This fact shows that generating new virtual exam-
ples as a linear combination in the feature domain can be
beneficial for our segmentation system.

As our final experiment, we present in Table 9 the
results combining the BLSTM;Poo/BLSTM3 RNN classi-
fier trained with mixup data augmentation and the HMM
resegmentation module.

With this setup, we achieve the best performing seg-
mentation system in this work, which is equivalent to a
SER of 11.80% and an average class error of 19.25%.

5.5 Discussion
Once our different system proposals have been experi-
mentally evaluated, in this subsection we aim to compare

Table 8 SER, error per class and average class error on the test
partition for the BLSTM1Poo/BLSTM; RNN classifier (Avg pooling,
N = 10) trained using mixup augmentation with

hyperparameter «
) Class error (%)
Mixup SER Avg
mu sp sm sn

o =0.1 14.84 15.21 27.99 23.05 29.34 23.90
a =02 14.80 14.64 28.20 22,01 29.01 23.56
a=03 14.81 16.03 26.32 23.89 28.22 23.62
No mixup 1547 15.55 29.16 24.34 30.51 24.89
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Table 9 SER, error per class and average class error on the test
partition for the BLSTM;Poo/BLSTM; RNN classifier (Avg pooling,
N = 10) trained with mixup augmentation with hyperparameter
a combined with the HHM resegmentation

Class error (%)

Mixup SER Avg
mu sp sm sn

a =01 12.88 1439 23.87 18.68 25.70 20.66

a=02 11.80 1246 22.86 17.34 2435 19.25

a=03 12.14 14.80 21.71 17.37 2354 19.36

No mixup 1241 12.87 22.58 19.16 24.99 19.90

our results with the ones obtained previously in the litera-
ture and perform an analysis on the segmentation system
performance.

Figure 7 shows the results obtained in the Albayzin 2010
test partition by different systems already presented in
the literature. The winner team of the original Albayzin
2010 evaluation proposed a segmentation by classifica-
tion approach based on a hierarchical GMM/HMM (dark
blue) including MFCCs, chroma and spectral entropy
as input feature [65]. The best result so far in this
database was obtained with a solution based on factor
analysis combined with a Gaussian backend (orange) and
MEFCCs with 1st and 2nd order derivatives as input fea-
tures [17]. Our three previously explained final results
combining the RNN classifier and the HMM resegmen-
tation are also presented: the RNN baseline (purple),
the BLSTM; Poo/BLSTM; RNN approach (green) and the
BLSTM;Poo/BLSTM; RNN trained using mixup augmen-
tation (light blue).

Additionally, in order to compare our results with a
DNN-based system, we trained and evaluated a different
system using the neural architecture proposed as baseline
in the DCASE challenge for sound environment detection
[66], a task similar to the one presented in this paper. This
approach is based on 3 2D CNN layers with 64 channels
each followed by a single GRU cell with 64 hidden units.
The input features are 64 dimensional log Mel filter banks.
It can be seen that our three systems outperform previ-
ous results in this database, with our RNN combined with
the pooling setup and trained with mixup augmentation
achieving a relative improvement of 19.72% in terms of
SER compared to the FA HMM approach. Furthermore,
if the comparison is made with the DCASE baseline neu-
ral architecture, a DNN-based system, a 22.97% relative
improvement is obtained with our best system.

Results presented in Figure 7 are complemented with
the ones shown in Table 10 that introduces the average
class error and the error per class obtained for the same
systems presented before.

A general improvement over all the classes can be
observed comparing to the previous approaches to this
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Fig. 7 Results obtained on the Albayzin 2010 test partition for different systems proposed in the literature compared to our proposed RNN

task. It is specially significant the error difference obtained
in the classes that contain music (absolute decrease of
6.34% for “Music” and 6.26% for “Speech over music”
comparing our best system to the FA HMM system). On
the other hand, the class “Speech” obtains really similar
results. This difference in performance may be moti-
vated by the introduction of chroma features, helping the
adequately representation of music, and the linear combi-
nation of classes in training done using mixup augmenta-
tion. If the comparison is made with another DNN-based
approach like the proposed DCASE baseline, again we can
observe a general improvement in performance over all
the classes evaluated.

As a different performance measure, Fig. 8 shows the
confusion matrix for the best system presented in this
work. It can be seen that one of the highest error terms is

Table 10 Average class error and error per class obtained on the
Albayzin 2010 test partition for different systems proposed in the
literature compared to our proposed RNN approaches

Class error (%)

System Avg
mu sp sm sn

Eval winner [65] 19.20 39.50 25.00 37.20 3030
FAHMM [17] 18.80 23.70 *23.60 29.10 23.80
DCASE Baseline 19.03 2558 2359 29.52 25.18
RNN baseline [52] 14.19 22.14 18.82 25.04 20.05
RNN + Pool 12.87 2258 19.16 24.99 19.90
RNN + Pool + mixup ~ 12.46  22.86 17.34 2435 19.25

obtained for the frames predicted as “Speech over noise”
but are labelled as “Speech over music’, with 12% of the
frames from the last class. Something similar happens
with 12% of the “Speech over noise” frames incorrectly
classified as “Speech”. The class “Music” obtains the best
classification results despite being significantly underrep-
resented in the database (only 5% of total). As it was
observed when comparing with the other systems in the
literature, this fact may come motivated by the use of
chroma features, capturing adequately the musical struc-
tures and helping discriminate correctly music. The worst
classification results are given for the “Others” class, not
taken into account for scoring. This one, like music, is also
heavily underrepresented in the database (3% of total),
but in this case, this class comprises any other signal out-
side the definition of the other 4 classes what results in a
unspecific definition making the classification harder.

Finally, we report the results of our best performing
system in some of the traditional classifications metrics
shown in the literature. Table 11 shows the overall accu-
racy and the precision, recall and F1 score, both per class
and averaged, at frame level for the Albayzin 2010 test
data evaluated using our BLSTM;Poo/BLSTM; proposal
trained using mixup augmentation.

Our system achieves an overall accuracy of 85%, with a
balanced average result in precision and recall.

As we have already explained in this paper, the audio
segmentation task is very often a preprocessing step used
before other tasks. Therefore, the complexity of the mod-
els to be used must take into account a trade-off between
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computation time and accuracy. In order to asses this
trade-off, Table 12 presents the processing time required
by our best performing system to process a 1-h-long audio
both using a CPU (Intel Xeon E5-220@2 GHz with 64 Gb
RAM) and a GPU (GeForce GTX 1060) setup, with a sin-
gle thread execution being used in all cases. In both cases,
the run time is below 2 min, achieving a real-time factor
close to 0.03. From our point of view, this is a reasonable
processing time for this task. The most time-consuming
part is the feature extraction. However, this time is mainly
due to the use of a single core execution and, if it were to

Table 11 Accuracy (Acc.) and precision (Prec), recall (Rec) and F1
score (F1) per class and on average for the Albayzin 2010 test
data evaluated using the best performing system presented in
this paper

Class Prec Rec F1

mu 0.88 0.89 0.88
sm 0.93 0.84 0.89
sn 0.85 0.84 0.84
sp 0.83 0.88 0.85
Avg 0.87 0.86 0.87

Acc. 0.85

be implemented in a real product application, it could be
reduced using multi-threading strategies and other code
optimisation techniques. Additionally, Mel filter banks
features are suitable to be reused in other posterior tasks.

5.6 Evaluation on a different dataset

In the previous subsection, we have analysed the results
achieved with our proposed segmentation system on the
Albayzin 2010 test data and we have proven the perfor-
mance of our method compared to previous results in the
literature. In order to evaluate the generalisation capabili-
ties of our proposal, in this subsection we aim to evaluate
it on a different dataset, namely the CARTYV dataset, pro-
posed in the Albayzin 2012 evaluation. This dataset differs
from the data presented in the 2010 version: the over-
lap of three different classes is allowed (speech, music
and noise). In order to match our multiclass classification

Table 12 Processing time required by our best performing
system to process a 1-hour long audio using a CPU and GPU
bases setup

Feat extraction Inference Total time RTF
CPU . 28s Tmin 56s 0.032
Tmin 28s
GPU 2s Tmin 30s 0.025
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framework, this format needs to be converted to non-
overlapping classes, obtaining 8 different classes: “speech,’
“music,” “noise,” “speech and music,” “speech and noise;
“speech and music and noise, “music and noise” and
“silence” Due to the similarity with the class defined as
“others” in the Albayzin 2010 evaluation, we decided to
combine “music and noise,” “noise” and “silence” (they
represent only the 3% of the total time in the database) in
a single class that we also name as “others.” Therefore, we
can see this problem in a similar way to the task in the
Albayzin 2010 dataset, but including a new class “speech
and music and noise” that was not present in the 2010
version of the evaluation.

The evaluation of our system trained on the Albayzin
2010 data on the Albayzin 2012 test data would imply
the consistent loss of the “speech and music and noise”
class, that is not present in the data seen by the neu-
ral network. It also must be noticed that the change of
domain from television to radio data could affect the
results obtained. Furthermore, the low amount of data
available from CARTYV dataset in the development sub-
sets (devl and dev2 contain only 4h of audio) suggests
that training a new neural network from scratch may not
be the most suitable solution.

Taking all this statements into account, we opted for a
solution that adapts our best performing model trained
on the Albayzin 2010 data to the radio domain using the
4 hours of development data available from the CARTV
dataset. This adaptation process is described in the fol-
lowing lines:

® The pretrained model on the Albayzin 2010 data is
taken as the training starting point of the neural net-
work. The final classification layer is removed and
then a new one with 6 output neurons is randomly
initialised.

e The whole neural network (BLSTM layers and final
classification layer) is trained with the CARTV devl
and dev2 data using the same strategies presented in
the previous sections (temporal pooling and mixup
augmentation). The learning rate used in the BLSTM
layers is ten times smaller than the learning rate used
for the final classification layer.

The HMM resegmentation is used in the same way
as described previously in this paper. Aiming to com-
pare with a different DNN-based architecture, a similar
approach is done in the DCASE baseline architecture,
removing the last linear layer and randomly initialising
a new one with 6 neurons, to then retrain the neural
network with development data from CARTV dataset.

Table 13 presents the results on the Albayzin 2012
test data for different systems compared to our pro-
posed RNN-based approach combined with the HMM
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Table 13 SER on the Albayzin 2012 test partition for different
systems proposed in the literature compared to our proposed
RNN approach

System SER
RNN proposal (pool + mixup) 24.93
DCASE baseline 31.21
GMM + Viterbi decoding [67] 26.34
HMM-GMM [68] 26.53

resegmentation module in terms of SER. In addition to
our proposal and the DCASE baseline architecture, we
show the results of the two best performing systems in the
original Albayzin 2012 evaluation. The first system pre-
sented [67] is based on the use of 1024 mixtures GMMs
to model each of the possible combinations of acoustic
classes. Then, a Viterbi decoding is performed to obtain
the segmentation labels. Input features are MFCCs and
first and second order derivatives. The second system
presented [68] applied an HMM-GMM speech recogni-
tion approach in which the vocabulary set is defined by
the possible acoustic classes. Input is based on MFCC
features, considering first- and second-order derivatives
too.

It can be observed that if we compare the result obtained
with a different DNN approach such as the DCASE base-
line architecture, our systems achieves a relative improve-
ment of 20.12% in terms of SER. This improvement is
in the same order of magnitude as the improvement
observed in the 2010 evaluation data, reflecting a con-
sistent behaviour for our proposed neural architecture.
If the focus is set on the results achieved in the original
Albayzin 2012 evaluation, a 5.35% relative improvement
can be observed compared to the evaluation winner. This
improvement is significantly smaller than the improve-
ment achieved in the Albayzin 2010 evaluation. This
fact may come motivated by the small amount of in-
domain data released for the 2012 evaluation. Our DNN
approach would be able to profit from a bigger amount of
data, whereas more traditional approaches such as GMM-
HMM can achieve competitive results with a smaller
amount of data.

6 Conclusions

In this paper, we have explored several architectures of
RNN-based classifiers for the multiclass audio segmen-
tation task. Our proposal, based on a segmentation-by-
classification approach, combines the BLSTM modelling
capabilities with an HMM backend to smooth the results.
Different front-ends have been evaluated, proving how
useful chroma features can be when representing music.
Furthermore, the combination of BLSTM and HMM
was proved to be appropriate, reducing significantly the
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system error by forcing a minimum segment length for the
segmentation labels.

We propose the introduction of a “Combination and
Pooling” block in the neural architecture in several con-
figurations. We showed that a time pooling architecture
then can be used in between two BLSTM layers to get a
subsampled output, removing temporal redundant infor-
mation and achieving a relative improvement of around
5% in the neural network output. This result is still under-
performing our proposed HMM resegmentation module,
but we believe it is an interesting insight into the introduc-
tion of pure DNN smoothing in the audio segmentation
tasks. Yet further research is needed on this technique to
fill the gap between the HMM and the DNN pooling.

Furthermore, through mixup data augmentation, a data-
agnostic data augmentation technique, we introduced
another 5% relative improvement on the neural network
modelling classes as a linear combination. No additional
datasets were include to work under the Albayzin 2010
evaluation conditions.

Competitive results have been obtained with our RNN-
based approach, resulting in a relative improvement of
19.72% and 5.35%, respectively, compared to the best
result in the literature so far for the Albayzin 2010 and
2012 evaluations.
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