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Abstract

In this paper, we introduce a quadratic approach for single-channel noise reduction. The desired signal magnitude is
estimated by applying a linear filter to a modified version of the observations’ vector. The modified version is
constructed from a Kronecker product of the observations’ vector with its complex conjugate. The estimated signal
magnitude is multiplied by a complex exponential whose phase is obtained using a conventional linear filtering
approach. We focus on the linear and quadratic maximum signal-to-noise ratio (SNR) filters and demonstrate that the
quadratic filter is superior in terms of subband SNR gains. In addition, in the context of speech enhancement, we show
that the quadratic filter is ideally preferable in terms of perceptual evaluation of speech quality (PESQ) and short-time
objective intelligibility (STOI) scores. The advantages, compared to the conventional linear filtering approach, are
particularly significant for low input SNRs, at the expanse of a higher computational complexity. The results are verified
in practical scenarios with nonstationary noise and in comparison to well-known speech enhancement methods. We
demonstrate that the quadratic maximum SNR filter may be superior, depending on the nonstationary noise type.

Keywords: Quadratic filtering, Maximum SNR filter, Frequency-domain filtering, Optimal filters, Nonlinear processing,
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1 Introduction
Communications and signal processing systems are very
likely to operate in adverse environments, which are char-
acterized by the presence of background noise that might
severely degrade the quality of desired signals. Noise
reduction methods are designed and applied to noisy sig-
nals with the objective of improving their quality and
attenuating the background noise. Single-channel noise
reduction (SCNR) methods are often implemented in
physically small or low cost systems. SCNR filters are
usually derived by minimizing a given distortion func-
tion between the clean signal and its estimate, or by
minimizing the energy of the residual noise under some
constraints.

Frequency-domain methods, e.g., [1-6], are typically
formulated on a frame basis, that is, a frame of
noisy observations is transformed into the frequency
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(or time-frequency) domain using the short-time Fourier
transform (STFT). Then, the optimal filter is derived in
the chosen domain and applied to the transformed obser-
vations. Finally, the filtered observations are transformed
back to the time domain using the inverse STFT.

It is clear by construction that signals in the fre-
quency domain are complex. Nonetheless, in many cases,
most of the information in a desired signal is stored
in its spectral magnitude. Indeed, this property is well
known for speech signals, whose spectral magnitude has
received special attention in the context of statistical mod-
els and optimal estimators, e.g., a maximum-likelihood
spectral magnitude estimator [1], short-time spectral [2],
log-spectral [3] and optimally modified log-spectral [7]
magnitude estimators, and a maximum a posteriori spec-
tral magnitude estimator [8]. These celebrated estima-
tors assume that time trajectories in the STFT domain
of clean speech and noise signals are independent com-
plex Gaussian random processes. Other statistical models,
e.g., super-Gaussian [9-11], Gamma [12, 13], or Laplace
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[14, 15] distributions, were also investigated and were
demonstrated to be potentially more effective, depending
on the desired speech spectral magnitude estimator and
the speech conditional variance evolution model. While
all the foregoing estimators rely on the strong correla-
tion between magnitudes of successive coefficients (in a
fixed frequency) [5, 16, 17], their derivation is typically
cumbersome and requires one to numerically evaluate
non-analytical functions following the assumed statistical
speech and noise models. Moreover, with the aforemen-
tioned spectral magnitude correlation hidden behind first-
order recursive temporal processes, additional parameters
and lower boundaries must carefully be set to guarantee
the model tracking over time.

Recently, it has been proposed to exploit the self-
correlation property of STFT domain coefficients in a lin-
ear manner. That is, instead of explicitly assuming statis-
tical models which depend on unobserved measures, e.g.,
the a priori SNR, it was suggested to employ linear filters
which require the second-order statistics of the desired
signal and noise. These linear filters are derived within a
multi-frame framework that takes into account the inter-
frame correlation of the STFT coefficients from successive
time frames and adjacent frequencies [5, 18, 19]. The
multi-frame formulation highly resembles a sensor array
formulation, which implies that conventional array fil-
ters may be modified for the single-channel case, but
with an interframe correlation interpretation rather than
spatial sensing. Examples of such filters are the Wiener
filter, the minimum variance distortionless response
(MVDR) filter [5, 18], the linearly constrained mini-
mum variance (LCMYV) filter [5], and the maximum SNR
filter [19].

In this paper, we present a quadratic approach for SCNR
which extends the multi-frame approach suggested in
[18]. The interframe correlation property is taken into
account in the same manner as in [18], but the noise
reduction filters are not applied to the observations’ vec-
tor directly, but rather to its modified version. The mod-
ified version is obtained from the Kronecker product of
the observations’ vector and its complex conjugate. In
its mathematical formulation, this approach is similar to
the approach presented in [20] in the context of multi-
channel noise reduction. On the contrary, while in [20]
the essence of the innovation is the direct utilization of
higher-order statistics, the key idea in this work is a gen-
eralization of the single-channel linear filtering approach.
We demonstrate that by focusing on the estimation of
the desired signal magnitude in the transform domain,
we are able to achieve further reduction of the back-
ground noise. More specifically, we propose the quadratic
maximum SNR filter, which may potentially achieve a
theoretically unbounded subband output SNR. We com-
pare the quadratic and the linear maximum SNR filters
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and demonstrate that the quadratic filter is superior, in
particular in low input SNR environments.

The rest of the paper is organized as follows. In
Section 2, we present the signal model and formulate the
SCNR problem. In Section 3, we introduce the quadratic
filtering approach, from which quadratic filters may be
derived. In Section 4, we propose a quadratic maximum
SNR filter and derive it from two different perspectives.
In Section 5, we focus on a toy example and theoreti-
cally evaluate the performances of the linear and quadratic
maximum SNR filters. Finally, in Section 6, we demon-
strate the noise reduction capabilities of the quadratic
maximum SNR filter. We compare its performance to
existing speech enhancement methods in ideal and practi-
cal conditions and in the presence of nonstationary noise.

2 Signal model and problem formulation

We consider the classical single-channel noise reduction
problem, where the noisy signal at time index ¢ is given by
[21, 22]:

y(t) = x(t) + v(b), (1)

with x(¢) and v(¢) denoting the desired signal and addi-
tive noise, respectively. We assume that x(¢) and v(¢) are
uncorrelated and that all signals are real, zero mean, and
broadband.

By employing the STFT or any other appropriate trans-
form as suggested in [23], (1) can be rewritten in terms of
the transform domain coefficients as:

Y(k,n) = X(k,n) + V(k, n), (2)

where the zero-mean complex random variables Y (k, n),
X(k,n), and V(k,n) are the analysis coefficients of y(¢),
x(t), and v(¢), respectively, at the frequency index k €
{0,1,...,K — 1} and time-frame index . It is well known
that the same signal at different time frames is correlated
[17]. Therefore, the interframe correlation should be taken
into account in order to improve the performance of noise
reduction algorithms. In this case, we may consider form-
ing an observation signal vector of length N, containing
the N most recent samples of Y (k, n), i.e.,

ylon) =[YUn) - Ykn—N+1)]"
= x(k, n) + v(k, n), (3)

where the superscript T is the transpose operator, and
x(k,n) and v(k, n) are defined similarly to y(k, n). Then,
the objective of noise reduction is to estimate the desired
signal X(k,n) from the noisy observation signal vector
y(k, n).

Since x(¢) and v(t) are uncorrelated by assumption, the
N x N correlation matrix of y(k, n) is

®y(k, n) = E [y(k, myy" (k,m)] (4)
= Ox(k, n) + Py (k, n),
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where the superscript  is the conjugate-transpose opera-
tor, and ®y(k, n) and ®y(k, n) are the correlation matrices
of x(k, n) and v(k, n), respectively.

We end this part by defining the subband input SNR as:

ox(k, n)
pv(k,n)’
where ¢x(k,n) = E[|X(k,n)|2] and ¢y(k,n) =

E[IV(k, n)|2] are the variances of X(k,n) and V(k,n),
respectively.

iSNR(k, n) =

(5)

3 Quadratic filtering approach

In the conventional linear approach [5], noise reduction is
performed by applying a complex-valued filter, h(k, n) of
length N, to the observation signal vector, y(k, n), i.e.,

X(k, n) = W (k, n)y(k, n) (6)
= Xga(k, n) + Vin(k, n),

where the filter output, X (k, n), is an estimate of X (k, n);
Xea(k,n) = W (k, m)x(k, n) is the filtered desired signal;
and Vi, (k, n) = W (k, n)v(k, n) is the residual noise.

The two terms on the right-hand side of (6) are uncor-
related. Hence, the variance of X (k, n) is:

¢z (k, n) = W (k, n) Dy (k, h(k, n) 7)
= ¢X{d (k) I’l) + ¢Vm (k¢ I’l),

where ¢x;, (k,n) = h (k, n) dy (k, n)h(k, n) is the vari-
ance of the filtered desired signal and ¢v, (k,n) =
h (k, n)®y(k, n)h(k,n) is the variance of the residual
noise. Then, from (7), the subband output SNR is given by:
W' (k, n) D (k, )h(k, n)
W (k, n) @y (k, mh(k, )’

oSNR [h(k, n)] = (8)

The quadratic filtering approach emerges from a differ-
ent perspective. First, assuming that the desired signal is
estimated with the linear approach, we find an expression
for the energy of the estimated desired signal |)A( (k, n) |2.

We have:
Xk, m)|* = b (k, myy(k, myy™ (k, Wh(k, ) )
= tr [y(k, m)y" (k, myh(k, m)h' (k, )
= vect [h(k, mh (k, n)] vec [y(k, n)yH (k, n)]
= [0*(k,m) ® hk, m) | [y*(k,m) @ y(k, )]
= [0*(k, m) ® hik, m) ] F(k, m),
where tr[ -] is the trace of a square matrix; vec| -] is the vec-
torization operator, which consists of converting a matrix
into a vector; ® denotes the Kronecker product [24]; and
Y(k,n) = y*(k,n) ® y(k, n) is a vector of length N 2,

Let h(k, n) be a general complex-valued filter of length
N2, which is not necessarily of the form h*(k, n) ® h(k, n).
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From (9), we can generate an estimate of !)? (k, 1/1)|2 by
applying the filter h(k, n) to y(k, n), i.e.,

Z(k,n) = h (k, )y (k, n), (10)

where Z(k, n) is the estimate of the desired signal energy.
Indeed, this approach generalizes the conventional linear
approach, since (10) reduces to (9) with quadratic filters of
the form h(k, n) = h*(k, n) ® h(k, n).

With Z(k, n), we can obtain an estimate of the desired
signal:

X(k,n) = !V &N /1 Z (K, n)),

where the phase ¥ (k,n) can be taken from the linear
approach (6). We note that in practice, this implies an
additional computational complexity, as a linear filter
might have to be implemented for the purpose of obtain-
ing a desired signal phase estimate. Clearly, this approach
is highly nonlinear.

Next, we would like to derive a theoretical expression
for the subband output SNR with the quadratic approach.
We have:

(11)

y(k, n) = y* (k,n) ® y(k, n) (12)
= [x* (k, n) + v*(k, n)] ® [x(k, n) + v(k, n)]
=Xk, n) +x*(k, n) @ v(k, n)
+v*(k, n) @ x(k, n) + v(k, n),
where X(k, n) = x*(k, n) ® x(k, n) and v(k, n) = v*(k,n) ®
v(k, n). Taking mathematical expectation on both sides of
(12), we have:

E[y(k,n)] = E [X(k, n)] + E [V(k, m)] (13)
= vec [Dy(k, n)] + vec [Dy(k, n)]
= vec [dby(k, n)] .
We deduce that:
E[Z(k,m)] = W (k, ) E [§(k, )] (14)
— h'! (k, n)vec [Py (k, n)]
+ ﬁH(k, nyvec [®y(k,n)].
Consequently, the variance of X(k, n) is:
¢z (k,n) = E[1Z(k,n)|] (15)

~ |E [Z(k, m)]|
= }EH(/(, n)E [y(k, H)]‘
= )EH(/(, n)VeC [qu(k, n)]

+ ﬁH(k, nyvec [®y(k,n)]

)

where the approximation in the second row of (15)
assumes Z(k,n) to be real and positive. Thus, we can
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define the subband output SNR corresponding to a gen-
eral quadratic filter h(k, n) of length N as:

" ‘ﬁH (k, n)yvec [P (k, n)] ‘
0SNR [h(k, n)] -

— (16)
‘hH(k, nyvec [®y(k, n)] ‘

_ \/ﬁH(k, n)vec [®x (k, n)] vect [D4(k, n)] h(k, n)
~ \ hH (k, n)vec [®y(k, n)] vecH [Dy(k, n)] hk,n)’

In Sections 4 and 5, in order to simplify the notation, we
drop the dependence on the time and frequency indices.

For example, (10) would be written as Z = h''y

4 Quadratic maximum SNR filter
In this section, we derive a filter h that maximizes the
output SNR given in (16). For theoretical completeness,
the filter is derived from two different perspectives: by
performing an eigenvalue decomposition to a rank defi-
cient matrix defined by the noise statistics or by using an
appropriate matrix projection operator.

The matrix vec (dy) vec [Dy] may be diagonalized
using the eigenvalue decomposition [25] as:

Ulvec (dy) vec (@) U = A, (17)
where
U=[uw U] (18)
is a unitary matrix and
A = diag (Amax, 0, - . ., 0) (19)
is a diagonal matrix. The vector:
w = vec (®y) (20)
VvecH (®y) vec (dy)
is the eigenvector corresponding to the only nonzero
eigenvalue Apax = vect (®,) vec (&) of the matrix

vec (®y) vect (d,), while U’ contains the other N2 — 1
eigenvectors of the zero eigenvalues. It is clear from (17)
that:

U'fvec (®y) = 0. (21)
Now, let us consider filters of the form:

oy = U, (22)
where E;nax # 0 is a filter of length N2 — 1. Substitut-

ing (22) into (16), we infer that the subband output SNR
with hp,x may be unbounded, as opposed to the strictly
bounded subband output SNR with the linear maximum
SNR filter [19].

We point out the following observation. Despite achiev-
ing a_potentially unbounded subband output SNR, the
filter hy,ax is not expected to result in zero residual noise,
as in practice it is applied to a vector of instantaneous
analysis coefficients, while it is designed to eliminate the
statistical noise PSD. Nonetheless, we recall that any linear
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filter may be extended to an appropriate quadratic filter
but not vice versa. That is, the linear filtering approach
may be regarded as a constrained version of the quadratic
filtering approach. Hence, we deduce that the subband
output SNR with the quadratic maximum SNR filter
should be equal or larger than the subband output SNR
with the linear maximum SNR filter.

With the subband output SNR maximized, it is possible
to find h/ . in such a way that the desired signal distortion
is minimized. Since the first term on the right-hand side
of (14) corresponds to the filtered desired signal, we take
this term equal to the variance of the desired signal, i.e.,

b vec (®,) = ox. (23)

Substituting (22) into (23) and noting that fl;nax should
equal the vector U'vec (dx) up to appropriate scaling

factors, we obtain:

- U/H )
- vec (Px) dx . (24)
vecH (dy) U'UHvec (dy)
Therefore,
~ U'UHvec (dy) dpx
max — . (25)
vecH (®,) U'UHvec (dy)

There is an alternative way to derive ﬂmax frOIll the
first row of (16). That is, we may c~lerive a filter hpax
that is orthogonal to vec [Dy], i.S., hﬁax,zvec (®y) = 0.
While the previous derivation of hy,x may be considered
more comparable to hy,x as both filters employ an eigen-
value decomposition, the alternative derivation of hy,yx 2
may be more convenient to implement and analyze, and is
indeed utilized for the thoretical performance analysis in
Section 5. Any filter whose form is:

~ ~, vec (dy) vec (dy) ~,
max,2 VeCH (q)v) vec (c[)v) max,2

(26)

satisfies the condition, where fl;nax,Z # 0 is an arbitrary
complex-valued filter,

vec (Dy) vecH (dy)

P = I - )
N2 VecH (@) vec (Dy)

(27)

and Iy is the identity matrix of size N? x N2. ~
Next, we wish to minimize the distortion, i.e., find hyax 2
such that:

~

hil, vec (®y) = ¢x. (28)
Substituting (26) into (28), we have:
Bpaes = oo X (29)
vec? (®y) Pvec (Dy)
Since P2 = P, we have:
I (30)
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Finally, by observing that P = U'U"”, we deduce that:
h (31)

hmax = hmax,2 .

It should be noted that the formulation of (9) was
already suggested in [20] in the context of multichannel
noise reduction in the frequency domain. However, in
this work, the quadratic approach is applied to a single-
channel observation vector in an arbitrary linear filtering
domain, in which the interframe correlation is considered.
Additionally, while the optimal filters suggested in [20] are
designed to minimize the squared output energy and may
be seen as the quadratic approach counterparts of the con-
ventional MVDR and LCMYV, this work provides a more
general perspective to derive quadratic filters and pro-
poses the quadratic maximum SNR filter hy,,x as a special
case.

5 Performance analysis

In this section, we analyze a toy example for which we
derive the linear and quadratic maximum SNR filters. We
theoretically evaluate and compare their corresponding
subband SNR gains.

From Section 4, the theoretical subband SNR gain
with the quadratic maximum SNR filter may be poten-
tially unbounded. However, this would only be possible
when the noise PSD matrix is precisely known. Since this
assumption is never true in practice, it is important to ana-
lyze robustness to estimation errors in order to determine
how practical the quadratic approach may be. Thus, our
objective in this section is to evaluate the performance of
the quadratic maximum SNR filter in the presence of esti-
mation errors and compare it to the linear maximum SNR
filter. This is done through a theoretical analysis of the fol-
lowing toy example in the STFT domain. Let us begin by
assuming that the background noise is white and Gaus-
sian, i.e., v(t) ~ N(O, avz). It can be shown that in the
STFT domain with 50% overlapping rectangular analysis
windows, the correlation matrix of the N = 2 element
noise vector:

vik,n) = [ Vikn) Vikn—1)]", (32)
is given by:
B0 — Ngpr 02 2 (=D (33)
) -k 2 |’

where Nppr is the number of FFT bins in a single frame.
Next, we model the noise PSD matrix estimation errors
as independent centralized complex Gaussian variables
€51 < i,j < 2, whose variance is denoted by 062. Addi-
tionally, we use the notation oy = Nppr ovz /2. Thus, the
noise PSD matrix estimate with errors is given by:

_ 2 (—=DF €11 €12
Dye =0y |:(_1)k 9 i| + |:621 e :| . (34)
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In order to derive the optimal filters, we also require the
PSD matrix of the desired signal. Since our goal is to ana-
lyze the effect of the noise PSD matrix estimation errors,
we assume for simplicity a fully coherent desired signal,
that is:

q)x=¢X|:11:|~

The first step in deriving the quadratic maximum SNR
filter hy,ox involves calculation of the projection operator.
Following the simplified notation, we have:

(35)

vec (Dy,e) vec (dy,c)
vecH (@yc) vec (dy,c) ’

P=1,— (36)

in which the matrix vec (CIDV,G) vecH (QDV,G) and the scalar
vecH (CDV,G) vec (<I>V,6) should be computed. We have:

vec!! (CDV,G) vec (CIDV,G) = 100‘2,
+ doyR{ern + ex) + 2(=DXoyRiern + €21}

2 2 2 2
+ lennl” + lex2|” + lear]” + leazl”,

(37)

where |6,’j|2,1 < i,j < 2 are independent exponentially
distributed random variables, that is, |eij|2 ~ exp (1 / 203).

Next, we compute the elements of the 4 x 4 matrix
vec (dDV,E) vecH (q)v,g), by which we may approximate the
expected value of P, a key value required to approximate
the theoretical subband SNR gain. We have:

(38)

where we used a first-order approximation [26]. Defining
the error-to-noise ratio (ENR):

2
R =2, (39)
oy
we obtain:
EP)~ —r
2 (4R, +5)
6 (Re + 1) 2(=D)¥*1 2(=1)k*1 4
y 2(—D**+1 6R. +9 -1  2(=1)kt!
2=kt g 6R. +9 2(—1)kt1
-4 2(=DF1 2(—DF 6 (R +1)
(40)
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Rewriting (15) to calculate the PSD of the estimated
desired signal with the random filter h, we have

¢z =E(ZD)
~ |E(2)]

= ‘E[E [ﬁH?I{EiI‘}] ”
= [E(W)E®)
= ‘E (I~1H> vec (dy) + E (FIH> vec (Py)

(41)

’

which implies that the subband output SNR is:

B (E (EH ) vec (0y)

0SNR (E) , (42)

B ‘E (EH ) vec (dy)

and its corresponding subband SNR gain is:

-~ ‘E (ﬁH) vec (Dy) oy
I <h> B ’E (ﬂ”) vec (dDV)’ ) ox

(43)

Thus, in order to evaluate the subband SNR gain, we must
first compute the expected value of the random filter hy,y.
‘We have:

Pvec (Px) ¢x } (44)

E <hma") = [vecH (®y) Pvec (dy)
E [Pvec (Ox) ¢x]
T E [vecH (@) Pvec (Py)]
E (P) vec (Px) ¢x
= vecH (0y) E (P) vec (®y)’

where we used a first-order approximation in the sec-
ond row of (44). Substituting (35) and (44) into (43), the
subband SNR gain reduces to:

G (Rmax ) (45)
vec (®y) E (P) vec (Oy)

= VecH (Oy) E (P) vec (dy)

B ETES

TR 3[24(-DF] T 24 (—DF RZ)"

We deduce that when the ENR approaches zero, the the-
oretical subband SNR gain goes to infinity, and when the
ENR is large, the subband SNR gain is finite and frequency
dependent.

The derivation of the linear filter hy,,x of [19], which is
used as a baseline for performance evaluation, begins by
assessing the eigenvector corresponding to the maximum
eigenvalue of the matrix ® ! ®y. We have:
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(b;,elcbx = |q(fX |
v,e

[2+ (Do +ex — €2, [2+ (—D¥ oy + €22 — €12
[2+ (D ay +en —e, [2+ D oy +e1—exn |

(46)
whose eigenvalues are:
Amin = 0, 47)
Px
Amax = m
x [20v [24+ (D] +enr +em — ez — em ]
(48)

It is easily verified that the (unnormalized) eigenvector
bmax that corresponds to Amax is given by:

_[[24+ DM oy + e —e1n
Drmax = |: 24+ Doy +en —exn | 49)
which implies that:
E (bmaxbgax) (50)

_[ T2+ 0 od + 402
[2+ (—DF] 02
Formulating the PSD expression of the estimated desired

signal with the random linear filter hpay in a similar
manner to (41), its subband SNR gain is:

¢y E(hfl,) OxE (hmax)

[2 4 (—1)k1]7 02
[2+ D 02 + 402 |

G (hmax) = —— X ) (51)
T ox T E () OvE (hinax)
where the expected value of hy,y is given by:
bmabu Dyiy
E (hmax) = E (mx (52)
e bﬁax Cbxbmax

 E (bmaxbflo, Pxi1)
(b ®ubima)
_E (bmaxbfl,,) ®xi1
~ E(bl,) PxE (bmax)
=1[0.505]7,

where we used a first-order approximation in the sec-
ond row of (52). Substituting (35) and (52) into (51), the
subband SNR gain is finally:
4

24 (-DK’
which is ENR independent, but frequency dependent.

We infer that when the ENR is low, i.e., when the rela-
tive noise PSD estimation error is negligible, the quadratic
approach achieves a highly preferable subband SNR gain.
However, when the estimation error is in the same order of
the noise energy, the two approaches exhibit a similar sub-
band SNR gain. To illustrate the latter result, we return to

g (hmax) = (53)
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(40) in the limit of ENR that approaches infinity. We have:

1000
. 0100
M E®) o) 6690 |7 (54)
0001
and hence:
lim E (Emax> = [0.250.25 0.25 0.25]T . (55)
Re—00

This implies that in the high ENR limit, the quadratic max
SNR filter converges to a version of the linear max SNR
filter of (52), in which case both filters are simple aver-
aging filters. While this result is explicitly derived for the
toy example, we would expect such a behavior in any high
ENR scenario in which the errors are modeled as nor-
mal identically distributed independent random variables.
Additionally, we have:

lim E (Emax> = E (hpax) ® E (hyax) » (56)

Re—00
which, by recalling (10) and the elaboration underneath,
explains why in this limit the subband SNR gains are iden-
tical. The theoretical gain plots for odd and even values of
k as a function of the ENR are illustrated in Fig. 1.

We end this part by addressing the computational com-
plexity issue. On top of the additional complexity required
with the quadratic maximum SNR filter in order to gen-
erate a desired signal phase estimate, the computational
costs of the two filters are not straightforward to theo-
retically compare. That is, while deriving the quadratic
maximum SNR filter typically requires matrix multiplica-
tions of a squared dimension, with the linear maximum
SNR filter derivation, a matrix inversion and an eigenvalue
decomposition are computed. In practice, running the toy
example with MATLAB software on an ordinary CPU
takes 13 msec with the linear maximum SNR filter and
22 msec with the quadratic maximum SNR filter. Increas-
ing the observation signal vector length to N = 7 yields
a total runtime of 15 msec with the linear maximum SNR
filter and 27 msec with the quadratic maximum SNR fil-
ter. Combining the runtime of both filters, we deduce that
with a serial processor, the quadratic maximum SNR filter
requires about a three-time longer runtime than the lin-
ear maximum SNR filter in order to yield a desired signal
amplitude and phase estimates.

6 Experimental results

In this section, we demonstrate the noise reduction capa-
bilities of the quadratic maximum SNR filter in the context
of speech enhancement. We perform extensive experi-
ments in ideal and practical conditions, and compare its
performance to well-known speech enhancement meth-
ods in stationary and nonstationary noise environments.
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In the rest of the paper, for the sake of clarity, we return
to explicit time and frequency indices notation.

6.1 Simulations in ideal conditions

We have shown tha£ in the lack of estimation errors,
the quadratic filter hy.(k, #) is designed to eliminate
the residual noise, provided it is applied to the vector
form of the additive noise correlation matrix. However,
in practice, noise reduction filters are usually applied to
instantaneous observation signal vectors, in which the
noise term is of the form v*(k,n) ® v(k,n). Indeed, the
latter may significantly differ from the statistical noise cor-
relation matrix, which implies that the noise reduction
performance might be far from optimal. It is therefore
beneficial to employ a preliminary temporal smoothing
step to the observation signal vector and then apply the
quadratic filtering approach to a time-smoothed vector.
Define:

Ty
Yok, i 1y) = ———— Yk,n+n')
b 2ty + 1 H/X_:ry
1 il
=51 Z vk n+n)@ytk,n+n)
b W,
= ia(k’ n; Ty) + Va(k’ n; Ty)

Ty

+ 25,41 /Z (xX*(k,n+n) @ vik,n+n')
n'=-1y
+vik,n+n)Qx(k,n+n)},
(57)
where:
Xa(k, 15 Ty) (58)
1 il
= X (k,n+n) @ x(k,n+n'),
e _Z ( ) ®x( )
%y
Va(k, 1; Ty) (59)
1 il
= vik,n+n)Qvik,n+n),
P _Z ( ) ® v( )
=%

and 7y is the temporal smoothing preprocessing step
parameter. We note that this implies a minor algorithmic
delay of 7y frames. Clearly, when the desired signal and
noise are stationary and ergodic, we should choose a high
value for zy, as:

E[Yatk,m;7y)| = E[y(k,m)], (60)
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meaning that the temporal smoothing step does not dis-
tort the desired signal in terms of its second-order statis-
tics. On the contrary, we have:

E [V;(k, n;Ty) — vec [y (k, n)]]2
<E [Vi(k, n) — vec' [®y(k, ;'1)]]2 ,

(61)

for every vector element 1 < i < N 2, meaning the
time-smoothed version of the noise observations’ vector
better resembles the theoretical noise PSD statistics than
its instantaneous version. In addition, with the left-hand
side of (61) being a monotonically decreasing function of
Ty, we have:

i { ‘ﬁgax(k,n)ia (k,n;zy)‘ }
1im = . < . 1
Ty—>00 ’hgax(k,n)?;‘z (k,n;ry)‘

. ‘ﬂﬁax (k,n)vec[®x (k,n)] ‘

(62)

- ‘ﬁgax(k,n)vec[‘:bv(k,n)]‘
= 0SNR [ﬁmax (k, n)] ,

which was previously shown to be potentially unbounded.
On the contrary, for nonstationary desired signals, there
is an inherent trade-off in setting 7y: as 7y increases the
mean-squared estimation error of the left-hand side of
(61) decreases, resulting in a lower residual noise. How-
ever, by further increasing zy, the equality in (60) does not
hold as the non stationary desired signal is smeared over
time and hence distorted.

In order to demonstrate this trade-off, we consider a
clean speech signal x(¢) that is sampled at a sampling
rate of f; = 1/T; = 16 kHz within the signal duration
T. The desired speech signal is formed by concatenat-
ing 24 speech signals (12 speech signals per gender) with

varying dialects that are taken from the TIMIT database

[27]. The clean speech signal is corrupted by an uncorre-
lated white Gaussian additive noise v(¢). The noisy signal
is transformed into the STFT domain using 50% over-
lapping time frames and a Hamming analysis window of
length 256 (16 msec). Next, it undergoes the foregoing
temporal smoothing step, and then filtered by the two
maximum SNR filters, i.e., the quadratic hpax(k, 7) and
the linear hmax (k, 1) of [19] to generate estimates of the
desired speech signal. It is important to mention that both
filters use the exact same desired speech and noise sig-
nal statistics estimates. As in this part we assume ideal
conditions in which the desired speech and noise signals
are known, their statistics are calculated by smoothing
the corresponding signals over time. We want to com-
pare the two approaches fairly. Hence, we allow a temporal
smoothing preprocessing step for the conventional filter
as well. However, we note that while with the quadratic
filter humax (k, #) the temporal smoothing step is employed
over y(k,n), with the linear hyay(k, #) the smoothing is
employed over y(k, n).

There is another modification that should be made
with the quadratic approach in order to obtain a reliable
desired signal estimation and keep the desired signal vari-
ance expression in (15) valid. While it is easy to show
that with hy,x(k, #) the expression in (10) is real, there
is no guarantee that it is strictly positive. In practice,
when a desired speech signal is present, it is very likely
that the inner product is indeed positive, hence yielding a
valid estimate of the desired signal spectral energy. This
may be seen by applying the quadratic filter to the last
equality of (12) in which the first term, that is associated
with the true desired signal energy and the positive inter-
frame correlation of adjacent time-frequency speech bins,
is likely to be positive. Nevertheless, when a desired sig-
nal is absent, this positive term is approximately zero and
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the energy estimate may turn out negative. Clearly, such
an estimate is non-physical and should be clipped to zero.
Consequently, (10) is modified to:

Z(k,n) = max {bf_ (k, n)§(k, n),0}. (63)

Once the noise reduction procedure is completed, an
inverse STFT transform is applied to yield the enhanced
signals in the time domain. Then, it is possible to com-
pute the PESQ [28] and STOI [29] scores, which function
as a complementary performance measure to the sub-
band SNR gain. We employ these scores to demonstrate
the aforementioned trade-off in setting 7y by computing
them from the time-domain enhanced signals with the
two maximum SNR filters. This simulation is carried out
multiple times with varying values of 7y with N = 3 and
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for time-domain input SNRs of — 5 dB and 15 dB, where
the time-domain input SNR is defined by:
E[x*(0)]

- E[vo]

The PESQ and STOI scores of the enhanced signals are
shown in Fig. 2. We note that in this part, the desired
signal and noise are assumed to be known and are used
to respectively generate their estimated statistics by per-
forming a straightforward temporal smoothing. To begin
with, it is clear that with the linear hy,.(k, #) for both
time-domain input SNRs, the optimal 7y is zero. This is
not surprising, of course, as the time-smoothed version
of y(k, n) converges to zero according to the signal model
assumption. On the contrary, while for the high input SNR
a small value of 7, should be used with hyax(k, 1) (as the
noise is very weak and the optimal filter should resemble

iSNR (64)

3.5 !
{Fhrnax(k> TL)
%hmax(kv n)
3
2.5h ]
o 5
wn
=
[a
Pas
¢
1.5F 1
1 .
0 1 2 3 94 5 )
Ty
(a)
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corresponding STOI scores are 0.61 and 0.97

3.5

{th;ax(ky TL)
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Ty

(b)
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(d

Fig. 2 PESQ and STOl scores of TIMIT speech signals as a function of the temporal smoothing preprocessing parameter 7, for N = 3 in the presence
of white Gaussian noise: a PESQ scores with iSNR = — 5 dB, b PESQ scores with iSNR = 15 dB, € STOI scores with iSNR = — 5 dB, and d STOI scores
with iSNR = 15 dB. The PESQ scores of the input noisy observation signal are 1.47 and 2.78 with iSNR = — 5 dB and iSNR = 15 dB, respectively; their
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the identity filter), for a low input SNR, the convergence of
the noise term V, (k, n; 7y) in Y, (k, 1; 7y) to the true noise
correlation matrix is essential, and the optimal value of Ty
is found to be approximately 4. Clearly, when 7, < 4, the
approximation in (60) holds and the desired speech signal
remains roughly distortionless. Thus, the mean-squared
estimation error of the left-hand side of (61) decreases
as 7y increases. However, we observe that while further
increasing ty, i.e.,, when 7y > 4, reduces the mean-squared
estimation error of the noise, it also distorts the desired
speech signal. Consequently, we infer that 7y should be set
to a value ranging 1 — 4, with 1 being optimal for very high
input SNRs and 3 or 4 being optimal for low input SNRs.
Next, in Fig. 3, we investigate the PESQ and STOI scores
as a function of the input SNR for N = 3and N = 7. We
note that as a compromise between high and low input
SNRs, we fix 7y = 2. We observe that in both cases, the
quadratic maximum SNR filter is preferable, in particular
in low input SNRs where the noise reduction capabilities
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are stressed. As the input SNR increases, the linear and
quadratic filter performances converge. This is intuitively
explained as in the limit of zero additive noise, the PESQ
and STOI score improvements should converge to zero
and both the linear and quadratic filters should converge
to a version of the identity filter. Nevertheless, we exhibit
a minor STOI score degradation in higher input SNRs.
In essence, this is an artifact of the desired signal statis-
tics estimation errors used to derive both the linear and
the quadratic filters. That is, even with a stationary back-
ground noise, we expect estimation errors to emerge due
to the highly nonstationary nature of the speech signals.
The estimation errors inevitably result in some minor
enhanced signal distortion which is more dominant in
such scenarios. Finally, we note that the performance gap
between the N = 3 and N = 7 cases, as exhibited in
both filters, is a consequence of the stationary background
noise. That is, we would not expect such a gap with an
abruptly varying noise.

3.5

_E"hmax(ka n)
%hmax(k’v n)
<Y (k,n)

1.59
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{Fhmax(k7 n)
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1.59

-5 0 5 10 15 20

047 &hxx)ax(k7 TL)
'e_hmax(ky n)
<+Y(k,n)

0.2 . . . :

-5 0 5 10 15 20

iSNR
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Fig. 3 PESQ and STOI scores of TIMIT speech signals as a function of the iSNR for N = 3 and N = 7 in the presence of white Gaussian noise. a PESQ
scores with N = 3. b PESQ scores with N = 7. ¢ STOI scores with N = 3.d STOI scores with N = 7. We set 7, = 2 for the quadratic filter hiay (k, n)
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We return to the aforementioned subband SNR gain. In
the STFT domain, it is convenient to average the subband
input and output SNR expressions of (5), (8), and (16) over
time, i.e.,

—— > . Ox(k, n)
SNR(k,:) = =222 77 65
NRUD = v kon) (65)
e > Wk, ) @y (k, mh(k, 1)
oSNR [h(k,:)] = S W m) By bk, )’ (66)
and
" dou ﬁH(k, n)vec [Py (k, n)]‘
oSNR [h(k, :)] - (67)

> ‘EH(k, n)vec [®y(k, n)] ‘ ‘

Consequently, the average subband SNR gains are given
by:

oSNR [h(k, )]

Ghk, )] = —— 68
g [h(k, )] SNR(K ) (68)
and
s oSNR [E(k, :)]
h k,: = - 69
g[ ( )] iSNR(K, :) (65)
respectively.

We use expressions (68) and (69), respectively, to com-
pare hpmax(k,n) and hma(k,7) in terms of the average
subband SNR gain. The results for iSNR = 0 dB and for
N = 3 and 7 are depicted in Fig. 4. According to the
analysis above, we set 7, = 2 with the quadratic maxi-
mum SNR filter, which is shown to result in a significantly
preferable gain. This is true for both values of N. More-
over, as it is observed in Fig. 4 and in a similar fashion to
the previously discussed average PESQ and STOI scores,
the performance of the linear maximum SNR filter with
N = 7 is somewhat close to the performance of the
quadratic maximum SNR filter with N = 3. That is, the
quadratic filter is demonstrated to better utilize a given
noisy observation signals vector from the subband SNR
gain perspective.

6.2 Experiments in practical scenarios

Next, we are interested in comparing the two approaches
in practical scenarios and with nonstationary noise. Four
scenarios are simulated with the additive noise signal
being either a stationary white Gaussian noise or one of
the following three nonstationary noise types: a motor
crank noise, a wind noise, or a traffic noise. The TIMIT
set of clean desired speech signals is maintained. We set
iSNR = 0 dB and analyze the PESQ and STOI scores
with the following six methods: two practical versions of
the linear and quadratic maximum SNR filters, their two
ideal versions (as presented in the previous part), the cele-
brated log-spectral amplitude estimator (LSA) [3], and the
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spectral subtraction in the short-time modulation domain
(STSS) of [30]. We set N = 3 for all four maximum SNR
filters and perform the STFT transform with the same
analysis window and overlap factor in all methods except
the STSS. The STSS is employed in its default parameters
as defined by the authors of [30], with acoustic and mod-
ulation frame lengths and overlap factors of 32 msec and
75%, and 256 msec and 87.5%, respectively. According to
the previous part, we fix 7y = 2 with hpax(k, 1), whereas
no smoothing is performed with hy,« (k, 7).

The practical versions of the linear and quadratic max-
imum SNR filters, denoted, respectively, by hiax,prac (k; 7)
and ﬂmax,prac (k, n), require estimates of the desired speech
and noise correlation matrices to be computed out of the
noisy observations. In this experiment, we employ a some-
what naive estimation approach that is inspired by [31]
and leave more sophisticated schemes for future research.
The noisy observation correlation matrix is updated over
time by a first-order recursive temporal smoothing:

Dy (k,n) = ADy(k,n — 1)
+ (1 — 2y, my' (k,m),

with 0 < A < 1 being the smoothing parameter. We
found A = 0.5 to be an optimal choice to cope with both
stationary and quickly-varying nonstationary noise. Then,
the noise correlation matrix is given by:

&y (k, n) = min{®y(k, n — 1), Dy(k,n)} (1 +€),

(70)

(71)

with € set to yield a power increase of 5 dB/s. Finally, the
desired signal correlation matrix is estimated by

Oy (k, n) = max{®y(k, n) — Oy (k, n),0}. (72)

We note the following. To begin with, the minimum and
maximum operations above are considered element-wise,
whereas the first 100 frames are used to generate an initial
noise correlation matrix estimate, i.e., the first 808 msec is
assumed to be silent. In addition, we verify that O« (k, n) is
obtained as a positive-definite matrix, which is the case in
practically all the simulations we have performed. Finally,
the presented correlation matrices’ estimation approach
requires setting the optimal values of additional param-
eters in a similar manner to traditional approaches as
described in Section 1.

The experimental results in terms of the average PESQ
and STOI scores with their respective confidence (stan-
dard deviation) intervals computed over 24 speech utter-
ances are described in Fig. 5. To begin with, we observe
that in terms of PESQ scores, the ideal quadratic max-
imum SNR filter performs significantly better than the
other methods in the three nonstationary noise scenar-
ios, whereas it is slightly inferior to the STSS in the white
noise scenario. In addition, the ideal quadratic maximum
SNR filter is highly superior in terms of STOI scores in all
the examined scenarios. In particular, the ideal quadratic
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maximum SNR filter outperforms its linear counterpart,
which implies that the former’s potential is preferable.
Analyzing the practical versions of the maximum SNR
filters, we note that in general, the quadratic filter is supe-
rior to the linear filter in terms of PESQ scors, whereas
in terms of STOI scores, the performances are overall
roughly equal. A comparison to the LSA and the STSS
indicates that both are significantly inferior to the prac-
tical quadratic maximum SNR filter in the motor crank
noise and wind noise scenarios. On the contrary, in the
white noise and traffic noise scenarios, the performance
gap is opposite, with the LSA and the STSS performing
better than the practical quadratic maximum SNR filter,
which is however preferable to the practical linear max-
imum SNR filter. The performance difference between
noise types for the different methods is resulted in by the
nature of the noise signals and the method we used to
estimate and track their statistics. For example, this could
be due to their level of nonstationarity, i.e., the coher-
ence time during which the statistics of the noise remain
roughly unchanged. We deduce that the quadratic maxi-
mum SNR filter is ideally of a high potential and may also
be successfully applied in practice, even with naive desired
signal and noise statistics estimation techniques.

We end this part by relating an informal listening
experiment we conducted to verify the foregoing results.
This included extensive comparisons between enhanced
signals with all the presented methods in the different

noise scenarios. While no musical noise nor reverbera-
tion effects were detected with any of the methods, their
distinctive natures were observable. That is, while it was
apparent that the four maximum SNR filters preserved the
desired signals distortionless, the noise reduction capabil-
ities of their two practical versions were relatively limited
with respect to the LSA and STSS, which featured less
residual noise in the white noise and traffic noise sce-
narios. On the contrary, the LSA and STSS did exhibit
some desired signal distortion in most cases, particularly
in frequencies higher than 3 kHz. This was more stressed
in the motor crank noise and the wind noise scenarios,
in which their respective residual noise was significant.
Considering the ideal versions of the linear and quadratic
maximum SNR filters, the enhanced signals they yielded
sounded considerably clearer than all other methods, with
the ideal quadratic maximum SNR filter being superior to
its linear counterpart particularly in the white noise and
the traffic noise scenarios.

7 Conclusions

We have presented a quadratic filtering approach for
single-channel noise reduction, which generalizes the
conventional linear filtering approach. The advantage of
the quadratic approach was demonstrated by focusing on
the maximum SNR filter in the STFT domain. We have
analyzed the theoretical subband SNR gain in a toy exam-
ple and showed that while with the linear maximum SNR
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Fig. 5 A comparison of average PESQ and STOI scores of TIMIT speech signals in practical scenarios with iSNR = 0. The vertical margins exhibit the
confidence (standard deviation) intervals computed over 24 speech utterances. himayprac (k, n) and hmax prac (k, n) denote, respectively, the linear and
quadratic maximum SNR filters in practical conditions; hyax (k, n) and Emax(k, n) denote, respectively, the linear and quadratic maximum SNR filters
in ideal conditions; MMSE-LSA denotes the log-spectral amplitude estimator of [3]; STSS denotes the spectral subtraction in the short-time
modulation domain method of [30]; Y (k, n) denotes the input noisy observation: a PESQ scores and b STOI scores. We set N = 3 for all four
maximum SNR filters and 7, = 2 for the two quadratic maximum SNR filters

filter, the subband SNR gain is strictly bounded, with
the quadratic maximum SNR filter, the gain is poten-
tially unbounded and heavily depends on the ENR. We
have proposed the temporal smoothing preprocessing
step and verified the performance on speech signals. In
ideal and practical conditions, the quadratic maximum
SNR filter was compared to the linear maximum SNR
filter and to two well-known speech enhancement meth-
ods in both stationary and nonstationary noise environ-
ments. We have demonstrated that the quadratic maxi-
mum SNR filter outperforms the linear maximum SNR
filter, in particular in low input SNRs, at the expanse
of a higher computational complexity. In addition, the
former was shown to perform better than commonly

used methods in practice in some of the scenarios we
examined, even with naive desired signal and noise statis-
tics estimation techniques, whereas in other scenarios,
the performance gap was the opposite. In future work,
we may improve these estimation techniques to reach
closer to the performance of the ideal quadratic maxi-
mum SNR filter, and possibly estimate the desired sig-
nal phase directly, i.e., not through a separate linear
filter.

Abbreviations

SNR: Signal-to-noise ratio; PESQ: Perceptual evaluation of speech quality;
SCNR: Single-channel noise reduction; STFT: Short-time Fourier transform;
HMM: Hidden Markov model; MVDR: Minimum variance distortionless
response; LCMV: Linearly constrained minimum variance
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