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Abstract

A method to locate sound sources using an audio recording systemmounted on an unmanned aerial vehicle (UAV) is
proposed. The method introduces extension algorithms to apply on top of a baseline approach, which performs
localisation by estimating the peak signal-to-noise ratio (SNR) response in the time-frequency and angular spectra
with the time difference of arrival information. The proposed extensions include a noise reduction and a
post-processing algorithm to address the challenges in a UAV setting. The noise reduction algorithm reduces
influences of UAV rotor noise on localisation performance, by scaling the SNR response using power spectral density
of the UAV rotor noise, estimated using a denoising autoencoder. For the source tracking problem, an angular
spectral range restricted peak search and link post-processing algorithm is also proposed to filter out incorrect
location estimates along the localisation path. Experimental results show the proposed extensions yielded
improvements in locating the target sound source correctly, with a 0.0064–0.175 decrease in mean haversine distance
error across various UAV operating scenarios. The proposed method also shows a reduction in unexpected location
estimations, with a 0.0037–0.185 decrease in the 0.75 quartile haversine distance error.

Keywords: Microphone array, Unmanned aerial vehicle, Rotor noise, Source localisation, Denoising autoencoder,
Power spectral density, Restricted peak search

1 Introduction
Unmanned aerial vehicles (UAVs) have recently gained
huge popularity over a wide range of applications, such as
filming [2], search and rescue [3], or security and surveil-
lance [4]. One of the significant advantages of UAVs is
its flexibility in manoeuvrability, allowing ease of naviga-
tion through environments that are difficult or dangerous
for human access. In the application of search and rescue,
there are already several reports of successful rescue mis-
sions where victims were found stranded in environments
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that are difficult to navigate through [5–7]. The key to
its success is the use of localisation technologies to track
down the whereabouts of the stranded victims effectively.
To this day, various sensing technologies were utilised for
search and rescue purposes such as high-resolution cam-
eras or thermal imaging. While such sensing technologies
are well-proven and highly effective under many types of
environments, information from sound is also one that
should not be overlooked, for it is common to encounter
scenarios where the environment renders visual informa-
tion as unusable. For example, for a UAV hovering over a
mountain range, where vegetation could hinder the visi-
bility of a rescue target, the target could be detected and
located by sound. With localisation being the key objec-
tive to perform the search and rescue task properly, it
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is vital that the utilised sensing technologies are effec-
tive under a wide range of environments [8], including
adverse environments such as those where visual infor-
mation is severely impaired. In turn, when one method is
rendered unusable, others still remain effective. However,
audio recording using UAVs has shown to be challenging
due to the high noise levels radiated from the UAV rotors.
This significantly affects the quality of the audio signals
to aid not only with search and rescue, but also with any
applications [9–12].
In recent years, numerous studies attempt to perform

localisation of sound sources using UAVs. Many achieve
this by utilising signal processing techniques that revolve
around the usage of an array of microphones [13]. With
the significant contamination of recordings caused by
rotor noise being a problem, numerous studies attempt
to eliminate the effects of rotor noise itself. Examples
include denoising the input signals by forming a reference
rotor noise profile based on its tonal components [14],
or capturing the noise correlation matrix in a supervised
manner [15]. Other approaches include spatial filtering of
the rotor noise, such as the study carried out in [16], given
that the rotor positions are fixed relative to the micro-
phones. While rotor noise is nearly omnidirectional along
the rotor plane, there are sweet-spots above or below the
rotors where radiation could be less intensive. Authors
from [17] exploit this by placing microphones above the
UAV rotors and employ a spatial likelihood function based
on the direction of the arrival of the target sound source.
The study has shown promising results when the tar-
get sound is located in the direction where rotor noise
radiation is least apparent. However, such an approach
is only effective in locations where such conditions can
be met.
Many studies also set to address the challenges via

further developing existing localisation techniques. For
example, authors in [15, 18, 19] extended the multiple
signal classification (MUSIC) method [13], namely mod-
ifying the noise correlation matrix to combat the chal-
lenges encountered with the high levels of rotor noise.
However, these were carried out under a fixed UAV with
a fixed target sound source position. Works from [20]
carried the extended MUSIC approach for a flying UAV.
However, the target sound source was limited to whistle
sounds, which would be unrealistic in many practical sce-
narios. Approaches based on the steered response power
with phase transform (SRP-PHAT) were used by [21]
with Doppler shift for a fixed-wing UAV. This was also
extended in [22] by detecting and localising chirp signals
emitted from nearby UAVs to avoid potential collisions
between each other. However, in both studies, the target
sound was limited to narrowband signals with a known
frequency. Optimising microphone placements has also
shown improvement in localisation performance [23–25].

However, the localisation performance starts to degrade
when the movement of the UAV increases. Recent stud-
ies also showed approaches using convolutional neural
networks (CNNs) for source localisation, such as [26].
A comprehensive list of related studies can be found
in [17].
While most of the studies mentioned above were able

to present improved accuracy and precision using their
highly responsive algorithms, they usually require cer-
tain assumptions to be imposed. In particular, most of
the studies mentioned above assume that the UAV rotor
noise has good continuity in the time-frequency (T-F)
spectrum in order to reduce the influence of UAV rotor
noise effectively [15, 17–19]. An instance includes assum-
ing the tonal components of the rotor noise do not vary in
a highly random manner. While this assumption is valid
for most cases, it depends highly on the placement of the
microphone array. Often, however, the microphone array
is restricted to be placed below the rotor plane, of which
the noise becomes dominated by the flow generated from
the propeller’s thrust. This presents an additional layer of
challenge to the already low signal-to-noise ratio (SNR) of
the audio signals since flow noise is highly random and
nonlinear, and thus, the correlation between time frames
is less likely to hold. Coupled with the high responsiveness
of the methods itself, it could potentially lead to highly
unstable performance.
Authors in [27] developed the multi-source time differ-

ence of arrival (TDOA) estimation in reverberant audio
using angular spectra framework that is more robust to
the practical challenges addressed. This was the base-
line method provided in the 2019 IEEE Signal Processing
Cup (SPCup) [1]. The method aims to perform robust
sound source localisation even in reverberant environ-
ments effectively. While the localisation response is not
as precise as the studies mentioned prior, the perfor-
mance is consistent and generally stable, even under
moderate levels of reverberation. Although the study
was not targeted for a UAV scenario, this aspect can
be addressed by reducing the influences coming from
the rotor noise, as demonstrated from the aforemen-
tioned existing studies. For example, all winning teams
that participated in the finals of the SPCup utilised the
method in [27] along with multichannel Wiener post-
filtering for UAV noise reduction. In addition, various
approaches were utilised to address the challenges faced in
the operating UAV scenario [1]. For example, Team AGH
utilised a Kalman filter to improve continuity of the esti-
mated source location paths. Meanwhile, Team SHOUT
COOEE! improved the continuity of the paths using a
heuristic method inspired by the Viterbi algorithm. On
the other hand, Team Idea!_SSU estimated the paths via
a two-step procedure by first estimating a global source
path, followed by a refined estimation using a restricted
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angular search range around the global estimated
direction [1].
While noise reduction using T-F masking such as

Wiener postfiltering is not uncommon, it has shown to
be useful across many acoustic scenarios. For instance,
the study from [28] presented and compared various T-
F masks which most showed localisation performance
improvement, as well as methods based on CNNs [29].
T-F masks specific towards noise that has long time-
dependence/continuation, a property present in UAV
rotor noise, have also been studied, such as those from
[30, 31]. A UAV-specific study for source enhancement
using CNNs was carried out in [32]. Studies from [33] also
showed that by accurately estimating the power spectral
densities (PSDs) of the individual sound sources, source
enhancement and rotor noise denoising could be effec-
tively carried out via beamforming with Wiener postfil-
tering. Building on this idea, this study proposes a rotor
noise reduction algorithm based on accurate estimation
of the rotor noise PSD, which is incorporated into exist-
ing robust source localisation techniques. In addition,
the study also proposes a post-processing algorithm to
smooth the estimated source location paths. The pro-
posed method sets to extend the baseline method from
[27] for the UAV problem. As the method is devel-
oped for the participation of the SPCup, it is designed
around the competition dataset, containing audio record-
ings corresponding to its microphone arraymounted UAV
system.

The rest of the paper is organised as follows. A descrip-
tion of the UAV, microphone array, and problem setup
is given in Section 2, followed by details of the proposed
method in Section 3. Experimental setup and parame-
ters are described in Section 4, followed by the perfor-
mance evaluation of the proposed method in Section 5.
Finally, the paper is concluded with some remarks in
Section 6.

2 UAV system and problem setup
As mentioned in Section 1, the baseline method from
[27] was able to deliver consistent and stable localisation
performance in a range of levels of reverberation, mak-
ing it effective in practical scenarios. Hence, this study
aims to extend the baseline method for the UAV prob-
lem. This section presents the problem setup, including
the definition of the sound sources and input signal, before
discussing constraints specific to the UAV setting.
An overview of the audio recording UAV including

the microphone array setup used in this study is shown
in Fig. 1. The problem assumes a UAV system with a
M-sensor microphone array embedded, receiving a tar-
get sound source, L interfering spatially coherent noise
sources (including those generated by U UAV rotors),
and ambient spatially incoherent noise. The objective of
the system is to accurately locate the target sound source
using the M-channel noisy recordings. The short-time
Fourier transform (STFT) of the microphone array’s input
signals is expressed in vector form as:

Fig. 1 Overview of problem setup for sound source localisation using UAV
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x(ω, t) := [
X1(ω, t), · · · , XM(ω, t)

]T

= a(ω, �θS)S(ω, �θS, t)

+
U∑

u=1
a(ω, �θNu)N(ω, �θNu , t)

+
L∑

n=U+1
a(ω, �θNn)N(ω, �θNn , t) + v(ω, t), (1)

a(ω, �θ) =
[
A1(ω, �θ), · · · ,AM(ω, �θ)

]T
, (2)

v(ω, t) = [V1(ω, t), · · · ,VM(ω, t)]T , (3)

where T denotes the transpose, Xm(ω, t) is the STFT
of the mth microphone’s input signal, aθ (ω) and v(ω, t)
are the vector of transfer functions between the source
�θ = [θel, θaz]T (where el and az indicate the elevation
and azimuth directions, respectively) and each micro-
phonem, and the incoherent noise vector observed by the
microphone array, respectively. S(ω, �θS, t), N(ω, �θNu , t),
and N(ω, �θNn , t) are the STFT of the target sound source
at angle �θS, the noise source coming from the uth rotor at
angle �θNu , and the nth spatially coherent interfering noise
source at angle �θNn , respectively. ω and t denote the angu-
lar frequency (of F frequency bins) and the time frame
index. �θS, �θNu , and �θNn are expressed as follows for the 3D
problem in spherical coordinates:

�θS = [
θS,el, θS,az

]T , (4)

�θNu = [
θNu,el, θNu,az

]T , (5)

�θNn = [
θNn,el, θNn,az

]T . (6)
Several assumptions are imposed on the setup. Given

the difference in characteristics between the sound
sources, the problem assumes the target sound source and
rotor noise sources to be mutually uncorrelated. For the
source localisation task, the main objective is to iden-
tify the directions of the target sound source. This usu-
ally requires knowing the transfer function of the audio
sources with respect to the microphone array, in order
to capture the true characteristics of a(ω, �θ) correctly.
This includes knowing the acoustical characteristics of the
environment (i.e. impulse response). Unfortunately, such
information is generally unavailable. As such, we impose
an assumption that the UAV is operating at some height
above ground, regardless of the environment beneath, and
is thus mostly open air. Therefore, the environment is
approximately of a free field, and that a(ω, �θ) is assumed
as the steering vector of a plane wave [33], described as:

a(ω, �θ) =
[
e−jωτ�θ ,1 , · · · , e−jωτ�θ ,M

]T
, (7)

where τ�θ ,m is the time difference of arrival (TDOA) at
the mth microphone with respect to the reference micro-
phone typically placed at the origin of the coordinate. It
should be noted that this assumption is merely made for
modelling the transfer function between the microphones
and the sound source. In practice, such as that from the
database provided by the SPCup (see Section 2), some
level of reverberation is expected.
The problem, as setup by the SPCup requirements,

assumes three distinct tasks for the UAV and the target
sound source:

1. Hovering UAV—In this scenario, the target sound
source and UAV are assumed as fixed in position
throughout the audio recording.

2. Flying (i.e. moving) UAV, broadband sound
source—In this scenario, the target sound source is
assumed fixed. However, the UAV is assumed to be
moving relative to the target sound source. The
target source is a continuous broadband signal.

3. Flying (i.e. moving) UAV, speech sound source—Like
task 2, the target sound source is assumed fixed, and
the UAV is assumed to be moving relative to the
target sound source. The target source is speech.

For tasks 2 and 3, the UAV is assumed to be moving grad-
ually, such that there are no erratic variations in the tonal
components in the rotor noise build-up. In addition, due
to the dataset used for the study (see Section 4.1) only
containing the target sound source and UAV rotor noise,
it is assumed that no additional coherent interfering noise
sources exist (i.e. L = U), such that the adversity of the
environment for the audio recording UAV is only based
on the levels of the UAV rotor noise relative to the target
source. Finally, the problem is limited to overdetermined
cases, whereM ≥ L + 1.

3 Proposedmethod
Figure 2 shows a block diagram of the proposed localisa-
tion method. The method follows the general structure of
the SPCup baseline method (see Section 1), as the method
gave decent results over a range of input noise condi-
tions in a preliminary study. However, significant perfor-
mance degradation was found under lower input SNR
cases, where rotor noise begins to dominate the recorded
signal. Naturally, like many other studies mentioned in
Section 1, developing a means of reducing the effects of
the UAV rotor noise would directly benefit in preventing
false detection of the target sound source location.
Different to the methods discussed in Section 1, where

noise reduction is generally carried out in the noise
correlation matrix design, this study proposes a PSD-
based weighting function to reduce the UAV rotor noise
effects. Given the complex nature of rotor noise, which is
dominated by the flow coming from the thrust of the
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Fig. 2 Block diagram of the proposed method. Blue boxes indicate modifications to [27] introduced by the proposed method. Processes in the
boxes with red dashed line are selected based on the scenario (i.e. hovering or flying UAV)

UAV’s propellers, a machine learning approach is pro-
posed. The approach sets to estimate the rotor noise
PSD using the PSDs of the microphone input signals,
removing any irrelevant sources present (i.e. target sound
source), before using this information to design a noise
filter specifically removing UAV rotor noise.
In the case of a flying UAV (i.e. tasks 2 and 3), due to

the constant change in location between the UAV and the
target sound source, localisation has to be carried out in
shorter time periods. This results in less input informa-
tion available to accurately estimate the source direction,
which also becomes a factor in performance degradation.
However, given (as mentioned in Section 2) that the UAV
is assumed to move gradually, estimated locations in each
time period should not vary erratically. Therefore, a post-
processing algorithm designed explicitly for tasks 2 and 3
is also proposed. The algorithm takes into account of the
assumption as mentioned earlier and filters out location
estimates deemed erratic, from which in-depth location
search at these problematic estimates is carried out to
improve continuity if the overall estimated location path.
This section first introduces the baseline method from

[27] in Section 3.1, followed by the extensions and mod-
ifications made to the baseline method, as shown by the
blue boxes in Fig. 2. These extensions are the UAV rotor
noise PSD estimation algorithm used to reduce the rotor
noise effects (see Section 3.2), and the post-processing
algorithm (see Section 3.3) for tasks 2 and 3, respectively.

3.1 Multi-source TDOA estimation in reverberant audio
using angular spectra

This section outlines the baseline method [27] that is
utilised in this study. Although the method is capable of
localising multiple sources, for this study, the problem is
limited to the single target sound source (i.e. N(ω, �θNn , t)
is not considered in this study). The method is simi-
lar to the SRP technique, where SNR is calculated in
the angular (TDOA) and T-F spectrum using pairs of
microphones within the array, giving K = MC2 unique
spectrum. For this study, this will be referred as the SNR
response. An overall SNR response in terms of �θ (i.e. an
angular spectrum) is then obtained by aggregating the K

individual SNR responses together. Details of the aggrega-
tion process are given later in this section. Many conven-
tional localisation techniques such as generalised cross-
correlation-phase transform (GCC-PHAT) [34], delay-
and-sum (DS) [35], and minimum variance distortionless
response (MVDR) [36] beamforming, or evenMUSIC, can
be utilised to calculate the SNR response. The study [27]
also developed the diffuse noise model (DNM), a modified
MVDR approach, which uses a noise model to improve
robustness against ambient noise, assuming the noise is
diffuse in nature.
Prior to calculation of the SNR response, a grid of

TDOAs τ covering the relevant range of �θ in the eleva-
tion and azimuth plane (i.e. the angular spectra), where
the target sound source is assumed to be located for each
kth microphone pair, is established as follows:

τk(θel, θaz) = pk sin (αk (θel, θaz))
c0

, (8)

αk(θel, θaz) = cos−1
(
dk (θel, θaz) · �pk

pk

)
, (9)

where dk is the directional vector associated with angle
�θ and c0 is the speed of sound. �pk is the separation
between the kth pair of microphones in Cartesian coordi-
nates, and pk is the magnitude of the separating distance.
This is used to map the TDOAs coming from the angular
range of interest τ towards their respective angles �θ (i.e.
the basis of the angular spectra).
The baseline method from [27] provides several locali-

sation techniques to calculate the SNR response for local-
isation. For instance, the SNR response for DS [37] and
MVDR beamforming is calculated as:

ψDS
k (τk) = aH(τk)R̂xx,ka(τk)

2tr
(
R̂xx,k

)
− aH(τk)R̂xx,ka(τk)

, (10)

ψMVDR
k (τk) =

(
aH(τk)R̂−1

xx,ka(τk)
)−1

1
2 tr

(
R̂xx,k

)
−

(
aH(τk)R̂−1

xx,ka(τk)
)−1 , (11)
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respectively, where R̂xx,k(t,ω) is the empirical covariance
matrix [27] of the input signals in all T-F bins from the kth
microphone pair, and ·̂ denotes an estimate.
On the other hand, the SNR response for the GCC-

PHAT approach is calculated as:

ψGCC
k (t,ω, τk) = R

⎛

⎝ R̂12,k(t,ω)
∣
∣
∣R̂12,k(t,ω)

∣
∣
∣
e−iωτk

⎞

⎠ , (12)

where R̂12,k(t,ω) is the cross-correlation between micro-
phone input channels 1 and 2 from the kth microphone
pair, and R(·) denotes the real part of a complex number.
Note that t andω in R̂xx,k (t,ω) of (10) and (11) are omit-

ted for brevity. In addition, θS,el and θS,az of τ are also
omitted for brevity in (10)–(12) as well as the rest of this
paper unless otherwise specified. A nonlinear extension of
GCC-PHAT (GCC-NONLIN) proposed in [38], as well as
DNM, is also provided by the SPCup baseline, and their
respective SNR response calculation (ψGCC-NONLIN

k and
ψDNM
k ) can be found in [27].
Following the calculation of ψk(t,ω, τk), the SNR

responses are aggregated together across the frequency
bins, time frames, and microphone pairs, to deliver
the overall angular spectrum. Subsequently, the peak
response is identified as the sound source location. Aggre-
gation across the frequency bins and themicrophone pairs
is carried out via summing while time frames can be
summed or taken the maximum as shown respectively in
(13) and (14):

ψ ′sum(τ ) =
Thover∑

t=1

K∑

k=1

F∑

ω=1
ψk(t,ω, τk), (13)

ψ ′max
(τ ) = Thovermax

t

K∑

k=1

F∑

ω=1
ψk(t,ω, τk). (14)

In task 1 (i.e. hovering UAV), the relative location
between the microphone array and the target sound
source remains fixed. Therefore, all Thover time frames are
aggregated to give a single location estimate. For tasks
2 and 3 (i.e. flying UAV), aggregation cannot be carried
out across all time frames and is thus instead carried out
in segments of the input audio. This results in a smaller
group of time frames Tflight used for localising the tar-
get sound source during each audio segment. These are
calculated as:

ψ ′sum
flight(t, τ) =

Tflight∑

t=1

K∑

k=1

F∑

ω=1
ψk(t,ω, τk), (15)

ψ ′max
flight(t, τ) = Tflight

max
t=1

K∑

k=1

F∑

ω=1
ψk(t,ω, τk). (16)

The estimated target sound source TDOA τ̂S corre-
sponds to the TDOA τ that gives the maximum overall
SNR response from ψ ′(τ ). These are obtained as:

τ̂S = argmax
τ

(
ψ ′(τ )

)
, (17)

τ̂S,flight(t) = argmax
τ

(
ψ ′
flight(t, τ)

)
. (18)

As mentioned earlier, the grid or spectra of TDOAs τ

directly map towards the angular spectra �θ . This mapping
relationship does not change even after the aggregation
process. Therefore, the source location in terms of angle
for tasks 1, 2 ( �̂θS), and 3 ( �̂θS,flight(tflight)) is obtained using
the angular spectra derived from (8) and (9).

3.2 Noise PSD informed SNR response scaling
This section introduces the UAV rotor noise PSD-based
weighting envelope to scale and denoise the SNR response
ψ(t,ω, τ).We refer to this process as SNR response scaling.
Given the relatively structured and time-continuous

nature of UAV rotor noise PSDs, conventional neural net-
work (NN) architectures such as multilayer perception,
or other supervised NNs could be an adequate mapping
function to model the noise PSDs under different input
conditions [10], given sufficient training data is provided.
However, in this study, the rotor noise data available for
training is limited (see Section 4.2), and therefore, conven-
tional NNs would not suit this condition.
On the other hand, denoising autoencoders (DAEs)

learn a compressed representation of the uncorrupted
input, rather than a full mapping of the training data in
an unsupervised manner, and thus can be used for fea-
ture extraction and denoising [39]. This could help relax
the requirement for a large number of hard-coded labels
and simply let the DAE act as a denoising tool. There-
fore, we propose a DAE to produce the required PSD data
for the localisation task. DAE is an extension to the clas-
sical AE, where it attempts to clean the noisy input such
that only the target output signal remains [39]. Since the
objective of this algorithm is to create a PSD-based enve-
lope to scale and denoise the SNR response ψ(t,ω, τ),
the target output signal of the DAE is the rotor noise
PSD φNu(ω) with the inputs being the PSDs φm(t,ω) from
the microphone recordings. Therefore, different from the
conventional use of a DAE, this process achieves a “de-
targeting” effect, through recognising the target sound
source as the equivalent “noise corruption” to remove.
The input audio PSD φm(t,ω) is calculated by using the

Welch method [40] given by φX (t,ω) = λφX (t − 1,ω) +
(1 − λ)|X (t,ω)|2, where λ is the forgetting factor, and X
represents an arbitrary signal. This is achieved by first
feeding the input audio PSDs φm(t,ω) to map towards
the hidden representations z, forming the encoder com-
ponent of the DAE. Subsequently, the rotor noise PSD
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Fig. 3 DAE architecture of the SNR response scaling algorithm

φ̂Nu(ω) is reconstructed from z, which forms the decoder
component of the DAE.
Since the task is to perform denoising of the origi-

nal input audio PSD (i.e. “de-targeting” the target sound
source), it is essentially a regression task. The size of
the input audio PSD data is TDAE × F , where TDAE =
1 corresponds to the number of PSD frames taken per
observation. For the regression task, the decoder of the
DAE uses the rectified linear units (ReLU) activation func-
tion. Given that the DAE consists of several layers overall,
the encoder of the DAE uses the leaky ReLU (LeakyReLU)
[41] activation function, as a means of preventing pos-
sibilities of vanishing gradients, which has found in this
study to slightly reduce training loss over ReLU. The DAE
architecture is shown in Fig. 3.
The DAE is optimised with respect to the mean square

error (MSE) between the output PSD φ̂Nu(t,ω) and the
true rotor noise PSD φNu(t,ω). To optimise MSE loss, the
Adam optimiser is used [42]. The DAE is trained for each
m microphone channels, giving a total of M DAEs for
producing the SNR response scaling weighting envelope.
However, since the task is to perform localisation, there is
no requirement to achieve pinpoint accuracy in the PSD
estimation for each k microphone pair, which is usually
required for, for example, source enhancement [10, 33].
Furthermore, given themicrophones used in this study are
of identical build and omnidirectional, it is assumed that
the estimated PSDs would not change drastically across
microphones. Therefore, the estimated PSDwith themost
prominent amplitude response out of theM microphones
for each frequency bin ω is selected and applied to scale
the SNR responses for all K microphone pairs, with the

prospect of maximising effectiveness in noise removal. In
addition, the estimated PSD frames are grouped and aver-
aged to match the time frames for the localisation process
(see Table 1).
Finally, the rotor noise PSD scaled SNR response is

obtained as:

ψ ′
k(t,ω, τ) = ψk(t,ω, τ)

φ̂Nu(t,ω)
. (19)

After scaling the SNR response with the UAV rotor
noise PSD weighting envelope, to obtain the final angu-
lar spectrum of the sound source, the aggregation process
previously mentioned in Section 3.1 ((13)–(16)) is applied
on ψ ′

k(t,ω, τ), before obtaining τ̂S leading to �̂θS using (8)
and (9).

Table 1 Experimental problem setup specifications

UAV scenario Hovering Flying

No. of recordings 300 36

Duration (s) ∼ 3 4

Sampling rate (kHz) 44.1 44.1

Target sound types Speech Speech and broadband

STFT time frames T ∼ 128 45 (0.0833 s intervals)

STFT time frames post (13)–(16) 1 15 (0.25 s intervals)

For the flying UAV scenario (i.e. tasks 2 and 3), azimuth and elevation angles of the
source are taken as a mean value within a 500-ms window centred on each of its
given time-stamps
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3.3 Angular spectral range restricted peak search and link
As discussed in Section 3.1, for tasks 2 and 3, the shorter
audio signal length for each location estimate means time
frame aggregation is carried out in smaller groups of
frames Tflight, which potentially causes a loss in angular
spectral resolution. In addition, higher speed variations
in the individual UAV rotors would also increase the
complexity of the PSD for the DAE to estimate, poten-
tially leading to further performance degradation. This
section introduces an angular spectral range restricted
peak search and link post-processing algorithm, for which
we refer to as the restricted peak search and link (RPSL).
The algorithm is applied towards the localisation output
�̂θS,flight(t) before time frame aggregation is carried out (see
Fig. 2), as a mean to compensate this problem.
The flowchart describing the algorithm is shown in

Fig. 4. The algorithm makes use of several iterations of
SNR response peak searching in the angular spectrum
to obtain the correct sound source travel path, which
generally follows these main processes:

1. Using localisation output �̂θS,flight(t) as the reference
path of locations, for each time frame t, check the
degree of separation � �̂θ ′

S,flight between the
corresponding location with respect to the location
of the preceding and succeeding time frames t ± 1.

2. Perform restricted peak search using (18) with the
SNR response ψ ′

flight(t, τ) (see Fig. 2) and �θres(c, tc)
(see Fig. 4) around time frames giving unexpected
locations (i.e. exceeding the nominal degree of
separation��θres), and obtaining the correct locations.

3. The above steps are repeated until valid locations can
no longer be found, or if the start/end of the
localisation path has been reached (i.e.
tc ± 1 /∈[ tstart, tend]). This forms a “chain” of
locations, or a local path (denoted as the cth chain in
Fig. 4), to later to be compared against when forming
the final global path of locations.

4. After obtaining all C chains of local paths, a final
path of locations �̂θ ′

S,flight(t) is formed by finding
locations that appear most frequently amongst the C
chains at the given time frame. Ideally, this would
improve the consistency and smoothness compared
to the original �̂θS,flight(t).

Finally, the Tflight time frames in �̂θS,flight(t) are aggre-
gated together to obtain �̂θ ′′

S,flight(tflight) (see Fig. 2). Details
of this process are discussed later in Section 4.1.
The selection of the search range parameter � �̂θres is

heuristically tuned based on whether the estimated path
of locations was the most sensible overall (i.e. no aggres-
sive jumps or unnatural changes in direction).

To enable online-processing capabilities to the RPSL
post-processing algorithm, this process is carried out in
batches of frames of �̂θS,flight(t) that corresponds to 2 sec-
ond blocks of audio, with the exception of the last batch,
which would depend on the number of frames remain-
ing. Such an approach is not uncommon, where online-
processing is done via blocks of time frames, rather than
individual frames alone [43].
Restricting the angular range for peak search reduces

the risk of picking up disturbances with SNR angular
spectral response more prominent than that of the target
sound source (since they are excluded from the restricted
search range). However, this assumes the original locali-
sation path �̂θS,flight(t) is correct in a reasonable portion of
the time frames. Conceptually, the method presented here
is somewhat similar to the two-step flight path approach
from Team Idea!_SSU [1].
Measures are also developed if a particular local path

fails to find a peak with high enough SNR response to link
towards. For example, the algorithm skips time frames
(and proceeds to the next) where the restricted peak
search fails to obtain a valid location until one with a valid
location is found. Following this, the skipped locations in-
between the two valid time frames are obtained via inter-
polation. Figure 5 shows an example of the improvement
in localisation path with each stage (SNR response scal-
ing and RPSL post-processing) of the proposed algorithm
applied.

4 Experiments
As a team participating in the SPCup, the performance
of the proposed method is evaluated against the compe-
tition dataset provided by the organiser of the SPCup [1].
Therefore, the proposed algorithm is tuned towards the
UAV andmicrophone array system to develop the dataset.
This section presents the details of the experimental setup
of the given dataset, including the description of the UAV
system, and various constraints found in the dataset. This
is followed by an overview of the experimental parameters
and additional information used for the proposedmethod,
such as details of the training dataset for the UAV rotor
noise PSD estimation process.

4.1 Experimental setup
The proposed method is evaluated using the DREGON
database from [44], which makes use of the UAV sys-
tem shown in Fig. 6. Details of the microphone array and
rotor positions are shown in Fig. 7. The UAV is from
MicroKopter�, utilising the 8 Sounds USB andMany Ears
audio processing framework [45]. TheUAV system utilises
an array of 8 omnidirectional electret condenser micro-
phones, located directly below the centre of the UAV,
as shown in Fig. 7. All positions shown in Fig. 7 are in
reference to the microphone array’s baricenter.
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Fig. 4 Flowchart of the angular spectral range restricted peak search and link algorithm. The steps highlighted correspond to the steps described in
Section 3.3
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Fig. 5 Example of localisation performance with SNR response scaling (Section 3.2) and RPSL post-processing (Section 3.3) applied. (SPCup flying
UAV broadband sound source (task 2) case 11 [1])

Table 1 shows the specifications of the evaluation
dataset used for this study. As mentioned in Sections 2
and 3, the proposed method in this study is evaluated
against the three tasks. Task 1 contains 300 individ-
ual cases; each consists of a ∼ 3-s microphone array
recording for estimating a single location of the target
sound source. On the other hand, tasks 2 and 3 consist

of 20 cases with broadband sound source and 16 cases
with speech sound source used as the target sound source.
Each case in tasks 2 and 3 consists of 15 location points
to be estimated in 0.25-s intervals along the duration of
the 4-s microphone array recording. Therefore, the time
frames from the STFT of the recordings are grouped into
sections of 6 frames centering around each time-stamp

Fig. 6 Audio recording UAV overview. Image provided by SPCup syllabus [1]
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Fig. 7Microphone array (0–7) and rotor (A–D) geometry overview. Figure provided by SPCup syllabus [1]

(i.e. tflight =[ 0.25s, 0.5s, ..., 3.75s]), with aggregation per-
formed on each of these groups of time frames. Further
information regarding the evaluation dataset can be found
in Table 1.

4.2 Noise PSD informed SNR response scaling:
experimental parameters

To obtain the training and validation dataset required
for the DAE from the SNR response scaling algorithm,
labelled data containing rotor noise with and without
the target source signal is required. Given the dataset
is constrained to what was available in the DREGON
database, data augmentation had to be performed in
order to obtain a sufficient amount of data for train-
ing and validation. Initially, individual rotor recordings
from the development dataset were used to provide the
rotor noise data. However, due to the limited speed
range coverage, extracts of rotor noise-only sections from
the microphone recordings in the competition dataset
were also used as part of the training process. This is
achieved by manually editing out sections of the compe-
tition audio recordings containing traces of target sound
source signals. The rotor noises are then mixed with a
corpus of speech recordings to form the input obser-
vations, as part of the data augmentation process. For
the corpus, the REpeated HArvard Sentence Prompts
(REHASP) corpus [46] was used. The sentences were
randomly selected with a balanced mixture of male and
female speech. Since the individual cases contained in

the competition dataset are normalised with respect to
its signal amplitude, the rotor noise present in each case
would have varying loudness depending on the input SNR.
Therefore, one cannot simply train a mapping function
by assuming rotor noise is consistent in power, mean-
ing that the training dataset would contain repetitions
of the rotor noise audio extracts with different ampli-
tude scaling to compensate for this variation. For broad-
band sound source, since its acoustical characteristics are
unknown, the only obtainable labels were from the devel-
opment dataset. Thus, these recordings are mixed with
the collected UAV rotor noise dataset and included for
training.
Table 2 outlines the dataset specifications. To provide

generalisation towards the DAE with the available data,
the entire training dataset described in Table 2 is used to
train a single DAE for each microphone. Given the lack
of unique UAV rotor noise data, only 4% of the data from
the training dataset described in Table 2 is used to obtain
the validation dataset, to preserve as many training data
as possible. The observations in the dataset are randomly
shuffled prior to the split. For testing, the competition
dataset described in Table 1 was used, giving a total of
45,338 observations.
It should be noted that the data constraint workaround

described in this study was driven by the limited time and
resources in the time of the competition. Ideally, rotor
noise recordings would be obtained via independent noise
recordings by using the exact UAV system per described in
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Table 2 Specifications and parameters for the rotor noise PSD estimation DAE and RPSL post-processing algorithm

STFT length (overlap shift) 2048 [46.4 ms] (1024 [23.2 ms])

Forgetting factor λ 0.3

Dimension of each frame 1×1024 (TDAE × F)

Training dataset

Total no. of frames (from hovering UAV dataset) 417,180 [9687 s]

Total no. of frames (from flying UAV dataset, broadband) 4675 [108.6 s]

Total no. of frames (from flying UAV dataset, speech) 9435 [219.1 s]

Learning rate 5×10−5

No. of epochs 2000

Testing dataset

Total no. of frames (from hovering UAV dataset) 39,182 [920.1 s]

Total no. of frames (from flying UAV dataset, broadband) 3420 [80 s]

Total no. of frames (from flying UAV dataset, speech) 2736 [64 s]

RPSL parameters

��θres (deg) 50 (task 2), 35 (task 3)

the SPCup syllabus [1], for which a DAE with much higher
performance is expected.

4.3 Evaluation metric
The performance of the proposed method is evaluated
against the baseline method [27], with GCC-PHAT, GCC-
NONLIN, MVDR, DS, and DNM as the localisation tech-
niques (as provided by the SPCup), using both sum and
max aggregation (i.e. (13)–(16)). This results in 10 base-
line methods to compare against the proposed method.
For tasks 2 and 3, due to the proposed method containing
two distinct components (SNR response scaling and RPSL
post-processing), results with both components applied,
as well as those with only one of the components applied,
are presented for comparison.
Since the true locations for each test case are unique

regardless of the chosen task, instead of directly compar-
ing the estimated locations against the ground truth, the
error between the estimated locations and the true loca-
tions is calculated and used as the evaluation metric. For
the 3D problem presented in this study, the accuracy of the
localisation performance is measured by comparing the
haversine distance error D [47] (for which will be referred
as distance error) between the estimated location �̂θS and
the true location �θS, assuming a unit sphere (i.e. r = 1,
such that 0 ≤ D ≤ π ). This is obtained as follows:

γ = sin2
(

θ̂S,el − θS,el
2

)

+ cos
(
θ̂S,el

)
cos

(
θS,el

)
sin2

(
θ̂S,az − θS,az

2

)

, (20)

D = 2rsin−1√γ . (21)

Using the haversine distance error measure instead of
directly comparing the difference between �̂θS and �θS alle-
viates the varying sensitivity of θ̂S,az to the same amount of
error at different θ̂S,el (e.g. same amount of angular error
in θ̂S,el results in significantly different position errors
between θ̂S,az = 0 deg, and θ̂S,az = ±90 deg).
After obtaining the distance error D, its mean, root

mean square error (RMSE), maximum, minimum, and
quartile measures are compared between the methods.
Statistical analysis using the paired sample t test was con-
ducted to evaluate and verify the difference of mean and
median errors between the proposed method and each
baseline method, respectively. To avoid erroneous infer-
ences caused by multiple comparison, Bonferroni’s cor-
rection was applied [48], i.e. for each test, the null hypoth-
esis was rejected by p < 0.005 (= 0.05/10, given the
performance is evaluated against the 10 baseline meth-
ods), using the best-performing combination from the
proposed method as the benchmark for comparison.

5 Results and discussion
This section presents the experimental results for evaluat-
ing the performance of the proposed method against the
baseline method as outlined in Section 4.3.

5.1 Task 1: Hovering UAV scenario
Figure 8 shows the distance errors of different localisa-
tion methods from task 1, with details of the statistical
test results shown in Table 3. As shown, with all baseline
techniques using max aggregation, the addition of SNR
response scaling delivered improvements with respect to
its unscaled baseline. In particular, the MVDR method
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Fig. 8 Hovering UAV (task 1)—haversine distance error distribution. Red line indicates the median, upper and lower edges of the blue box indicate
the 75% and 25% quartiles, upper and lower black bars indicate the maximum and minimum, and upper and lower corners of the trapezoidal
indicate the 95% upper and lower confidence limits

with max aggregation and SNR response scaling is the
best-performing combination. The method outperformed
the baseline methods by delivering the lowest mean, max-
imum, and RMSE distance error measures. Results of the
paired sample t test also indicate that the difference of the
mean distance error being significantly different against
the baseline methods, except GCC-NONLIN using max
aggregation. The most apparent improvement is the sig-
nificant reduction in outlier predictions, which can be
seen in Fig. 8, as well as the reduction in the maximum
and 0.75 quartile distance errors. This shows that SNR
response scaling cleans up the rotor noise effects well,
making the SNR response of the target sound source
more apparent. Figure 9a, b shows an example of the
SNR angular spectral response improvements brought
upon using SNR response scaling. Here, influences from
the UAV rotor noise are greatly reduced, revealing the
peak response of the target sound source. As a result,
it brought the estimated location closer to the ground
truth. There are still a few cases (cases #59, 61, 70, 159,
160, 178, and 229 in the dataset [1]), which have very
low input SNRs, and all methods evaluated (including the
proposed method) are not able to give an accurate esti-
mate. Nonetheless, the proposed method has shown a
significant improvement in localising accuracy.

Apart from GCC-NONLIN, DNM method with max
aggregation and SNR response scaling also delivered com-
parable results. The method delivered lower median and
quartile distance error measures, with t test results show-
ing that it is not significantly different to that of the
MVDR method using max aggregation and SNR response
scaling. However, due to the lower mean and RMSE
distance errors, the MVDR method is considered the
best-performing combination.
Since the SNR response scaling approach is essentially a

T-F mask for filtering out effects of the UAV rotor noise,
we compare its performance against other state-of-the-art
T-F masks specialised for noisy and reverberant envi-
ronments, using the study from [28] and [30]. Like SNR
response scaling, the T-F mask from [28] is applied to the
baseline method. However, given the method is designed
for GCC-PHAT, results were only generated under this
localisation method. As shown in Fig. 8 and Table 3,
the T-F mask from [28] improved the localisation per-
formance overall, reducing the distance error measures
with respect to its corresponding baseline. Under the
same GCC-PHAT localisation technique, the proposed
SNR response scaling method overall outperformed [28]
slightly, delivering lower mean, quartile, and RMSE dis-
tance error measures. However, with max aggregation,
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Table 3 Haversine distance error performance comparison (task 1—hovering UAV)

Haversine distance error D (rad) p value: paired sample t test (ref.
best case)

Mean Median Min Max 0.25 quartile 0.75 quartile RMSE

Baseline

GCC-PHAT (max) 0.1541 0.04908 0 2.674 0.01745 0.0849 0.4384 6.86×10−4

GCC-PHAT (sum) 0.4637 0.07804 0 2.347 0.03491 0.7808 0.8073 3.42×10−21

GCC-NONLIN (max) 0.1305 0.03903 0 2.736 0.01745 0.0752 0.3887 n.s.

GCC-NONLIN (sum) 0.4528 0.07376 0 2.347 0.02468 0.7160 0.8010 2.08×10−20

MVDR (max) 0.1774 0.03903 0 2.947 0.02369 0.1047 0.4471 1.18×10−5

MVDR (sum) 0.3738 0.05794 0 2.222 0.02314 0.2934 0.7081 3.91×10−17

DS (max) 0.1976 0.03801 0 2.793 0.01745 0.1196 0.5143 4.81×10−6

DS (sum) 0.2935 0.04637 0 2.722 0.01745 0.1795 0.6218 4.71×10−12

DNM (max) 0.2535 0.03491 0 3.018 0.01745 0.0837 0.6435 3.14×10−7

DNM (sum) 0.3811 0.05456 0 2.806 0.01745 0.1988 0.8074 1.87×10−13

w/ [28] T-F mask

GCC-PHAT (max) 0.1356 0.03903 0 2.818 0.01745 0.0837 0.4064 n.s.

GCC-PHAT (sum) 0.5164 0.08382 0 2.742 0.03654 1.0378 0.8776 1.48×10−23

w/ [30] T-F mask

GCC-PHAT (max) 0.2155 0.05236 0 2.605 0.01745 0.1018 0.4933 1.10×10−7

GCC-PHAT (sum) 0.4162 0.08372 0 2.347 0.02468 0.7080 0.7424 1.16×10−19

GCC-NONLIN (max) 0.2411 0.05236 0 2.605 0.01745 0.1162 0.5308 3.13×10−9

GCC-NONLIN (sum) 0.3837 0.06981 0 2.347 0.02429 0.5923 0.7012 3.90×10−18

MVDR (max) 0.1806 0.05504 0 1.941 0.03491 0.1101 0.4154 1.39×10−7

MVDR (sum) 0.2702 0.05058 0 2.065 0.02427 0.1711 0.5633 4.44×10−12

DS (max) 0.1897 0.06292 0 2.403 0.02030 0.1589 0.4344 2.11×10−7

DS (sum) 0.1792 0.03796 0 2.110 0.01745 0.1180 0.4095 1.64×10−7

DNM (max) 0.2586 0.03504 0 2.986 0.01745 0.1064 0.6273 2.35×10−8

DNM (sum) 0.2113 0.03810 0 2.657 0.01745 0.1144 0.4941 4.24×10−9

w/ SNR response scaling

GCC-PHAT (max) 0.1278 0.03903 0 2.488 0.01745 0.0780 0.3732 n.s.

GCC-PHAT (sum) 0.4997 0.09259 0 3.031 0.03903 0.9861 0.8501 7.02×10−24

GCC-NONLIN (max) 0.0961 0.03880 0 1.897 0.01745 0.0719 0.2596 n.s.

GCC-NONLIN (sum) 0.4575 0.08899 0 2.756 0.03654 0.6880 0.8133 1.16×10−20

MVDR (max) (best case) 0.0833 0.03903 0 1.886 0.02424 0.0715 0.2269 N/A

MVDR (sum) 0.3263 0.05236 0 2.418 0.02468 0.2067 0.6420 1.10×10−14

DS (max) 0.0975 0.03803 0 1.876 0.01745 0.0719 0.2790 n.s.

DS (sum) 0.3275 0.05504 0 3.031 0.03491 0.2080 0.7017 2.99×10−12

DNM (max) 0.1323 0.03491 0 2.409 0.01745 0.0698 0.3893 n.s.

DNM (sum) 0.3515 0.05504 0 3.031 0.02468 0.1896 0.7498 2.16×10−12

Results from the baseline method are first presented, followed by results using the T-F mask from [28] and [30] and the proposed method (SNR response scaling).
Best-performing numericals for each category are highlighted in bold

the performance improvement is slight, as suggested by
the t test. The T-F mask proposed by [30] is utilised via
source enhancement using the minimum mean square
error (MMSE) log-spectral amplitude estimator from [49]

prior to source localisation using [27]. Contrary to the T-
F mask from [28] and the proposed method, the T-F mask
from [30] showed mixed performance. While there was
general improvement in results with max aggregation, the
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Fig. 9 SNR angular spectral response (dB) from SPCup hovering UAV (task 1) case 297 a w/o SNR response scaling and b w/ SNR response scaling,
using MVDR with max aggregation. Circle (◦) and cross (×) in the diagram represent the ground truth and the algorithm’s estimated peak response
location, respectively

T-F mask performed worse than the baseline with sum
aggregation, with the exception of DS, where both aggre-
gation methods improved over the baseline. Since the T-F
mask from [30] assumes continuity in the noise signals,
which is a valid assumption, it could have been affected by
the vast amount of wind/flow noise generated by the UAV
rotors. With the nature of such noise being stochastic, the
resultant enhanced signal could have introduced potential
distortions. As such, the proposed SNR response scaling
method overall outperformed [30] by a visible margin.
This indicates that while a diffuse noise-based T-F mask
is able to remove some aspects of the noise, a dedicated
noisemask designed for UAV rotor noise would still be the
desired option.

5.2 Task 2: Flying UAV scenario, broadband sound source
Figure 10 shows the localisation results for task 2, with
details of the statistical test results shown in Table 4. Due
to the lack of relevant UAV rotor noise data in the flying
UAV cases for effective DAE training, the baselinemethod
outperformed the SNR response scaled method under
all localisation techniques. Observing the SNR response
angular spectrum of the baseline and SNR response scaled
method (see Fig. 11a, b), although SNR response scaling
reduced noise surrounding the target source location, it
came with a peak response for the target source less sharp
than the baseline method, as shown in Fig. 11b. This could
lead to increased variation in the location path estimations
and thus decreasing overall accuracy. It is believed this is
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Fig. 10 Flying UAV—broadband sound source (task 2) haversine distance error distribution. Red line indicates the median, upper and lower edges
of the blue box indicate the 75% and 25% quartiles, upper and lower black bars indicate the maximum and minimum, and upper and lower corners
of the trapezoidal indicate the 95% upper and lower confidence limits

caused by the limited amount of available data from the
DREGON dataset [44] for training the DAE: a limitation
at the point of competition.
In contrast, the proposed method with only the

RPSL post-processing algorithm applied outperformed
the baseline with most of the localisation techniques,
showing improvement in distance error measures, except
being GCC-PHAT and GCC-NONLIN with max aggre-
gation, where performance is similar. For this task, GCC-
PHAT using sum aggregation is the best-performing
combination, as evident in Table 4. In particular, the
number of outlier cases significantly reduced, as evi-
dent in Fig. 10. This is also evident with localisation
techniques other than GCC-PHAT. Since the primary
function of GCC-PHAT (and GCC-NONLIN, another
well-performing option) involves calculating the cross-
correlation between pairs of microphone signals at differ-
ent TDOAs, it is generally not influenced by spatial alias-
ing between the microphones and thus, under a certain
input SNR, delivers consistent performance. However, as
expected from the drawbacks from SNR response scaling,
results with both SNR response scaling and RPSL post-
processing algorithm applied are not the best-performing
combinations.While the combinations reducedmean dis-
tance error overall, other metrics such as median and

quartile measures delivered mixed results, compared to
the baseline method.
An observation that should be noted is the excep-

tional performance from the baseline method using GCC-
NONLIN with sum aggregation. While it is not the best-
performing combination under mean and median dis-
tance errors, it delivered the lowest RMSE and maximum
distance errors. From observing Fig. 10 and Table 4, it
is apparent that GCC-NONLIN with sum aggregation is
the only combination where there are no significant out-
liers, while the combination with RPSL post-processing
has a single outlier. This could be the leading cause of this
result. However, it should be noted that the RPSL post-
processed variant presented lower distance error mea-
sures in the remaining categories, and thus, the benefits of
RPSL should not be overlooked.
From observing the actual location estimates in Fig. 12,

while the estimated location path has shown a slightly
closer correlation with the ground truth, the RPSL post-
processing method seems to have reduced some unstable
variations along the location path. Therefore, in some
respect, the RPSL algorithm seems to achieve a regular-
isation effect for the estimation of the path of locations,
while bringing the overall location estimates closer to the
ground truth. Another one of such example is shown in
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Table 4 Haversine distance error performance comparison (task 2—flying UAV, broadband sound source)

Haversine distance error D (rad) p value: paired
sample t test
(ref. best case)

Mean Median Min Max 0.25 quartile 0.75 quartile RMSE

Baseline

GCC-PHAT (max) 0.0868 0.07004 0.002181 2.350 0.04567 0.1035 0.1662 n.s.

GCC-PHAT (sum) 0.0810 0.06459 0.004032 2.457 0.04299 0.0918 0.1690 n.s.

GCC-NONLIN (max) 0.0905 0.06951 0.002702 2.350 0.04345 0.1008 0.1746 n.s.

GCC-NONLIN (sum) 0.0811 0.06633 0.004032 0.686 0.04325 0.0936 0.1155 n.s.

MVDR (max) 0.1690 0.08072 0.004032 2.490 0.04379 0.1199 0.3743 7.88×10−6

MVDR (sum) 0.1590 0.07550 0.003670 1.823 0.04377 0.1148 0.3633 5.15×10−5

DS (max) 0.2293 0.08965 0.004032 2.436 0.05588 0.1365 0.4655 1.10×10−9

DS (sum) 0.1648 0.07734 0.002618 2.465 0.04694 0.1169 0.3625 1.21×10−5

DNM (max) 0.2619 0.09346 0.004032 2.436 0.05745 0.1381 0.5411 2.02×10−10

DNM (sum) 0.1563 0.07733 0.003670 2.807 0.04490 0.1130 0.3910 2.62×10−4

w/ [28] T-F mask

GCC-PHAT (max) 0.1816 0.07557 0.002919 2.029 0.04480 0.1733 0.3429 1.78×10−11

GCC-PHAT (sum) 0.1078 0.06546 0.005047 2.490 0.04372 0.1000 0.2203 5.32×10−6

w/ [30] T-F mask

GCC-PHAT (max) 0.2472 0.09462 0.002449 2.558 0.05509 0.2263 0.4670 2.35×10−14

GCC-PHAT (sum) 0.1285 0.07141 0.004966 2.492 0.04797 0.1124 0.2464 4.34×10−9

w/ SNR response scaling

GCC-PHAT (max) 0.1335 0.07025 0.005124 2.259 0.03684 0.1176 0.2813 6.94×10−6

GCC-PHAT (sum) 0.1010 0.06524 0.007256 2.501 0.03983 0.1105 0.1973 1.48×10−6

GCC-NONLIN (max) 0.1227 0.07184 0.006535 2.254 0.04138 0.1196 0.2403 1.46×10−4

GCC-NONLIN (sum) 0.1101 0.06766 0.004056 2.495 0.03898 0.1116 0.2240 6.54×10−6

MVDR (max) 0.2669 0.11614 0.002071 2.498 0.05972 0.3117 0.4617 7.10×10−19

MVDR (sum) 0.2468 0.11260 0.002633 2.475 0.05254 0.1940 0.4403 9.62×10−17

DS (max) 0.2333 0.10711 0.004002 2.501 0.05783 0.1973 0.4350 1.37×10−14

DS (sum) 0.1957 0.09952 0.007290 2.501 0.04939 0.1626 0.3760 2.86×10−12

DNM (max) 0.2448 0.10371 0.000610 2.219 0.05417 0.1925 0.4523 1.69×10−14

DNM (sum) 0.1967 0.09452 0.003334 2.478 0.05081 0.1501 0.3783 2.13×10−12

w/ RPSL post-processing

GCC-PHAT (max) 0.0922 0.06516 0.003577 1.936 0.04173 0.0930 0.1844 n.s.

GCC-PHAT (sum) (best case) 0.0746 0.05987 0.004076 2.490 0.04177 0.0852 0.1622 N/A

GCC-NONLIN (max) 0.0965 0.06428 0.003356 1.937 0.03727 0.0962 0.1927 3.34×10−3

GCC-NONLIN (sum) 0.0805 0.06190 0.002988 2.484 0.03913 0.0900 0.1706 n.s.

MVDR (max) 0.1613 0.07477 0.001200 2.466 0.04130 0.1186 0.3334 7.74×10−9

MVDR (sum) 0.1244 0.07330 0.003783 2.478 0.04414 0.1089 0.2646 3.56×10−6

DS (max) 0.1619 0.07810 0.005783 2.481 0.04922 0.1179 0.3559 2.41×10−7

DS (sum) 0.1689 0.07352 0.002433 2.484 0.04421 0.1159 0.3812 3.06×10−7

DNM (max) 0.1810 0.07726 0.004760 2.661 0.04732 0.1266 0.4117 2.86×10−7

DNM (sum) 0.1777 0.07683 0.004642 2.475 0.04434 0.1205 0.4284 1.12×10−6
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Table 4 Haversine distance error performance comparison (task 2—flying UAV, broadband sound source) (Continued)

Haversine distance error D (rad) p value: paired
sample t test
(ref. best case)

Mean Median Min Max 0.25 quartile 0.75 quartile RMSE

w/ [28] T-F mask + RPSL post-processing

GCC-PHAT (max) 0.0845 0.06388 0.002919 2.490 0.04131 0.0944 0.1750 3.10×10−3

GCC-PHAT (sum) 0.0743 0.06234 0.005047 2.490 0.04126 0.0851 0.1621 n.s.

w/ [30] T-F mask + RPSL post-processing

GCC-PHAT (max) 0.1125 0.06586 0.002449 1.905 0.04632 0.1076 0.2055 4.39×10−6

GCC-PHAT (sum) 0.1038 0.06491 0.004966 2.492 0.04532 0.0944 0.2311 1.03×10−3

w/ SNR response scaling + RPSL post-processing

GCC-PHAT (max) 0.0979 0.06657 0.005124 2.259 0.03562 0.1070 0.2145 n.s.

GCC-PHAT (sum) 0.0827 0.05976 0.007256 2.501 0.03822 0.1043 0.1704 2.03×10−3

GCC-NONLIN (max) 0.0954 0.06629 0.006180 2.254 0.03947 0.1096 0.1854 n.s.

GCC-NONLIN (sum) 0.0971 0.06379 0.004056 2.495 0.03823 0.1076 0.2084 1.20×10−3

MVDR (max) 0.1476 0.09110 0.002071 1.935 0.05083 0.1392 0.2560 2.79×10−11

MVDR (sum) 0.1590 0.09449 0.002633 2.475 0.04783 0.1377 0.3062 2.02×10−10

DS (max) 0.1321 0.08498 0.004002 2.501 0.04730 0.1347 0.2426 2.21×10−10

DS (sum) 0.1208 0.08031 0.007290 2.501 0.04661 0.1321 0.2312 2.51×10−8

DNM (max) 0.1693 0.09204 0.000610 1.948 0.05196 0.1463 0.3022 5.16×10−12

DNM (sum) 0.1429 0.08071 0.003334 2.478 0.04672 0.1352 0.2823 4.35×10−9

Results from the baseline method are first presented, followed by results using the T-F mask from [28] and [30] and the proposed method (SNR response scaling and RPSL).
Best-performing numericals for each category are highlighted in bold

Fig. 13, the RPSL post-processing algorithm is able to limit
the amount of fluctuation in location estimates relative to
the baseline method, giving a more stable path.
Comparing the performance of GCC-PHAT using the

proposed method against the T-F mask from [28] showed
that both methods could not outperform the baseline.
While SNR response scaling alone outperformed [28],
when paired with the RPSL post-processing algorithm,
[28] outperformed SNR response scaling. In fact, GCC-
PHAT using sum aggregation with the T-F mask from
[28] and RPSL post-processing is almost arguably the best-
performing combination, delivering lowest mean and 0.25
quartile distance error measures, as shown in Table 4.
However, due to the same combination without T-Fmask-
ing giving near-identical performance, except median
distance error, for which showed visibly better improve-
ments, was considered the best-performing combination.
Perhaps due to the T-F mask not being a data-driven solu-
tion, it is more stable against unfamiliar scenarios. Given
that the T-F mask is primarily designed for speech signals,
with the target source being broadband noise, could be
the cause of the lack in performance. The T-F mask from
[30] delivered the worst results compared to the other
presented methods. Using the best-performing localisa-
tion technique (GCC-PHAT) showed that it was unable to

outperform both [28] and the proposed method, with or
without RPSL post-processing. This is likely driven by the
broadband target source, where its diffuse characteristics
rendered it difficult to distinguish the time-continuity in
the UAV rotor noise from the target sound mixed signal.
Overall, SNR response scaling and the T-F mask from [28]
and [30] struggled to deliver noticeable improvements in
localisation performance.

5.3 Task 3: Flying UAV scenario, speech sound source
Figure 14 shows the localisation results for task 3, with
details of the statistical test results shown in Table 5. Sim-
ilar to the results in task 2, the proposed method using
only RPSL post-processing outperformed most baseline
methods, delivering lower overall distance error mea-
sures under all aspects (mean, median, etc.). Further-
more, the proposed method with both SNR response
scaling and RPSL post-processing using many of the
localisation techniques also outperformed most base-
line methods. In this task, the DS localisation tech-
nique with max aggregation and RPSL post-processing is
the best-performing combination, delivering the lowest
overall mean, median, and quartile distance error mea-
sures, with t test results indicating the improvement is
distinct.
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Fig. 11 SNR angular spectral response (dB) from SPCup flying UAV broadband sound source (task 2) case 11 aw/o SNR response scaling andbw/ SNR
response scaling, using GCC-NONLIN with max aggregation. Cross (×) in the diagram represents the algorithm’s estimated peak response location

One aspect to note is that the many of the localisa-
tion techniques using both SNR response scaling and
RPSL post-processing delivered lower mean, median,
0.75 quartile, and RMSE measured compared to the
same setup without SNR response scaling, as shown in
Fig. 14 and Table 5. The only exceptions are MVDR
with sum aggregation, DS with max aggregation, and
DNM with max aggregation. This indicates that while
SNR response scaling lowered the sensitivity in estimat-
ing peak response locations more accurately, its abil-
ity to reduce unwanted noise is still apparent. Fur-
thermore, under the proposed method with only SNR
response scaling, except MVDR with sum aggrega-
tion, showed a reduction in maximum distance errors

relative to the baseline method. Given that SNR response
scaling also improved the performance of MVDR with
max aggregation for task 1 suggest that SNR response
scaling is still able to deliver some benefits over the base-
line method when paired with the RPSL post-processing
algorithm. Another potential aspect could be driven by
the temporally sparse nature of speech sources. This
allows the distinguishing between target and UAV noise
sources to be easier than, for example, broadband sources,
which is much more continuous and diffuse. However,
despite these indications of improvement, further tun-
ing and proper DAE training are still required to bring
out the true performance gains of SNR response scal-
ing.
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Fig. 12 Example of localisation path estimated for flying UAV broadband sound source (task 2) case 14 [1], using the baseline and proposed method
(RPSL only)

Despite significant improvements in the overall dis-
tance error reduction, the accuracy of the predictions for
most cases is not yet satisfactory for robust localisation
path estimation. This is suspected to be caused by the
non-stationary nature of speech (i.e. not all time frames
contained the target sound source), which may be an issue
with methods based on using the SNR response in angular
spectra, according to the previous study [27]. Therefore,
the fact that localisation can only be carried out in a
limited number of time frames would have caused the

proposed method to degrade significantly in performance
when the source signal was speech. In addition, the input
SNRs in task 3 seem to be much lower than that of other
tasks in the DREGON database. This elevates the chal-
lenge in estimating the peak response of the target audio
source.
Figures 15 and 16 demonstrate two of the more suc-

cessful path estimates using the proposed method with
only RPSL post-processing applied, compared against the
baseline method (cases 2 and 3 [1]), using DS with max

Fig. 13 Example of localisation path estimated for flying UAV broadband sound source (task 2) case 18 [1], using the baseline and proposed method
(RPSL only)
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Fig. 14 Flying UAV—speech sound source (task 3) haversine distance error distribution. Red line indicates the median, upper and lower edges of
the blue box indicate the 75% and 25% quartiles, upper and lower black bars indicate the maximum and minimum, and upper and lower corners of
the trapezoidal indicate the 95% upper and lower confidence limits

Table 5 Haversine distance error performance comparison (task 3—flying UAV, speech sound source)

Haversine distance error D (rad) p value: paired sample t test (ref.
best case)

Mean Median Min Max 0.25 quartile 0.75 quartile RMSE

Baseline

GCC-PHAT (max) 1.143 0.9486 0.00440 3.039 0.5444 1.680 1.362 1.81×10−17

GCC-PHAT (sum) 1.375 1.2730 0.02862 3.039 0.7456 1.920 1.582 2.11×10−29

GCC-NONLIN (max) 1.022 0.8480 0.00440 2.912 0.4434 1.638 1.233 2.13×10−11

GCC-NONLIN (sum) 1.206 1.0604 0.02862 2.971 0.7088 1.665 1.390 8.98×10−21

MVDR (max) 0.913 0.8164 0.00708 2.993 0.3166 1.515 1.138 5.83×10−7

MVDR (sum) 1.045 0.8897 0.01019 2.501 0.5146 1.680 1.232 2.39×10−18

DS (max) 0.881 0.7378 0.00800 3.015 0.2789 1.361 1.141 1.27×10−4

DS (sum) 1.083 0.8598 0.01492 3.024 0.4927 1.668 1.328 2.47×10−16

DNM (max) 1.088 0.9123 0.00437 3.015 0.5015 1.674 1.300 2.31×10−16

DNM (sum) 1.160 0.9798 0.03962 3.056 0.6410 1.698 1.356 1.19×10−20

w/ [28] T-F mask

GCC-PHAT (max) 1.277 1.2783 0.07181 2.776 0.6593 1.824 1.441 1.18×10−31

GCC-PHAT (sum) 1.247 1.2153 0.07979 2.827 0.7090 1.735 1.398 1.06×10−28

w/ [30] T-F mask

DS (max) 1.052 0.9775 0.01399 2.540 0.4983 1.602 1.243 3.05×10−17

DS (sum) 1.097 1.0249 0.01038 2.540 0.5042 1.644 1.281 7.08×10−20
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Table 5 Haversine distance error performance comparison (task 3—flying UAV, speech sound source) (Continued)

Haversine distance error D (rad) p value: paired sample t
test (ref. best case)

Mean Median Min Max 0.25 quartile 0.75 quartile RMSE

w/ SNR response scaling

GCC-PHAT (max) 1.207 1.1717 0.07321 2.669 0.6054 1.811 1.390 5.77×10−22

GCC-PHAT (sum) 1.325 1.2988 0.11448 2.989 0.7246 1.866 1.501 3.25×10−30

GCC-NONLIN (max) 1.170 1.1192 0.07740 2.633 0.5953 1.711 1.347 2.85×10−21

GCC-NONLIN (sum) 1.250 1.2045 0.06879 2.956 0.7501 1.761 1.404 1.75×10−29

MVDR (max) 1.045 0.9847 0.02859 2.472 0.5349 1.596 1.204 2.97×10−16

MVDR (sum) 1.103 1.0282 0.02711 2.729 0.6316 1.594 1.253 1.22×10−22

DS (max) 0.999 0.8668 0.03225 2.583 0.4278 1.626 1.198 1.15×10−11

DS (sum) 1.115 1.0375 0.01969 2.991 0.5803 1.722 1.292 4.33×10−21

DNM (max) 1.174 1.2215 0.02945 2.613 0.6012 1.728 1.345 2.37×10−23

DNM (sum) 1.160 1.0620 0.04191 2.740 0.6189 1.724 1.323 5.48×10−24

w/ RPSL post-processing

GCC-PHAT (max) 1.129 1.0451 0.03077 2.691 0.6323 1.547 1.282 3.22×10−22

GCC-PHAT (sum) 1.294 1.1847 0.03292 2.877 0.7323 1.769 1.458 1.44×10−31

GCC-NONLIN (max) 1.083 1.0325 0.00474 2.543 0.5527 1.568 1.265 1.66×10−17

GCC-NONLIN (sum) 1.093 1.0342 0.00901 2.644 0.6126 1.505 1.251 4.22×10−20

MVDR (max) 0.826 0.6226 0.02069 2.382 0.2362 1.476 1.063 3.07×10−5

MVDR (sum) 0.864 0.6437 0.02214 2.250 0.3550 1.583 1.078 4.67×10−8

DS (max) 0.706 0.4435 0.02207 2.424 0.1956 1.176 0.962 n.s.

DS (sum) 0.850 0.6395 0.02145 2.501 0.3336 1.325 1.071 1.28×10−6

DNM (max) 0.982 0.8109 0.01968 2.444 0.4646 1.441 1.167 1.33×10−14

DNM (sum) 0.980 0.7641 0.03962 2.551 0.4765 1.434 1.169 1.81×10−15

w/ [28] T-F mask + RPSL post-processing

GCC-PHAT (max) 1.167 1.0996 0.09304 2.617 0.6643 1.607 1.316 8.90×10−26

GCC-PHAT (sum) 1.285 1.1122 0.04744 2.912 0.6868 1.751 1.473 4.50×10−30

w/ [30] T-F mask + RPSL post-processing

DS (max) (best case) 0.684 0.4362 0.00038 2.593 0.1827 0.937 0.951 N/A

DS (sum) 0.786 0.5264 0.02560 2.452 0.2546 1.288 1.015 2.66×10−3

w/ SNR response scaling + RPSL post-processing

GCC-PHAT (max) 1.067 0.9980 0.07649 2.852 0.5852 1.515 1.241 5.90×10−18

GCC-PHAT (sum) 1.202 1.1322 0.06775 2.945 0.6837 1.696 1.373 4.18×10−23

GCC-NONLIN (max) 0.893 0.6941 0.01799 2.408 0.4562 1.208 1.082 1.40×10−7

GCC-NONLIN (sum) 1.066 0.9414 0.07722 2.510 0.5493 1.565 1.236 2.76×10−19

MVDR (max) 0.770 0.5080 0.01199 2.530 0.2716 1.207 0.996 n.s.

MVDR (sum) 0.984 0.8222 0.03901 2.297 0.4840 1.558 1.167 2.44×10−15

DS (max) 0.759 0.5406 0.01738 2.344 0.2379 1.268 0.996 n.s.

DS (sum) 0.753 0.5300 0.02859 2.311 0.2693 1.094 0.978 n.s.

DNM (max) 0.996 0.8491 0.04045 2.451 0.4684 1.520 1.189 9.52×10−15

DNM (sum) 0.957 0.8381 0.05366 2.303 0.4342 1.371 1.142 1.19×10−12

Results from the baseline method are first presented, followed by results using the T-F mask from [28] and [30] and the proposed method (SNR response scaling and RPSL).
Best-performing numericals for each category are highlighted in bold
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Fig. 15 Example of localisation path estimated for flying UAV speech sound source (task 3) case 2 [1], using the baseline and proposed method
(RPSL only)

aggregation. As shown with the baseline method, the low
input SNR coupled with speech source being temporally
sparser than UAV rotor noise, there are major fluctuations
in location estimations. On the other hand, the proposed
method with only RPSL post-processing applied is able
to estimate some of the locations along the path success-
fully. As some of the location estimates from the baseline
method are correctly estimated, the RPSL post-processing
algorithm is able to utilise these data points and per-
form restricted peak search (see Section 3.3), limiting

influences coming from the UAV rotors and reverbera-
tion effects, and thereby give a much more accurate path
estimate.
Figure 17 shows an unsuccessful example of localisation

path estimation (case 10 [1]). Here, while there were a few
correct estimates of �̂θS,flight(t) using the baseline method,
most are significantly different to that of the ground truth.
Therefore, there was a limited basis for the RPSL post-
processing algorithm to perform restricted peak search
effectively. Therefore, while the variation in localisation

Fig. 16 Example of localisation path estimated for flying UAV speech sound source (task 3) case 3 [1], using the baseline and proposed method
(RPSL only)
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Fig. 17 Example of localisation path estimated for flying UAV speech sound source (task 3) case 10 [1], using the baseline and proposed method
(RPSL only)

path estimate is much less chaotic compared to the base-
line method, the overall path is incorrect. A potential
method to resolve this deficiency would be to generate an
initial �̂θS,flight(t) that takes in multiple peaks, such as the
second and third largest peaks (instead of the single max-
imum peak), to create a wider grid of location points to
perform local path search. Since it is unlikely that the UAV
flight path would change in a severely rapid manner, hav-
ing a larger number of potential local path estimates may
grant a higher possibility in successful linking of the cor-
rect local paths together. However, exploring the problem
further remains as future work.
Like with task 2, we compare the performance between

GCC-PHAT with the proposed method against the T-
F mask from [28], and the best-performing localisation
technique using the T-F mask from [30] (DS). Again,
as shown Fig. 14 and Table 5, both T-F masks and
SNR response scaling could not outperform the base-
line. Different to that from task 2, while SNR response
scaling with max aggregation alone outperformed both
[28], this was not the case with sum aggregation. How-
ever, when paired with the RPSL post-processing algo-
rithm, SNR response scaling with max aggregation out-
performed [28], with sum aggregation showing simi-
lar performance. On the other hand, comparing RPSL
paired SNR response scaling against the pairing with
[30] using DS showed similar performance. Although
[30] was able to deliver slightly better performance
figures with max aggregation (while SNR response scal-
ing slightly outperformed [30] with sum aggregation), the
p value from the paired sample t test indicates that this

performance difference is not definitive. Therefore, the
performance advantages delivered by SNR response scal-
ing should not be overlooked. In addition, both T-F masks
and SNR response scaling with RPSL post-processing out-
performed RPSL post-processing alone. This could be
driven by the target sound source being speech, where
temporal sparsity can be expected, and some aspects of
the UAV noise can be distinguished more successfully
from the target source.
It should be noted that for both tasks 2 and 3, SNR

response scaling suffered significantly from the lack of
available training data. As mentioned in Section 4.1,
given access to the UAV system for noise recordings,
it is expected that noise removal performance would
significantly increase with sufficient data available for
proper DAE training, thereby improving localisation
performance for both target source types. However, this
remains a future investigation.

6 Conclusion
A method based on the multi-source TDOA estimation
in reverberant audio using angular spectra, to perform
sound localisation for a UAV-embedded audio record-
ing system, is proposed. The study proposes extensions
to improve localisation accuracy of the baseline method.
The extensions include a means of reducing the UAV
rotor noise effect via a weighting envelope based on the
UAV rotor noise PSD. In addition, the proposed method
also introduces an angular spectral range RPSL post-
processing algorithm to improve localisation accuracies
for the flying (moving) UAV scenario.
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Experimental results using the dataset provided by
the SPCup show that with proper DAE training, SNR
response scaling improves SNR angular spectral response,
resulting in a reduction in localisation error. The RPSL
post-processing algorithm also displayed improvement in
performance consistency even under low input SNR con-
ditions when the source is a non-stationary signal, and
the UAV is in motion. Future work includes accessing the
UAV system for proper UAV rotor noise data collection,
to properly investigate the SNR response scaling’s ability
to reduce UAV rotor noise effects under flying UAV sce-
narios. More challenging scenarios to investigate include
rapid movement of the UAV or inclusion of spatially
coherent interfering sound sources Nn.
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