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Abstract

Localization of multiple speakers using microphone arrays remains a challenging problem, especially in the presence
of noise and reverberation. State-of-the-art localization algorithms generally exploit the sparsity of speech in some
representation for this purpose. Whereas the broadband approaches exploit time-domain sparsity for multi-speaker
localization, narrowband approaches can additionally exploit sparsity and disjointness in the time-frequency
representation. Broadband approaches are robust to spatial aliasing but do not optimally exploit the frequency
domain sparsity, leading to poor localization performance for arrays with short inter-microphone distances.
Narrowband approaches, on the other hand, are vulnerable to spatial aliasing, making them unsuitable for arrays with
large inter-microphone spacing. Proposed here is an approach that decomposes a signal spectrum into a weighted
sum of broadband spectral components (atoms) and then exploits signal sparsity in the time-atom representation for
simultaneous multiple source localization. The decomposition into atoms is performed in situ using non-negative
matrix factorization (NMF) of the short-term amplitude spectra and the localization estimate is obtained via a
broadband steered-response power (SRP) approach for each active atom of a time frame. This SRP-NMF approach
thereby combines the advantages of the narrowband and broadband approaches and performs well on the
multi-speaker localization task for a broad range of inter-microphone spacings. On tests conducted on real-world data
from public challenges such as SiSEC and LOCATA, and on data generated from recorded room impulse responses,
the SRP-NMF approach outperforms the commonly used variants of narrowband and broadband localization
approaches in terms of source detection capability and localization accuracy.

Keywords: Sound source localization, Direction-of-arrival, Non-negative matrix factorization, Spatial aliasing, Speech
sparsity

1 Introduction
Speech remains the natural mode of interaction for
humans. Present day smart-home devices are, there-
fore, increasingly equipped with voice controlled personal
assistants to exploit this for human-machine interfacing.
The performance of such devices depends, to a large
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extent, on the performance of the localization techniques
used in these systems. The term localization in this con-
text implies the detection and spatial localization of a
number of overlapping speakers, and it is usually the first
stage in many speech communication applications. Accu-
rate acoustic localization of multiple active speakers, how-
ever, remains a challenging problem—especially in the
presence of background noise and room reverberation.
Localization is typically achieved by means of the

spatial diversity afforded by microphone arrays. Large
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microphone arrays (inter-microphone spacing in the
order of a meter) sample the sound fields at large spatial
intervals, thereby reducing the effect of diffuse back-
ground noise in the localization. However, these arrays are
increasingly prone to spatial aliasing at higher frequen-
cies. Compact microphone arrays, with inter-microphone
spacing of the order of a few centimeters, offer greater
robustness to spatial aliasing, but are biased by diffuse
background noise. The size of the chosen array is usually
a trade-off between these two factors and, further, is often
driven by practical considerations.
State-of-the-art algorithms for multi-speaker localiza-

tion usually exploit the sparsity and disjointness [1] of
speech signals. While some approaches exploit, mainly,
temporal sparsity (i.e., speakers are not concurrently
active at all times), others exploit the time-frequency (TF)
sparsity (i.e., speakers are not concurrently active at all
time and frequency points of the short-time frequency
domain representation) of speech. Here, the short-time
Fourier transform (STFT) representation is typically cho-
sen because of its computational efficiency. The former
approaches are categorized as broadband and the latter as
narrowband. For both these approaches, the localization
estimates over time and/or frequency are subsequently
aggregated to obtain an estimate of the number of active
sources and their respective locations.
Frequently used broadband methods are based on the

generalized cross-correlation (GCC) [2] and its vari-
ants, e.g., the average magnitude difference function
(AMDF) estimators [3], the adaptive eigenvalue decompo-
sition approach [4], information theoretic criteria-based
approaches [5], and the broadband steered-response
power approaches [6]. Such approaches typically local-
ize the dominant source in each time segment, thereby
exploiting the temporal sparsity induced by natural pauses
in speech. The GCC with phase transform (PHAT)
weighting has proven to be the most robust among all
the GCC weightings in low noise and reverberant envi-
ronments [7]. However, in GCC-PHAT, the localization
errors increase when the signal to noise ratio (SNR)
is poor. To address this issue, researchers have pro-
posed SNR-based weights on GCC-PHAT to highlight the
speech dominant TF bins and to de-emphasize TF bins
with noise or reverberant speech (see, e.g., [8–11]). A per-
formance assessment of various GCC algorithms may be
found in [12].
Narrowband frequency domain approaches, on the

other hand, use the approximate disjointness of speech
spectra in their short-time frequency domain represen-
tation to localize the dominant source at each time-
frequency point. Multi-speaker localization is subse-
quently done by pooling the individual location estimates.
In [13], for example, a (reliability-weighted) histogram
is computed on the pooled DoA estimates, and the

locations of peaks of the histogram yield the speaker loca-
tion estimates. In [14], instead of a histogram, a mixture
of Gaussians (MoG) model is applied to cluster the time-
difference of arrival (TDoA) estimates. The approach of
[15] is a generalization of [14] in which speaker coor-
dinates are estimated and tracked, rather than speaker
TDoAs. Similarly, in [16] the authors propose aMoG clus-
tering of the direction of arrival (DoA) estimates obtained
by a narrowband steered response power (SRP) approach.
This is extended in [17], where a Laplacian mixture model
is proposed for the clustering. In [18], source separation
and localization are iteratively tackled: source masks are
first estimated by clustering the TDoA estimates at each
TF bin and subsequently SRP-PHAT is used to estimate
the DoAs of the separated sources. The estimated DoAs
are fed back to the cluster tracking approach for updat-
ing the cluster centers. Other recent works build upon
this basic idea of exploiting the TF sparsity by introduc-
ing reliability weights on the time-frequency units before
localization such as [19], which uses SNR-based weights,
[20], which uses TFweights predicted by neural-networks,
and [21], which considers a weighted histogram of the
narrowband estimates, where the weights correspond to
a heuristic measure of the reliability of the estimate in
each TF bin. A comprehensive overview of the relations
between the commonly used localization approaches is
presented in [22].
When performing source localization independently at

each time-frequency point, typical optimization func-
tions for narrowband localization do not yield a unique
DoA estimate above a certain frequency. This is due to
the appearance of grating lobes, and the phenomenon
is termed spatial aliasing. As the distance between the
microphones in the array increases, the frequency at
which spatial aliasing occurs reduces, leading to ambigu-
ous DoA estimates across a larger band of frequencies.
Broadband approaches circumvent this problem by sum-
ming the optimization function across the whole fre-
quency band and computing a location estimate per time
frame. Such averaging is indicated for arrays with large
inter-element spacing. However, this constitutes a promis-
cuous averaging across frequencies, each of which may
be dominated by a different speaker, leading to (weak-
ened) evidence for only the strongest speaker in that time
frame—i.e., only the location of the highest peak in the
angular spectrum of the frame is considered as a poten-
tial location estimate and other peaks are usually ignored,
since they may not reliably indicate other active speaker
locations [23]. Multiple speaker localization is still possi-
ble in such cases by aggregating the results across different
time frames but, by disregarding the frequency sparsity
of speech signals, softer speakers (who may not be dom-
inant for a sufficient number of time frames) may not be
localized.
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Instead of averaging across the whole frequency range,
a compromise can be effected by only averaging across
smaller, contiguous sub-bands of frequencies and comput-
ing a location estimate per time and sub-band region. By
pooling the estimates across the various sub-bands, multi-
speaker localization may still be achieved. Such bands
may be either psycho-acoustically motivated (e.g., the
Bark scale used in [24]) or heuristically defined. However,
these are fixed frequency groupings and the previously
described shortcomings with regard to such groupings
still hold. Other approaches [25, 26] try to resolve the
spatial aliasing problem by trying to unwrap the phase
differences of spatially aliased microphone pairs. Initial
(rough) estimates of the source locations are required
to resolve the spatial aliasing, and it is assumed that at
least a few non-aliased microphone pairs are available
for this. Consequently, this requires arrays with several
microphones at staggered distances such that multiple
microphone pairs, aliasing at different frequencies, are
available.
The key idea of our approach is to average the narrow-

band optimization function for localization only across
frequency bins that show simultaneous excitation in
speech (e.g., fundamental frequency and its harmonics
for a voiced speech frame, etc.). Thereby the frequency
grouping is not fixed, but data- and time frame depen-
dent. Further, since the averaging is carried out across
frequency bins that are simultaneously excited during the
speech, the interference from other speakers should be
minimal in these bins due to the sparsity and disjointness
property. Thus, we can simultaneously exploit the time
and frequency sparsity of speech while being robust to
spatial aliasing—thereby overcoming the shortcomings of
the previously mentioned approaches.
Non-negative matrix factorization (NMF) allows for the

possibility to learn such typical groupings of the frequen-
cies based on the magnitude spectrum of the microphone
signal. These frequency groupings are termed atoms in
our work. Thus we speak of localization based on time-
atom sparsity, i.e., in any one time frame only a few
atoms are active and each active atom only belongs to one
speaker, and localizing across the different atoms in a time
frame allows for multi-speaker localization. Since we use
the SRP approach for localization, our algorithm is termed
the SRP-NMF approach.
The rest of the paper is organized as follows: we first

summarize prior approaches utilizing NMF for source
localization and place our proposed approach in the con-
text of these works. Next, in Section 3, we describe the
signal model, followed by a review of the basic ideas
underlying state-of-the-art narrowband and broadband
SRP approaches. SRP-NMF is introduced and detailed
in Section 5. In Section 6, the approach is thoroughly
tested. The details of the databases, the comparison

approaches and evaluation metrics, the method used to
estimate SRP-NMF parameters, an analysis of the results
and limitations of the approach are presented. Finally,
we summarize the work and briefly mention the future
scope.

2 Prior work using NMF for localization
NMF has previously been used for source localization
and separation in several conceptually different ways. For
example, in [27], NMF is applied to decompose the SRP-
PHAT function (collated across all time-frequency points)
into a combination of angular activity and source presence
activity. This decomposition assumes unique maxima of
the SRP-PHAT function (i.e., no spatial aliasing), allowing
for a sparse decomposition using NMF.
In [28], on the other hand, NMF is used to decompose

the GCC-PHAT correlogrammatrix to a low-dimensional
representation consisting of bases which are the GCC-
PHAT correlation functions for each source location and
weights (or activation functions) which determine which
time frame is dominated by which speaker. Thus, this
approach may be interpreted as a broadband GCC-PHAT
approach assuming temporal sparsity. As it is a broad-
band approach, spatial aliasing is not a problem. However,
simultaneous localization of multiple sources within a
single time frame is not straightforward.
The approach of [29] is, again, fundamentally different

from [27] and [28]. Here, complexNMF is used to decom-
pose the multi-channel instantaneous spatial covariance
matrix into a combination of weight functions that indi-
cate which locations in a set of (pre-defined) spatial ker-
nels are active (thus corresponding to localization). This
approach is supervised—NMF basis functions of the indi-
vidual source spectra (learnt in a training stage), as well as
a pre-defined spatial dictionary are incorporated into the
approach.
In a recent separation approach called GCC-NMF [30],

GCC-PHAT is used for localization, and the NMF decom-
position of the mixture spectrum is used for dictio-
nary learning. Subsequently, the NMF atoms at each
time instant are clustered, using the location estimates
from GCC-PHAT, to separate the underlying sources.
The results of this approach, along with the successful
use of NMF in supervised single-channel source separa-
tion, indicate that an NMF-based spectral decomposition
results in basis functions (atoms) that are sufficiently
distinct for each source, and which do not overlap sig-
nificantly in time—i.e., we have some form of disjoint-
ness in the time-atom domain. Thus, we hypothesise that
using such atoms as weighting for the frequency averag-
ing would allow for exploiting this time-atom sparsity and
disjointness to simultaneously localize multiple sources
within a single time frame while being robust to spatial
aliasing due to the frequency averaging.
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Specifically, we investigate the use of an unsupervised
NMF decomposition as a weighting function for the SRP-
based localization and apply it to the task of multi-speaker
localization. Further, we also investigate modifications to
the NMF atoms which lead to a better weighting for the
purpose of localization, followed by a rigorous evalua-
tion of NMF-weighted SRP for DoA estimation in various
room acoustic environments, and with different array
configurations. The proposed approach is comprehen-
sively compared to (a) the state-of-the-art localization
approaches for closely spaced microphones and (b) the
state-of-the-art methods for widely spaced microphones.

3 Signal model
3.1 Spatial propagation model
Consider an array of M microphones that captures the
signals radiated by Q broadband sound sources in the far
field. The microphone locations may be expressed in 3D
cartesian co-ordinates by the vectors as r1, . . . ,rM. Under
the far field assumption, the DoA vector for source q in
this co-ordinate system can be denoted as:

nq(θ ,φ) = (
cos(θq) sin(φq) , sin(θq) sin(φq) , cos(φq)

)T ,
(1)

where 0 ≤ θ ≤ 2π is the azimuth angle between the
projection of nq(θ ,φ) on to the xy plane and the positive
x-axis and 0 ≤ φ ≤ π is the elevation angle with respect
to the positive z-axis.
In the STFT domain, the image of source q at

the array, in the kth frequency bin and bth time
frame, can be compactly denoted as: Xq(k, b) =
[Xq,1(k, b), . . . ,Xq,M(k, b)]T . If V(k, b) is the STFT-
domain representation of the background noise at the
array, the net signal captured by the array can be written
as:

X(k, b) =
Q∑

q=1
Xq(k, b) + V(k, b), (2)

where X(k, b) =[X1(k, b), . . . ,XM(k, b)]T .
Under the common assumption of direct path domi-

nance, and taking the signal at the first microphone as the
reference, the image of source q at the array can be re-cast,
relative to its image at the reference microphone, as:

Xq(k, b) =
(
1 , ej �krT21nq/c , . . . , ej �krTM1nq/c

)T
Xq,1(k, b) ,

(3)

where �k = 2πkfs
K is the kth discrete frequency, fs is the

sampling rate, K is the number of DFT points, ri� = ri−r�
is the position difference between microphones i and �,
and c is the speed of sound.

The term
(
1 , ej �krT21nq/c , . . . , ej �krTM1nq/c

)T
is often

termed the relative steering vector Aq(k) in the literature.
Further, it is also often assumed that each TF-bin is dom-
inated by only one source based on W-disjoint orthog-
onality property [1]. Consequently, assuming source q is
dominant in TF-bin (k, b), (2) can be simplified as:

X(k, b) ≈ Xq(k, b) + V(k, b) . (4)

3.2 NMFmodel
Given the STFT representation Sq(k, b) of a source sig-
nal q, computed over K discrete frequencies and B time
frames, we denote the discrete magnitude spectrogram
of this signal by the (K × B) non-negative matrix |Sq|.
We shall subsequently use the compact notation: |Sq| ∈
R

(K×B)
+ to denote a non-negative matrix and its dimen-

sions. The element (k, b) of the matrix |Sq| is denoted as
|Sq(k, b)|.
A low rank approximation of |Sq| of rank D can be

obtained using NMF as:

|Sq| ≈ WqHq , (5)

whereWq ∈ R
(K×D)
+ andHq ∈ R

(D×B)
+ . Eq (5) implies that:

|Sq(k, b)| ≈
D∑

d=1
Wq(k, d)Hq(d, b). (6)

The columns wd,q, d = 1, 2, . . . ,D , of Wq encode spec-
tral patterns typical to the source q and are referred to as
atoms in the ensuing. The rows of Hq encode the activity
of the respective atoms in time. A high value of Hq(d, b)
for an atom d at frame b indicates that the corresponding
atom is active in that time frame.
However, based on the assumption of signal sparsity in

the time-atom representation, only the atoms whose acti-
vation values exceed a certain threshold value need be
considered as contributing to the signal at a particular
time frame. LetDb,q be the set of atom indices whose acti-
vation values exceed the threshold at time frame b. Then,
we can further simplify (6) as:

|Sq(k, b)| ≈
∑

d∈Db,q

wd,q(k)Hq(d, b) , (7)

where wd,q(k) = Wq(k, d).

4 Steered response power beamformers
4.1 Narrowband SRP (NB-SRP)
To localize a source at any frequency bin k and time frame
b, the NB-SRP approach basically steers a constructive
beamformer towards each candidate DoA (θ ,φ), in a pre-
defined search space of candidate DoAs, and picks the
candidate with the maximum energy as the location of
the active source at the TF point (k, b). This assumes,
implicitly, that the time-frequency bin in question
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contains a directional source. Formally, this approach may
be written as:

(
θ̂ (k, b), φ̂(k, b)

) = argmax
θ ,φ

JNB-SRP(k, b, θ ,φ) , (8)

where (θ̂(k, b), φ̂(k, b)) is the DoA estimate at each TF bin
and JNB-SRP(k, b, θ ,φ) is the optimization function given
by:

JNB-SRP(k, b, θ ,φ) = |AH(k, b, θ ,φ)X(k, b)|2 . (9)

In the above, A(k, b, θ ,φ) can be any generic beamformer
that leads to a constructive reinforcement of a signal
along (θ ,φ). In practice, the normalized delay-and-sum
beamformer of (10) is widely used. Since this is simi-
lar to the PHAT weighting, this approach is called the
NB-SRP-PHAT.

A(k, b, θ ,φ) =
[

1
|X1(k, b)| ,

ej �krT21n(θ ,φ)/c

|X2(k, b)| , . . . ,
ej �krTM1n(θ ,φ)/c

|XM(k, b)|

]T

.

(10)

The source location estimates for the different TF bins,
obtained as in (8), are subsequently clustered and the
multi-speaker location estimates are obtained as the cen-
troids of these clusters.

4.2 Broadband SRP (BB-SRP)
NB-SRP fails to provide a unique maximum for (8) for
frequencies above the spatial aliasing frequency. As the
inter-microphone distance increases, a larger range of fre-
quencies are affected by spatial aliasing, and the efficacy
of NB-SRP-based methods decreases. To overcome this
problem, (9) is summed across the frequency range, lead-
ing to the broadband SRP (BB-SRP) optimization function
[31]:

JBB-SRP(b, θ ,φ) =
∑

k
|AH(k, b, θ ,φ)X(k, b)|2. (11)

BB-SRP may be seen as a multi-channel analog of GCC-
PHAT approach. Note that (11) yields a single localization
result per time frame. The results from multiple time
frames can then be clustered as in the NB case for multi-
speaker localization. The broadband approach amelio-
rates spatial aliasing at the cost of un-utilized TF sparsity.
Since only the dominant source is located in each time
frame, softer speakers who are not dominant in a sufficient
number of time frames may not be localized.

5 The SRP-NMF approach
As we shall now demonstrate, by incorporating the DT
basis functions W = [

w1,w2, . . . ,wDT

]
obtained from an

NMF decomposition of the microphone signal spectrum,
we can exploit sparsity in what we term the ‘time-atom’
domain. For compactness of expression, and without loss

of generality, we shall consider localization only in the
azimuth plane (i.e., φ = π/2) in the following.
In each time frame we compute a weighted version

of (11) as:

JSRP-NMF(d, b, θ) =
∑

k
wd(k)

∣
∣AH(k, b, θ)X(k, b)

∣
∣2 ,

(12)

where wd(k) is the kth element of the dth atom wd. Based
on (12), we obtain a DoA estimate per active atom d as:

θ̂ (d, b) = argmax
θ

JSRP-NMF(d, b, θ) . (13)

As previously explained, we expect the atoms wd to
embody the spectral patterns typical to the underlying
sources. Further, the time-frequency sparsity and disjoint-
ness of speech results in each atom being unique to a sin-
gle source. Thus, the weighted sum in (12) only aggregates
information across frequencies that are simultaneously
excited by a source, yielding a spatial-aliasing robust loca-
tion estimate for that source in (13). This is the rationale
behind the weighting in (12). Multi-speaker localization
is subsequently obtained by clustering the DoA estimates
computed for all active atoms.
We present an intuitive idea of how this works using a

toy example in Section 5.1.

5.1 Demonstration of the working principle of SRP-NMF
Consider two spatially separated, simultaneously active
sources captured by microphones placed 12 cm apart.
Each source is a harmonic complex of different funda-
mental frequencies. Figure 1 describes the two underlying
source atoms wd . In this simple example, w1(k) = 1 only
at frequencies where the source 1 is active, and zero oth-
erwise (the red lines in Fig. 1) and w2(k) = 1 only at
frequencies where the source 2 is active (the blue dashed
lines in Fig. 1). Figure 2 depicts the BB-SRP optimization
functionJBB-SRP(θ) and the SRP-NMF optimization func-
tions JSRP-NMF(d, θ), d = 1, 2 for the two atoms, over
the azimuthal search space. The dashed lines indicate the
ground truth DoAs. The locations of the peaks of the opti-
mization functions correspond to the respective DoA esti-
mates. It is evident from this figure that the BB-SRP can
localize only one source when considering the dominant
peak (and even then with a large error). When consider-
ing the locations of the two largest peaks of JBB-SRP(θ)

for estimating the two underlying source DoAs, both esti-
mates are in error by more than 5◦. This is quite large
for such a synthetic example. In contrast, the SRP-NMF
estimates (one each from the respective JSRP-NMF(d, θ))
are much more accurate and localize both sources. This is
because the each atom emphasizes frequency components
specific to a single source in the weighted summation,
while suppressing the other components.
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Fig. 1 Simulated amplitude spectrum of two spatially separated
sources

5.2 SRP-NMF implementation
With the intuitive understanding from the previous
section, we now focus on the implementation details. In
a supervised localization approach, source-specific atoms
can be easily obtained by NMF of the individual source
spectra. However, we focus here on the unsupervised case,
where no prior information of the sources to be local-
ized is available. The atoms, therefore, are extracted from
the mixture signal at the microphones. It has previously
been demonstrated [32] that NMF of mixture spectra still
results in atoms that correspond to the underlying source
spectra. However, it is not possible to attribute the atoms
to their corresponding sources without additional infor-
mation. In our case, NMF is performed on the average of
the magnitude spectrograms of the signals of the different

Fig. 2 Normalized SRP beampatterns of broadband SRP and SRP-NMF
on a mixture of two sources. The dashed line indicates the ground
truth of the source locations

microphones. Another possibility is a weighted average
spectrogram where the weights could be estimated based,
e.g., on some SNR measure [33, 34].
The steps in SRP-NMF localization are:

• Compute the average of the magnitude spectrograms
of the signals at all microphones m:

|X(k, b)| = 1
M

M∑

m=1
|Xm(k, b)|. (14)

This yields the average magnitude spectrum matrix
|X| ∈ R

(K×B)
+ , where K and B indicate, again, the

number of discrete frequencies and time frames of
the STFT representation.

• Decompose |X| using NMF into the matrix
W ∈ R

(K×DT )
+ , containing the DT dictionary atoms,

and the matrixH ∈ R
(DT×B)
+ containing the

activations of these atoms for the different time
frames:

|X| ≈ WH . (15)

The cost function used for NMF is the generalized
KL divergence [35]:

DKL(|X|,WH) =
∑

k

∑

b
(|X(k, b)| log

(
|X(k, b)|

[WH] (k, b)

)

− |X(k, b)|+[WH] (k, b)) ,

(16)

where [WH] (k, b) indicates element (k, b) of the
product WH. The well-known multiplicative update
rules are applied to estimateW andH. Once the
atoms are obtained, they can be used for the
weighting in (12)

• We note that only the active atoms of each time
frame are used in the localization. To obtain the
active atoms for any frame b, they are sorted in
decreasing order of their activations H(d, b) in that
frame. The first atoms that contribute to a certain
percentage (here empirically set at 99 percent) of the
sum of the activation values in that frame are
considered as active.
The SRP-NMF optimization function is,
consequently,

JSRP-NMF(db, b, θ) =
∑

k
wdb (k)

∣
∣AH(k, db, b, θ)X(k, b)

∣
∣2 ,

(17)

where wdb is an active atom at frame b.
• By maximizing (17) with respect to θ , a DoA estimate

is obtained for each active atom in frame b as:

θ̂ (db, b) = argmax
θ

JSRP-NMF(db, b, θ). (18)
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• Lastly, we compute the histogram of the DoA
estimates across all the time-atom combinations. The
locations of peaks in the histogram correspond to
DoA estimates of the active sources in the given
mixtures.

5.2.1 NMFmodifications
The NMF decomposition of speech spectra as in (15)
results in dictionary atoms with higher energy at low
frequencies than at high frequencies. This is because
speech signals typically have a larger energy at the lower
frequencies. Further, due to the large dynamic range of
speech, the energy in high frequency components can
be several decibels lower than that in low-frequency
components [32]. This characteristic is, subsequently,
also reflected in the NMF atoms. When these atoms are
used as weighting functions, the resulting histogram of
location estimates is biased towards the broadside of
the array. We illustrate this on a 3 source stereo mixture
(dev1_male3_liverec_250ms_5cm_mix.wav)
from the SiSEC database. The details of the database are
in Section 6.3. The ground truth DoAs of the 3 sources are
50◦, 80◦ and 105◦. The histogram obtained by the SRP-
NMF is shown in Fig. 3. The bias at the broadside of the
array (around 90◦) is evident from the figure. While the
second and third peaks near 90◦ are prominent, the first
peak at 50◦, which is away from the broadside, is not clear.

Fig. 3 Histogram of SRP-NMF on a mixture of 3 sources taken from
the SiSEC database dev1_male3_liverec_250ms_5cm_mix.
wav, with β = 0 and DT = 35. The ground truth DoAs are 50◦ , 80◦
and 105◦ . The estimate does not clearly present evidence for the 1st

peak at 50◦

This broadside bias can be explained as follows: localiza-
tion essentially exploits the inter-microphone phase dif-
ference (IPD), which is a linear function of frequency (with
some added non-linearities in real scenarios due to rever-
beration [28]). This linear dependence implies that low
frequencies have smaller IPDs (concentrated around 0),
compared to high frequencies. This leads to localization
around the broadside for the low frequencies. When using
the weighted averaging, the dominant low frequency com-
ponents in the atoms thereby emphasize the broadside
direction.
To remove this bias, a penalty term [28, 36] is added to

flatten the atoms, thereby reducing the dominance of low
frequency components in the atoms. This penalty term is
given by:

F(W) =
∑

d

[
WTW

]
(d, d) , (19)

where
[
WTW

]
(d, d) indicates the elements along the

main diagonal of WTW. This leads to the constrained
NMF (CNMF) cost function:

C
(|X|,WH

) = DKL(|X|,WH) + βF(W) , (20)

where β is the weighting factor of the penalty term. The
multiplicative update equations subsequently become:

H←H � WT |X|
WH

WT1
and W←W �

|X|
WHHT

1HT + 2βW
,

(21)

where 1 represents a matrix of ones of the appropriate
dimensions, � represents the Hadamard product and the
division is element-wise. This constrained decomposition
favors atoms with a flat spectrum. Figure 4 shows the
histogram of SRP-NMF when using the CNMF decompo-
sition, where it may be observed that the broadside bias
is overcome and azimuths of all the sources are correctly
estimated.

6 Experimental evaluation
In this section, the performance of SRP-NMF is com-
pared to the state-of-the-art localization approaches for
closely spaced and widely spaced microphones. Since our
approach is closely related to the SRP/GCC family of
approaches (being, as it were, an intermediate between
the broadband and narrowband versions of these), and
because these are the typical, well-understood methods
for source localization, these form the basis for our bench-
mark.
Specifically, we compare our approach to:

• The NB-SRP-PHAT according to Section 4.1;
• A sub-band variant of the above (termed

Bark-SRP-PHAT), where the optimization function is
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Fig. 4 Histogram of SRP-NMF (CNMF) on a mixture of 3 sources taken
from the SiSEC database dev1_male3_liverec_250ms_5cm_
mix.wav, with β = 60 and DT = 35. The ground truth DoAs are
50◦ , 80◦ and 105◦ . The 3 peaks are clearly visible now

averaged over Sub-bands defined according to the
Bark scale as in [24]; and

• Four other best performing algorithms among a
broad variety of localization algorithms benchmarked
in [19] and implemented within the open source
Multichannel BSS-locate toolbox [37].

For completeness, a brief summary of Bark-SRP-PHAT
and the approaches from the Multichannel BSS-locate
toolbox is given in Section 6.1.
Tests are conducted on four different databases (three

of which are openly available) in order to evaluate the
approaches across different microphone arrays (different
spacing and configurations) as well as in different acous-
tic environments, from relatively dry (T60 ≈ 130ms) to
highly reverberant (T60 ≈ 660ms). The evaluation setup
is described in Section 6.2, followed by the details of the
databases used. The evaluation metrics are described in
Section 6.4 and the method adopted for choosing NMF
parameters is presented in Section 6.5.
Further, Section 6.6 presents a comparison of the pro-

posed SRP-NMF to a supervised approach wherein the
underlying sources at each microphone are first separated
using NMF, and localization is subsequently performed on
the separated sources.
Section 6.7 presents the results of the benchmarking.

6.1 Brief summary of benchmarked approaches
6.1.1 Bark-SRP-PHAT
NB-SRP and BB-SRP are, respectively, fully narrow-
band or fully broadband approaches. However, SRP-NMF

only averages the optimization function over a (source-
dependent) subset of frequencies. Thus, we include a
comparisonwith amodified SRP approachwhere the opti-
mization function is averaged along sub-bands, where the
sub-bands are the critical bands defined according to the
Bark scale. A single localization estimate is computed for
each critical bandwithin a time frame. These estimates are
then pooled across all time frames in a manner similar to
the narrowband SRP-PHAT approach, to obtain the final
localization result. This approach thus exploits available
sparsity and disjointness in time and sub-bands. This scale
was chosen because of its psychoacoustical relevance, as
seen in previous localization research (e.g., [24]).

6.1.2 MVDRWapproaches
TheMVDRWapproaches [19] useminimum variance dis-
tortionless response (MVDR) beamforming to estimate,
for each frequency bin k and each time frame b, the sig-
nal to noise ratio (SNR) in all azimuth directions. Since
the spatial characteristics of the sound field are taken into
account, the SNR indicates, effectively, time-frequency
bins where the direct path of a single-source is domi-
nant. The MVDRWsum variant averages the SNR across
all time-frequency points and, subsequently, the DoA esti-
mates are computed as the location of the peaks of this
averaged SNR.When all sources are simultaneously active
within the observation interval, this averaging is benefi-
cial. However, when a source is active only for a few time
frames, the averaging smooths out the estimate, thereby
possibly not localizing the source. Hence [19] also pro-
poses an alternative called MVDRWmax, where a max
pooling of the SNR is performed over time.

6.1.3 GCC-variants
The two GCC-variants considered in [19] are the GCC-
NONLINsum and GCC-NONLINmax. The key difference
with the traditional GCC is the non-linear weighting
applied to compensate for the wide lobes of the GCC for
closely spaced microphones [38]. In GCC-NONLINsum
and GCC-NONLINmax, respectively, the sum and max
pooling of the GCC-PHAT, computed over the azimuthal
space, is done across time.
As previously stated, these approaches were chosen for

the benchmark because they have previously been demon-
strated to be the best performing approaches among a
broad variety of localization approaches. Further, since
the implementation of these approaches is open source,
it allows for a reproducible, fair benchmark against which
new methods may be compared.

6.2 Evaluation setup
For all the experiments, the complex-valued short-term
Fourier spectra were generated from 16 kHz mixtures
using a DFT size of 1024 samples (i.e., K = 512) and a hop
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size of 512 samples. A periodic square-root Hann window
of size 1024 samples is used prior to computing the DFT.
The NMF parameters DT and β are set to 55

and 60 respectively. These parameters are set based
on preliminary experiments that are described in
Section 6.5. The maximum number of NMF iterations
is 200.
For all the approaches, the azimuth search space (0◦ −

180◦) was divided into a uniformly spaced grid with a 2.5◦
spacing between adjacent grid points. Further, in all cases,
it is assumed that the number of speakers in the mixture
is known.

6.3 Data
The following four databases, covering a wide range of
recording environments, are used for evaluations.

6.3.1 Signal Separation and Evaluation Campaign (SiSEC)
[39]

The dev1 and dev2 development data of SiSEC, consist-
ing of under-determined stereo channel speech mixtures,
is used. The mixtures are generated by adding live record-
ings of static sources played through loudspeakers in a
meeting room (4.45m x 3.55m x 2.5m) and recorded one
at a time by a pair of omnidirectional microphones. Two
reverberation times of 130 ms and 250 ms are considered.
Two stereo arrays are used: one with an inter-

microphone spacing of 5cm (SiSEC1) and the other with
spacing of 1m (SiSEC2). The speakers are at a distance of
0.80m or 1.20m from the array, and at azimuths between
30◦ and 150◦ with respect to the array axis. The data thus
collected consists of twenty 10 s long mixtures of 3 or 4
simultaneous speakers (either all male or all female). The
ground truth values of DoAs are provided. They were fur-
ther verified by applying the GCC-NONLIN approach on
the individual source images that are available in the data
set.
Since the mixtures are generated by mixing live record-

ings from a real environment, they also contain mea-
surement and background noise. Further, both closely
spaced and widely spaced arrays can be evaluated in the
same setting. This makes the SiSEC dataset ideal for the
comparison of the various approaches.

6.3.2 Challenge on acoustic source LOCalization And
TrAcking (LOCATA) [40]

LOCATA comprises multi-channel recordings in a real-
world closed environment setup. Among several tasks that
this challenge offers, we consider Task1: localization of
a single, static speaker using a static microphone array
and Task2: localization of multiple static speakers using a
static microphone array.
The data consists of simultaneous recordings of static

sources. Sentences selected from the CSTR VCTK

database [41] are played back through loudspeakers in
a computer laboratory (dimensions: 7.1m x 9.8m x 3
m, T60 = 550ms). These signals are recorded by a
non-uniformly spaced linear array of 13 microphones
[40]. In total, there are 6 mixtures of one to four
speakers, and the mixtures are between 3 s to 7 s long.
The ground truth values of the source locations are
provided.
To evaluate different linear array configurations we

consider 4 uniform sub-arrays: 3 mics with 4 cm inter-
microphone spacing (LOCATA1), 3 mics with an 8 cm
inter-microphone spacing (LOCATA2), 3 mics with 16 cm
inter-microphone spacing (LOCATA3), and 5 mics with a
4 cm inter-microphone spacing (LOCATA4). This dataset
is generated from live recordings in a highly reverber-
ant room, which makes it interesting for benchmarking
localization approaches.

6.3.3 AachenMulti-Channel Impulse Response Database
(AACHEN) [42]

This is a database of impulse responses measured in a
room with configurable reverberation levels. Three con-
figurations are available, with respective T60s of 160 ms,
360 ms and 610 ms. The measurements were carried out
for several source positions for azimuths ranging from 0◦
to 180◦ in steps of 15◦ and at distances of 1 m and 2 m
from the microphone array. Three different microphone
array configurations are available.
For this paper, we choose the room configuration with

T60 = 610 ms. The impulse responses corresponding to
sources placed at a distance of 2m from the 8 microphone
uniform linear array with an inter-microphone spacing of
8 cm are selected. Multi-channel speech signals are gen-
erated by convolving the selected impulse responses with
dry speech signals. Fifty mixtures, each 5 s long, and from
3 speakers (randomly chosen from the TSP database [43]),
placed randomly at 3 different azimuths with respect to
the array axis are generated.

6.3.4 UGentMulti-Channel Impulse Response Database
(UGENT)

The impulse responses from the UGENT database were
measured using exponential sine sweeps for azimuth
angles varying from 15◦ to 175◦ with the source at a
distance of 2m from the array. The recordings were con-
ducted in a meeting room with a T60 ≈ 660ms. The
microphone array is a triangular array with the following
microphone coordinates: (0m,0m,0m), (0.043m,0m,0m)
and (0.022m,− 0.037m,0m). Fifty mixture files, each of 5 s
duration, are generated with 3 speakers (randomly cho-
sen from the TSP database) placed at random, different
azimuths.
Except for the UGent database, all other databases are

openly accessible.
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6.4 Evaluation metrics
The evaluationmeasures chosen are a detectionmetric (F-
measure) and a location accuracy metric (mean azimuth
error - MAE). In a given dataset, let N be the total num-
ber of sources in all mixture files and Ne be the number
of sources that are localized by an approach. The esti-
mated source azimuths for each mixture are matched to
the ground truth azimuths by greedy matching to ensure
minimum azimuth error. If, after matching, the estimated
source azimuth is within ±7.5◦ of the ground truth esti-
mate then the source is said to be correctly estimated. Let
Nc be the number of sources correctly localized for all
mixtures. Then the F-measure is given by

F-measure = 2 ∗ Recall ∗ Precision
Recall + Precision

, (22)

where Recall = Nc/N and Precision = Nc/Ne The more
the number of sources correctly localized, the higher the
F-measure.
To quantify the localization accuracy, we present two

error metrics: MAE and MAEfine. While MAE is the
mean azimuth error between the estimated DoAs and true
DoAs after greedy matching (irrespective of whether an
approach managed to correctly localize all sources within
the 7.5◦ tolerance), MAEfine is the mean error between
the correctly estimated DoAs and true DoAs. Thus, while
MAE gives location accuracy over all the sources in the
mixture, MAEfine gives location accuracy of only the cor-
rectly detected sources. The former may, therefore, be
seen as a global performance metric whereas the latter
indicates a local performance criterion with respect to
correctly detected sources.

6.5 Selecting suitable NMF parameters
To obtain suitable values of the flattening penalty term β

and the dictionary size DT , the localization performance
of SRP-NMF is evaluated on a small dataset over a range
of β and DT .
Table 1 shows the F-measure obtained by SRP-NMF on

SiSEC1 data for β varying from 0 to 80 and DT from 15
to 55. It may be seen that with β fixed, as the dictio-
nary size increases, the localization performance initially
improves and later saturates. A similar trend is observed

when DT is fixed and β is increased. The pairs of β and
DT that yield an F-measure ≥0.95 (in bold) have similar
performance and can be chosen as the NMF parameters.
While a lower DT leads to less computational complex-
ity, a lower β leads to a lower residual error in the NMF
approximation (i.e., a better approximation of the magni-
tude spectrum). Therefore, among various combinations
of β and DT that yield a comparable F-score, a lower β

(such as 30) and lowerDT (such as 25) are preferred. How-
ever, we choose slightly higher parameter values to ensure
robust performance and to allow generalization to other
datasets with possibly more reverberation and/or noise.
Hence, in the subsequent experiments, the values of β and
DT are set to 60 and 55 respectively.
The trends in Table 1 are illustrated in Figs. 5 and 6

for a mixture of 4 concurrent speakers. Figure 5 depicts
the histogram plots of SRP-NMF with β ranging between
0 and 80 and DT = 35. It is evident from the figure
that when β=0, the peaks further away from the broad-
side direction are not prominent. The reason for this
was explained in Section 5.2.1. As β increases, the
peaks become increasingly prominent and can be easily
detected.
Figure 6 presents the effect of varying DT on the SRP-

NMF outcome. Here, β is fixed at 60 and DT increases
from 5 to 55. It may be seen that as the dictionary
size increases, the histogram peaks become increasingly
distinct.

6.6 Experiment with supervised separation and
localization

The basic idea for the proposed approach has its roots
in the successful use of NMF for supervised source sep-
aration. Hence, we compare, here, the performance of
SRP-NMF against a supervised variant where the micro-
phone signals are first decomposed into their underlying
sources using NMF [44] and the localization is then per-
formed on the separated sources using the broadband
SRP approach. This approach is termed SNMF-SRP, and
is implemented as follows:

1 First, for any test case, the magnitude spectrum |Sq|
of each individual source q in the mixture is

Table 1 The detection metric, F-measure, obtained by SRP-NMF on SiSEC1 data for β and DT varying from 0 to 80 and 15 to 55
respectively
β
DT

0 10 20 30 40 50 60 70 80

15 0.72 0.83 0.80 0.85 0.87 0.89 0.88 0.94 0.95

25 0.83 0.89 0.92 0.95 0.98 0.98 0.98 0.99 0.98

35 0.78 0.93 0.99 0.96 0.97 0.99 0.98 0.98 0.99

45 0.84 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99

55 0.85 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.98

Values of F-measure ≥ 0.95 are in bold, indicating good performance
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Fig. 5 Effect of β on SRP-NMF performance. Subplots show the histograms of SRP-NMF on a mixture of 4 sources taken from SiSEC database
(dev1_male4_liverec_250ms_5cm_mix.wav) with DT = 35 and β varying from 0 to 80. β is displayed on each of the subplots. The x-axis
shows DoA (degrees). The y-axis is the (normalized) frequency of DoAs

decomposed using constrained NMF. This results in
theWq ∈ R

(K×Dq)
+ basis function matrix for that

source, whereDq is the number of atoms for source q.
We assume that the number of atoms is the same for
all sources, i.e., Dq = D ∀q. The basis functions for all
sources are then concatenated into a matrixW as:

W = [
W1 ,W2 , . . . ,WQ

] ∈ R
(K×QD)
+ (23)

2 NMF is next used to decompose the magnitude
spectrogram of the mixture at any one reference
microphone m as |Xm| ≈ WH. In this step,W is
kept fixed and only the activation matrix H is
adapted. This matrix can then be partitioned into the
activations of the individual sources as:

H =
[
HT

1 ,HT
2 , . . . ,HT

Q

]
∈ R

(QD×B)
+ , (24)

where B is the total number of frames in the mixture
spectrogram.

3 The spectral magnitude estimates for each source
can then be obtained as: |̂Sq| = WqHq . These
estimates are used to define binary masks for each
source, whereby each TF point is allocated to the

source with the maximum contribution (i.e., the
dominant source) at that TF-point.

4 The binary masks belonging to each source are,
finally, applied to the complex mixture spectrograms
at all microphones, and the broadband SRP-PHAT
approach is used to obtain the source location
estimate.

Since SNMF-SRP first separates the sources before
localizing them, the interference from the other sources
is minimized in the localization. Further, a binary mask
attributes a time-frequency point (k, b) to only the dom-
inant source at that point. Due to this “winner-takes-
all” strategy, only the dominant source components are
preserved at each time-frequency point. Consequently,
the effect of the interference on the SRP-PHAT func-
tion is further reduced, resulting in more accurate DoA
estimates as compared to when continuous masks are
used. This experiment with oracle knowledge of the
underlying sources should, therefore, give a good indi-
cation of the possible upper bound of our proposed
approach.
We note that an alternative to the SNMF-SRP would

be unsupervised NMF-based separation approaches. Such
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Fig. 6 Effect of dictionary size DT on SRP-NMF performance. Subplots show the histograms of SRP-NMF on a mixture of 4 sources taken from SiSEC
database (dev1_male4_liverec_250ms_5cm_mix.wav) with β = 60 and DT varying from 5 to 55. DT is displayed on each of the subplots.
The x-axis shows DoA (degrees). The y-axis is the (normalized) frequency of DoAs

approaches may be seen as comprising the following two
steps: (a) decomposing the mixture spectrum into basis
functions and their corresponding activations, and, (b)
grouping (clustering) the basis functions according to the
sources they belong to, to generate the separated source
signals. Usually, some additional signal knowledge or sig-
nal model needs to be incorporated into the approach
to perform the clustering and the quality of the source
separation is, consequently, dependent on the kind of
clustering approach. Typically, these steps are not per-
formed independently, and the clustering model is often
incorporated (explicitly or implicitly) as a set of additional
constraints in the decomposition step. If one neglects
the additional step (and associated effort) of grouping
the basis components and simply uses the obtained basis
functions as a weighting within the SRP-PHAT approach,
then there is no conceptual difference between our pro-
posed approach and the use of unsupervised NMF-based
separation followed by localization.

6.6.1 Experimental set-up
We compare, first, the SNMF-SRP and SRP-NMF. For
this purpose, fifty mixtures, each 5 s long and comprising

3 sound sources at randomly chosen azimuths, rang-
ing from 15◦ to 175◦, are generated using room impulse
responses from the AACHEN database. The responses
corresponding to the room configuration with T60 =
610ms are used. Two arrays are considered: the 8 micro-
phone uniform linear array with 8 cm inter-microphone
spacing, and a 4-microphone uniform linear sub-array
with 4 cm inter-microphone spacing (this is part of a
larger 8-mic array with spacing 4-4-4-8-4-4-4). The posi-
tion of the speakers was also randomly chosen for each
test file. The optimal dictionary size and weighting fac-
tor for the SNMF-SRP approach are first determined in a
manner similar to that for SRP-NMF, and using data from
the 3-mic sub-array with inter-microphone spacing of
8 cm.
Dictionary sizes DSNMF-SRP of 50, 90, and 130 and

weighting factors βSNMF-SRP of 0, 20, and 40 are evalu-
ated. The F-measure and MAE obtained for each case are
reported in Table 2, from where it is observed that a dic-
tionary size DSNMF-SRP of 130 and βSNMF-SRP of 20 give
the best results in terms of the chosen metrics. These are
consequently fixed for the subsequent evaluation of the
SNMF-SRP approach.
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Table 2 F-measure and mean azimuth error (MAE) for the
supervised NMF-SRP (SNMF-SRP) for varying DSNMF-SRP and
βSNMF-SRP
βSNMF-SRP
DSNMF-SRP

0 20 40

50 0.9/7.69 0.95/6.22 0.93/6.57

90 0.91/7.66 0.97/4.95 0.94/7.15

130 0.92/6.82 0.98/4.5 0.97/4.85

Figures 7 and 8 depict the performance of SNMF-SRP
compared to SRP-NMF.
Since we can expect the best localization performance

in the absence of reverberation and interfering sources,
we simulate this case as well and include it in the compar-
ison (this is termed direct-path (DP) single-source-SRP-
PHAT). To obtain this result, each source in the mixture
is individually simulated at the arrays. Further, for gen-
erating the source image, the room impulse response is
limited to only the filter taps corresponding to the direct
path and 20ms of early reflections. Then, a DoA estimate
is obtained by the broadband SRP-PHAT. This corre-
sponds to the localization of a single source in the near
absence of reverberation and noise and, thus forms a
further performance upper bound for all the approaches.
The figures show that, especially for a smaller number

of microphones and lower inter-microphone spacing, the
supervised NMF-SRP approach is significantly better than
the proposed unsupervised SRP-NMF. The SRP-NMF has
the lowest F-measure and the largest MAE. This indi-
cates that incorporating the knowledge of the underlying
sources may be beneficial when the spatial diversity is lim-
ited and cannot be fully exploited. As the spatial diversity
increases, the performance of the unsupervised method
begins to converge to that of the supervised approach.
As expected, the performance of both these approaches
are upper bounded by the DP-single-source SRP-PHAT
approach.

6.7 Results and discussion
The benchmarking results, in terms of F-measure and
mean azimuth errors, for the various datasets are plot-
ted in Fig. 9. We start with the MAEfine metric, which
focusses on the average localization error for sources that
have been correctly localized. The chosen margin for a
correct localization implies that the MAEfine is necessar-
ily ≤ 7.5◦. Figure 9 further indicates that the MAEfine
metric is comparable among all the approaches, with a
difference of only about 1 deg or less (except for the
GCC-NonLinsum and MVDRWsum of LOCATA1 and
MVDRWmax of LOCATA2, where it is slightly higher).
Thus, we may not claim, categorically, that any particular
approach is better than the other in terms of this met-
ric. More indicative metrics for the performance of any

approach would be the MAE and F-measure, which are
discussed next.
NB-SRP-PHAT localizes well with closely spaced stereo

microphones and its performance deteriorates with larger
inter-microphone spacing due to spatial aliasing. This is
clearly seen from the SiSEC results, where its performance
is better in SiSEC1 (5 cm spacing) than in SiSEC2 (1
m spacing). Furthermore, in the case of multiple micro-
phones, it performs poorly in LOCATA1 and UGENT.
The reason for the poor performance may be explained as
follows: both LOCATA1 and UGENT have only 3 micro-
phones that are very closely spaced (≈4 cms apart) and
high reverberation ( T60 ≈ 600ms). We hypothesize
that the TF bins in which noise or reverberant compo-
nents are dominant are allocated to spurious locations
and, since NB-SRP-PHAT pools the decisions per TF bin,
these spurious locations mask the source locations in the
histogram. This behavior is worse in closely spaced arrays,
as the beam pattern of the SRP optimization function has
wide main lobes. Increasing the microphone separation or
the number of microphones, narrows the main lobes thus
improving the performance - as is evident in LOCATA2/3
and LOCATA4 respectively.
Among the GCC-NONLIN approaches, max pooling

performs better than sum pooling, which verifies the con-
clusions in [19]. Further, due to the non-linearity intro-
duced to improve the performance in microphone arrays
with short inter-microphone spacing (cf. Section 6.1), the
GCC-NONLINmax performs reasonably well in almost
all datasets and microphone configurations.
Between the MVDRW methods, max and sum pool-

ing give similar results for the smaller array of SiSEC1.
In SiSEC2, sum pooling is superior, which is consistent
with [19]. However, for a larger number of microphones
max pooling performs better in all microphone config-
urations. In LOCATA1 and UGENT, though the beam-
pattern of MVDR has wide lobes due to closely spaced
microphones, the performance of the MVDRW-based
approaches is better than that of NB-SRP-PHAT. We rea-
son that this is because the MVDRW approaches factor in
the sound field characteristics and introduce a frequency
weighting that emphasizes the time-frequency bins that
are dominated by the direct sound of a single source
(cf. Section 6.1).
Figure 9 also indicates that SRP-NMF performs consis-

tently well across the various databases. In terms of MAE
and F-measure, the scores of SRP-NMF is among the top
two for each tested case. The atom weighting highlights
time-frequency bins consisting of information relating to
a single source, similar to SNR weighting, thus exploiting
time-atom sparsity and leading to superior performance
in short arrays. In large arrays, averaging the optimiza-
tion function across the frequency axis ensures robustness
to spatial aliasing, thus leading to good performance.
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Fig. 7 Performance comparison of SNMF-SRP, DP-single-source-SRP-PHAT, and the proposed SRP-NMF in terms of the chosen instrumental metrics
on the AACHEN dataset, on various subsets of the 8-microphone uniform linear array with an inter-microphone spacing of 8 cm

Fig. 8 Performance comparison of SNMF-SRP, DP-single-source-SRP-PHAT, and the proposed SRP-NMF in terms of the chosen instrumental metrics
on the AACHEN dataset. The results are depicted for subsets of a uniform linear array with an inter-microphone spacing of 4 cm
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Fig. 9 F-measure, MAE and MAEfine of SRP-NMF and comparison approaches on various datasets. Mean azimuth error between ground truth
azimuths and the detected azimuths (MAE) is the gross location accuracy metric. F-measure is the detection metric. Mean azimuth error between
ground truth azimuths and the correctly detected azimuths (MAEfine) is the fine location accuracy metric

Further, the performance of SRP-NMF is consistently bet-
ter than (or comparable to) that of the Bark-SRP-PHAT,
indicating the benefit of the data-dependent weighted
frequency averaging, as compared to a fixed frequency
averaging.
Lastly, we also include a comparison with the SNMF-

SRP (cf. Section 6.6) for the AACHEN and UGENT data.
It may be seen, then, that this supervised approach out-
performs all the other unsupervised approaches—which is
expected, based on the results in Section 6.6 and Figs. 7
and 8. We note that since SNMF-SRP is based on the
availability of the underlying source signals, it could not
be applied to the LOCATA data, where this informa-
tion is not consistently available. Further, we chose not to
report performance metrics of this approach on the SiSEC
data, since all approaches perform well in this case, and
the performance of SNMF-SRP would add no value in a
comparative analysis of the performances.
While the evaluation conclusively demonstrates the

benefit of the proposed SRP-NMF approach, this comes
at the cost of increased computational complexity. Its
complexity is more than that of NB-SRP-PHAT and
depends on the number of active atoms per frame. Fur-
ther, we empirically observe that SRP-NMF gives good
DoA estimates if the data segments are long (> 3s).
We hypothesize, consequently, that the NMF dictionary
atoms extracted from short segments may not be accu-
rate. Therefore, in the current form, SRP-NMF is not

suitable for real-time applications. However, with pre-
trained dictionaries, the requirement of long data seg-
ments can be relaxed and SRP-NMF can be explored for
real-time localization.
In order to better appreciate the benefits of the SRP-

NMF approach, a graphical comparison of SRP-PHAT
and SRP-NMF is presented in Figs. 10 and 11. These
depict the histogram plots obtained by SRP-PHAT and

Fig. 10 Histogram of DoA estimates obtained by SRP-PHAT on
recording 2 (Task2) from LOCATA1 containing four concurrent speakers
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Fig. 11 Histogram of DoA estimates obtained by SRP-NMF on recording 2 (Task 2) from LOCATA1 containing four concurrent speakers

SRP-NMF on a real-room mixture consisting of 4 con-
current speakers. Note that SRP-NMF clearly indicates
the presence of the 4 sources, whereas the histogram
of the SRP-PHAT approach (Fig. 10) does not present
clear evidence of all 4 sources. The histogram plot in
Fig. 11 can be further improved if subsampling is per-
formed. Subsampling is an approach borrowed fromWord
Embedding in the field of NLP. Based on the obser-
vation that words with high frequency of occurrence
do not contribute as much information as the words

that occur more rarely, the frequent words are subsam-
pled [45] to counter the imbalance between the frequent
and rare words. In a similar manner, in the histogram
of estimated DoAs, to counter the imbalances between
frequent and occasional DoA estimates (e.g., due to a
speaker being only active for a short while), the frequently
occurring DoAs are subsampled after crossing a certain
threshold. The subsampled version of Fig. 11 is shown
in Fig. 12, where the benefit of subsampling is clearly
visible.

Fig. 12 Subsampled histogram of DoA estimates obtained by SRP-NMF on recording 2 (Task 2) from LOCATA1 containing four concurrent speakers
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7 Conclusions
SRP-NMF is a localization approach that uses the NMF
atoms of the underlying sources to obtain a broadband
localization estimate for each atom. By exploiting the
sparsity of the sources in the time-atom domain, this
still allows for the simultaneous localization of mul-
tiple sources in a time frame. Thereby the proposed
approach combines the benefits of standard broadband
and narrowband localization approaches. It can, there-
fore, be used with compact and large array configu-
rations. Compared to the state-of-the-art narrowband
and broadband approaches on data collected in natural
room acoustic environments, and with various micro-
phone configurations, the proposed approach can reli-
ably localize the active sources in all cases, and with
a comparable or lower localization error. The use of
such an NMF-based decomposition and subsequent fre-
quency grouping can be seamlessly extended in a vari-
ety of ways. For example, it can be combined with
extant methods that improve the robustness of localiza-
tion approaches to noise (e.g., in combination with the
SNR weighting of the MVDR-based approaches), or it
can be combined with a priori knowledge in the form
of speaker-specific NMF atoms to localize only a spe-
cific speaker in the mix. It may also be modified for
real-time applications with pre-learned universal NMF
dictionary and online estimation of activation coeffi-
cients. We intend to address these extensions in future
work.
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