
Xu et al. EURASIP Journal on Audio, Speech, andMusic
Processing         (2021) 2021:24 
https://doi.org/10.1186/s13636-021-00207-6

RESEARCH Open Access

Components loss for neural networks
in mask-based speech enhancement
Ziyi Xu* , Samy Elshamy, Ziyue Zhao and Tim Fingscheidt

Abstract

Estimating time-frequency domain masks for single-channel speech enhancement using deep learning methods has
recently become a popular research field with promising results. In this paper, we propose a novel components loss
(CL) for the training of neural networks for mask-based speech enhancement. During the training process, the
proposed CL offers separate control over preservation of the speech component quality, suppression of the noise
component, and preservation of a naturally sounding residual noise component. We illustrate the potential of the
proposed CL by evaluating a standard convolutional neural network (CNN) for mask-based speech enhancement. The
new CL is compared to several baseline losses, comprising the conventional mean squared error (MSE) loss w.r.t.
speech spectral amplitudes or w.r.t. an ideal-ratio mask, auditory-related loss functions, such as the perceptual
evaluation of speech quality (PESQ) loss and the perceptual weighting filter loss, and also the recently proposed SNR
loss with two masks. Detailed analysis suggests that the proposed CL obtains a better or at least a more balanced
performance across all employed instrumental quality metrics, including SNR improvement, speech component
quality, enhanced total speech quality, and particularly also delivers a natural sounding residual noise component. For
unseen noise types, we excel even perceptually motivated losses by an about 0.2 points higher PESQ score. The
recently proposed so-called SNR loss with two masks not only requires a network with more parameters due to the
two decoder heads, but also falls behind on PESQ and POLQA and particularly w.r.t. residual noise quality. Note that
the proposed CL shows significantly more 1st ranks among the evaluation metrics than any other baseline. It is easy to
implement, and code is provided at https://github.com/ifnspaml/Components-Loss.
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1 Introduction
Speech enhancement aims at improving the intelligibil-
ity and perceived quality of a speech signal that has been
degraded, e.g., by additive noise. This task becomes very
challenging when only a single-channel microphone mix-
ture signal is available without any knowledge about the
individual components. Single-channel speech enhance-
ment has attracted a lot of research attention due to
its importance in real-world applications, including tele-
phony, hearing aids devices, and robust speech recog-
nition. Numerous speech enhancement methods were
proposed in the past decades. The classical method for
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single-channel speech enhancement is to estimate a time-
frequency (TF) domain mask or, more specifically, to
calculate a spectral weighting rule [1–5]. To obtain the
TF domain coefficients for a spectral weighting rule, the
estimation of the noise power, the a priori signal-to-noise
ratio (SNR) [1, 6–10], and sometimes also the a pos-
teriori SNR are required. Finally, the spectral weighting
rule is applied to obtain the enhanced speech. Thereby,
it is still common practice to enhance only the ampli-
tudes and leave the noisy phase untouched. However, the
performance of these classical methods degrades signif-
icantly in low-SNR conditions and also in the presence
of non-stationary noise [11]. To mitigate this problem,
e.g., a data-driven ideal mask-based approach has been
proposed in [12, 13]. Therein, Fingscheidt et al. use a
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simple regression for estimating the coefficients of the
spectral weighting rules, which reduces the speech distor-
tion while retaining a high noise attenuation. Interestingly,
as with neural networks, this approach already allowed the
definition of arbitrary loss functions. Note that Erkelens
et al. published briefly afterwards on data-driven speech
enhancement [14, 15].
In recent years, deep learning methods have been devel-

oped and used for weighting rule-based (now widely
called mask-based) speech enhancement pushing perfor-
mance limits even further, also in the presence of non-
stationary noise [16–24]. The powerful modeling capabil-
ity of deep learning enables the direct estimation of TF
masks without any intermediate steps. Wang et al. [16,
25] illustrate that the ideal ratio mask-based approach,
in general, performs significantly better than spectral
envelope-based methods for supervised speech enhance-
ment. Williamson et al. [21] propose to use a complex
ratio mask which is estimated from the single-channel
mixture to enhance both the amplitude spectrogram and
also the phase of the speech. Different from other meth-
ods that directly estimate the TF mask, an approach that
predicts the clean speech signal while estimating the TF
mask inside the network is proposed in [17, 18]. Therein,
the TF mask is applied to the noisy speech amplitude
spectrum inside the network in an additional multipli-
cation layer. Thus, the output of the network is already
the enhanced speech spectrum, and not a mask which
is instead learned implicitly. The authors in [17] demon-
strate that the new method outperforms the conventional
approach, where the TF mask is the training target and
hence learned explicitly. In this paper, we estimate the
mask implicitly by using convolutional neural networks
(CNNs).
For the training of deep learning architectures for

both, mask-based [16–21, 23] and regression-based [24,
26] speech enhancement, most networks use the mean
squared error (MSE) as a loss function. The parameters
of the deep learning architectures are then optimized by
minimizing the MSE between the inferred results and
their corresponding targets. In reality, optimization of the
MSE loss in training does not guarantee any perceptual
quality of the speech component and of the residual noise
component, respectively, which leads to limited perfor-
mance [27–36]. This effect is even more evident when
the level of the noise component is significantly higher
than that of the speech component in some regions of
the noisy speech spectrum, which explains the bad perfor-
mance at lower SNR conditions when training with MSE.
To minimize the global MSE during training, the network
may learn to completely attenuate such TF regions [27], a
muting effect that is well-known from error concealment
under bad channel SNR conditions [37, 38]. This can lead
to insufficient quality of the speech component and very

unnatural sounding residual noise. To keep more speech
component details and to constrain the speech distortion
to an acceptable level, Shivakumar et al. [27] assigned a
high penalty against speech component removal in the
conventional MSE loss function during training, which
results in an improvement in speech quality metrics.
A perceptually weighted loss function that emphasizes
important TF regions has recently been proposed in [28,
29], improving speech intelligibility.
In fact, speech enhancement neural networks aim to

improve the output SNR given the input noisy mixture.
Thus, another straightforward direction is to use the SNR
as a loss function as proposed in [39], which is optimized
in the training phase. In this work, Erdogan et al. pro-
posed a framework to implicitly estimate two separate
masks for estimating the target speech and the target addi-
tive noise. During training, the frames with higher energy
havemore weight in the loss function, which is not desired
and would limit the generalization ability to unseen sig-
nals. To mitigate this problem, a power-law compression
is integrated into the SNR loss as proposed in [39], so that
the loss function will not be affected by the power scal-
ing of the training utterances. Nevertheless, the SNR loss
[39] does not consider sophisticated perceptual aspects,
which can again lead to an insufficient speech compo-
nent quality and an unnatural-sounding residual noise
component.
A more straightforward direction is to utilize the short-

time objective intelligibility (STOI) [40] and the percep-
tual evaluation of speech quality (PESQ) [41] metrics
as a loss function, which could be used to optimize
for speech intelligibility and speech quality, respectively,
during training [31–36]. Using STOI as an optimization
criterion has been studied in [33, 35, 36]. Fu et al. [36] pro-
posed a waveform-based utterance enhancement method
to optimize the STOI score. They also show that combin-
ing STOI with the conventional MSE as an optimization
criterion can further increase the speech intelligibility.
Using PESQ as an optimization criterion is proposed and
studied in [31, 32, 35]. In [31], the authors have amended
theMSE loss by integrating parts of the PESQmetric. This
proposed loss achieved a significant gain in speech per-
ceptual quality compared to the conventional MSE loss.
Zhang et al. [35] integrated both STOI and PESQ into
the loss function, thereby improving speech separation
performance.
However, both, original STOI and PESQ, are non-

differentiable functions which cannot be used as an opti-
mization criterion for gradient-based learning directly. A
common solution is to use differentiable approximations
for STOI or PESQ instead of the original expressions [31–
33, 36]. Yet, how to find the best approximated expression
is still an open question. In [35], the authors propose a gra-
dient approximation method to estimate the gradients of



Xu et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:24 Page 3 of 20

the original STOI and PESQ metrics. Still, these percep-
tual loss functions do not offer the flexibility of separate
control over noise suppression and preservation of the
speech component.
In this paper, we propose a novel so-called compo-

nents loss (CL) for deep learning applications in speech
enhancement. The newly proposed components loss is
inspired by the merit of separately measuring the per-
formance of speech enhancement systems on the speech
component and the residual noise component, which
is the so-called white-box approach [10, 42–44]. The
white-box approach allows to measure the performance
of mask-based speech enhancement w.r.t. three major
aspects: (1) noise attenuation, (2) naturalness of resid-
ual noise, and (3) distortion of the speech component.
Note that such component-wise quality metrics have also
been adopted in ITU-T Rec. P.1100 [45], P.1110 [46],
and P.1130 [47] to evaluate the performance of hands-
free systems. We utilize a CNN structure adapted from
[48] to illustrate the new components loss in the context
of speech enhancement. However, the new loss func-
tion is not restricted to any specific network topology or
application.
In contrast to the use of perceptual losses such as

PESQ and STOI [31, 33], our proposed components loss
(CL) is naturally differentiable for gradient-based learn-
ing and not a perceptual loss by design. In practice, the
new loss function does not need any additional training
material or extensive computational effort compared to
explicitly auditory-related loss functions [27, 28], which
makes it very easy to implement and also to integrate
into existing systems. A further merit is that the new
CL not only focuses on offering a strong noise atten-
uation and a good speech component quality, but also
allows for a more natural residual noise, where the trade-
off can be controlled directly. Note that highly distorted
residual noise can be even more disturbing than the orig-
inal unattenuated noise signal for human listeners [44].
Parts of this work, namely one of our two proposed
losses, have been pre-published with limited analysis and
evaluation in [49]. Following up our proposed CLs, Xia
et al. proposed a modified components loss for speech
enhancement in [50], and Strake et al. proposed a com-
ponent loss for a joint denoising and dereverberation
task in [51].
The rest of the paper is structured as follows: In

Section 2, we describe the investigated speech enhance-
ment task and introduce our mathematical notations. The
baseline methods used as reference for evaluation are
also introduced in this section. Next, we present our pro-
posed components loss function for mask-based speech
enhancement in Section 3. The experimental setup is pro-
vided in Section 4, followed by the results and discussion
in Section 5. Our work is concluded in Section 6.

2 Notations and baselines
2.1 Notations
We assume an additive single-channel model for the time-
domain microphone mixture y n s n d n of
the clean speech signal s n and the added noise signal
d n , with n being the discrete-time sample index. Since
mask-based speech enhancement typically operates in the
TF domain, we transfer all the signals to the frequency
domain by applying a discrete Fourier transform (DFT).
Note that this procedure is also often called short-time
Fourier transform (STFT), and successive STFT frames
overlap in time. Therefore, letY k S k D k be the
respective DFT, and Y k , S k , and D k be their
DFT amplitudes, with frame index 1, 2, , L
and frequency bin index k 0, 1, ,K 1 with
K being the DFT size. In this paper, we only estimate the
real-valued mask M k to enhance the amplitude
spectrogram of the noisy speech and use the untouched
noisy speech phase for reconstruction, obtaining the pre-
dicted enhanced speech spectrum

S k Y k M k . (1)

It is then transformed back to the time domain signal s n
with IDFT followed by overlap add (OLA).

2.2 Baseline network topology
As proposed in [17, 18], we predict the clean speech signal
while estimating the TFmask inside the network as shown
in Fig. 1. The NORM box in Fig. 1 represents a zero-mean
and unit-variance normalization based on statistics col-
lected on the training set. The CNNs used in this work
have exactly the same structure as in [48, Fig. 6] but with
different parameter settings, which will be explained later.
This CNN topology has shown great success in coded
speech enhancement [48] and is capable of improving
speech intelligibility [52]. Although more complex deep
learning architectures could be used, we choose this CNN
structure for simple illustration. Note that any other net-
work topology could be used instead.

Fig. 1 Schematic of themask-based CNN for speech spectrum
enhancement, used for both the baseline CNN (baseline losses) and
the new CNN (components loss). Details of the CNN can be seen in
Fig. 2
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The input of the CNN is a normalized noisy amplitude
spectrogram matrix Y with the dimensions Kin Lin as
shown in Fig. 2, where Kin represents the number of input
and output frequency bins, and Lin 5 being the number
of normalized context frames centered around the nor-
malized frame . Due to the conjugate symmetry of the
DFT, it is not necessary to choose Kin equal to the DFT
size K.
The convolutional layers are represented by the

Conv f , h w operation in Fig. 2. The number of filter
kernels is given by f F , 2F and thus automatically
defines also the number of output feature maps which are
concatenated horizontally after each convolutional layer.
The dimension of the filter kernel is defined by h w,
where h H is the height and w Lin, F , 2F is the
width. The width of the kernel is always corresponding to
the width of the respective input to that layer, so that the
actual convolution is operating only in vertical (frequency)

Fig. 2 Topology details of the employed CNN in Fig. 1 (adopted
from [48, Fig. 6]). The operation Conv f , h w stands for
convolution, with F or 2F representing the number of filter kernels in
each layer, and h w representing the kernel size. The maxpooling
and upsampling layers have a kernel size of 2 1 . The stride of
maxpooling layers is set to 2. The gray areas contain two symmetric
procedures. All possible forward residual skip connections are added
to the layers with matched dimensions

direction. In the convolution layers, the stride is set to 1,
and zero-padding is implemented to guarantee that the
first dimension of the layer output is the same as that for
the layer input. The maxpooling and upsampling layers
have a kernel size of 2 1 . The stride of the maxpool-
ing layers is set to 2. The number of the input and output
frequency bins Kin must be compatible with the two times
maxpooling and upsampling operations. All possible for-
ward residual skip connections are added to the layers
with matched dimensions to ease any vanishing gradient
problems during training [53]. To estimate a real-valued
mask M k [0, 1], the activation function used in the
last layer is sigmoid.

2.3 Baseline losses
2.3.1 BaselineMSE
The conventional approach to train a mask-based CNN
for speech enhancement uses theMSE loss. In the training
process, the input of the network is the normalized noisy
amplitude spectrogram matrix Y as above, and the train-
ing target is the corresponding amplitude spectrum of the
clean speech S k at frame , k . The implicitly
estimated mask is applied to the noisy speech amplitude
spectrum inside the network as shown in Fig. 1. The
MSE loss function for each frame is measured between
the clean and the predicted enhanced speech amplitude
spectrum, and is defined as

JMSE

k
S k S k

2
. (2)

As can be observed, all frequency bins have equal impor-
tance without any perceptual considerations, such as the
masking property of the human ear [29], or the loudness
difference [31]. Furthermore, as the MSE loss is optimized
in a global fashion, the network may learn to completely
attenuate some regions of the noisy spectrum, where the
noise component is significantly higher compared to the
speech component. This behavior can lead to insufficient
performance at lower SNR conditions.

2.3.2 Baseline eIRMMSE
A further famous baseline known from Wang and Chen
[25] is their “IRM” method, implementing an MSE loss
directly in the mask domain, following

JeIRM
k

M k Mtarget k
2
, (3)

with M k and Mtarget k being the estimated mask and
the target oracle IRM, respectively. We call this “baseline
eIRMMSE,” with “e” for “explicit.”

2.3.3 Baseline PW-FILT
In order to obtain better perceptual quality of the
enhanced speech, instead of the MSE loss, a so-called
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perceptual weighting filter loss PW-FILT is used [29]. In
this loss, the perceptual weighting filter from code-excited
linear prediction (CELP) speech coding is applied to effec-
tively weight the error between the network output and
the target, which can be expressed as

JPW-FILT

k
W k 2 S k S k

2
, (4)

where W k represents the weighting filter frequency
response as explained inmore detail in Appendix 1, Eq. 15.
This loss has shown superior performance compared to
the MSE loss in speech enhancement [29], as well as for
quantized speech reconstruction [30]. Some more detail
is given in Appendix 1.

2.3.4 Baseline PW-PESQ
Another option is to adapt PESQ [41], which is one of
the best-known metrics for speech quality evaluation, to
be used as a loss function. Since PESQ is a complex and
non-differentiable function which cannot be directly used
as an optimization criterion for gradient-based learning,
a simplified and differentiable approximation of the stan-
dard PESQ has been derived and used as a loss function
in [31]. The proposed PESQ loss is calculated frame-wise
from the loudness spectra of the target and the enhanced
speech signals. The finally used loss function, which con-
siders both auditory masking and threshold effects, com-
bines the PESQ loss with standard MSE to introduce the
perceptual criteria, and is defined as

JPW-PESQ
1 JMSE

2 JPESQ, (5)

with JMSE directly calculated from (2), JPESQ being the
proposed PESQ loss (see Appendix 1, Eq. 16). Hyperpa-
rameters 1 [0, 1] and 2 [0, 1] are the weighting
factors for the MSE loss and the PESQ loss, respectively.
The network trained by loss function (5) not only aims at
a low MSE loss, but also at decreasing speech distortion.
More details are given in Appendix 1.

2.3.5 Baseline PW-STOI
The maximization of STOI [40] during training is also the
target in several publications [31–36]. In [33], Kolbcek et
al. derive a differentiable approximation of STOI, which
considers the frequency selectivity of the human ear, for
the training of a mask-based speech enhancement DNN.
Interestingly, the authors find that no improvement in
STOI can be obtained by using the proposed loss function.
They conclude in their work that “the traditional MSE-
based speech enhancement networksmay be close to opti-
mal from an estimated speech intelligibility perspective”
[33]. Note that PW-STOI is not calculated frame-wise
compared to other baseline losses, which makes it very
difficult to implement in our setup and to allow a fair com-
parison. In [33], the trained network needs to estimate 30

frames of enhanced speech at once. Tomeet this large out-
put size, the input size can be quite large and unpractical
in our implementation. Due to the above-cited conclusion
from [33] and the large output size requirement, we will
not implement the PW-STOI loss in our setup.

2.3.6 Baseline two-masks SNR
To compare to the two-masks estimation network trained
with SNR loss as proposed in [39], we adopted it as a fur-
ther baseline. The framework in [39] estimates the ampli-
tude spectrum of the target clean speech and the additive
noise by S k Y k MS k and D k
Y k MD k , withMS k andMD k being the implic-
itly estimated masks for the clean speech and the additive
noise, respectively. Thus, we need to modify our net-
work topology to implicitly estimate the two masks. Since
our employed CNN has a symmetric encoder-decoder
structure as shown in Fig. 2, we can simply add an addi-
tional decoder head, which is parallel to the existing one
with exactly the same topology, to estimate the addi-
tional mask. So, the encoder is connected to two parallel
decoder heads to estimate the two masks. However, the
estimated clean speech and additive noise obtained by
directly applyingMS k andMD k from the two decoder
heads may not meet the power conservation constraint
S k 2 D k 2 Y k 2. To mitigate this problem,
during the test phase, the estimated twomasks aremerged
to one mask byM k 0.5 1 MS k 2 MD k 2

as proposed in [39]. The final enhanced speech amplitude
spectrum S k is obtained from (1). Details of the SNR
loss are given in Appendix 1.

3 New components loss functions for mask-based
speech enhancement

The newly proposed components loss (CL) is inspired by
the so-called white-box approach [42], which utilizes the
filtered clean speech spectrum S k and the filtered noise
component spectrumD k to train the mask-based CNN
for speech enhancement as shown in Fig. 3. We first moti-
vate the use of the white-box approach in the following
and then introduce the new components loss.

Fig. 3 Proposed CNN training setup for speech enhancement
according to thewhite-box approach. The hereby applied
components loss (CL) is given in (8) and (11)
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3.1 White-box approach
Since our work is inspired by the so-called white-box
approach ([42], see also [43, 44]), we introduce the filtered
speech spectrum, which is obtained by

S k S k M k , (6)

while the filtered noise spectrum is estimated by

D k D k M k . (7)

The filtered speech component spectrum S k and the
filtered noise component spectrum D k are trans-
formed back to the time domain signals s n and d n ,
respectively, with IDFT followed by overlap add (OLA).
Speech enhancement systems aim to provide a strong

noise attenuation, a naturally sounding residual noise,
and an undistorted speech component. Thus, the evalu-
ation of a speech enhancement algorithm ideally needs
to measure the performance w.r.t. all three aspects. The
white-box approach, which allows to measure the per-
formance based on the filtered speech component s n
and the filtered residual noise component d n , has been
originally proposed in [42]. A white-box based measure
does not employ the enhanced speech signal s n , but
only utilizes the filtered and unfiltered components with
the unfiltered ones as a reference [42–44]. Due to its
usefulness, this component-wise white-box measurement
has been widely adopted in ITU-T Recs. P.1100 [45],
P.1110 [46], and P.1130 [47] to evaluate the performance
of hands-free systems. One might ask whether there is
a price to pay with component-wise quality evaluation,
since masking effects of human perception are not at all
exploited. Accordingly, we will have to use also percep-
tual quality metrics in the evaluation Sections IV and
V. Interestingly, supporting the adoption of components
metrics in ITU-T recommendations, our newly proposed
components loss (CL) turns out to be superior both in
PESQ and POLQA (perceptual objective listening quality
prediction).

3.2 New components loss with 2 components
3.2.1 New 2CL
The core innovative step of this work is as follows: Since
we assume an additive single-channel model, both the
amplitude spectrum of the clean speech S k and the
additive noise D k are accessible during the train-
ing phase, and thus can be used as training targets.
First, the filtered components S k and D k in
Fig. 3 are obtained by (6) and (7), respectively. Then, we
define our proposed components loss (CL) for each frame
as

J2CL 1
k

S k S k
2

k
D k 2,

(8)

with [0, 1] being the weighting factor that can be used
to control the trade-off between noise suppression and
speech component quality.
This proposed CL dubbed as “2CL” is the combina-

tion of two independent loss contributions, where the
first term represents the loss function for the filtered
clean speech component, and the second term represents
the power of the filtered noise component. Both of the
two losses are calculated frame-wise. Minimizing the first
term of the loss function is supposed to preserve detailed
structures of the speech spectrum, so the perceptual qual-
ity of the speech component will be maintained. Any dis-
tortion or attenuation being present in the filtered speech
spectrum will be punished by this loss term. The second
term of 2CL representing the residual noise power should
also be as low as possible. Thus, minimizing the second
loss term is responsible for the actual noise attenuation
(NA), which is not at all enforced by the first term.
The first and the second term in (8) are combined by

the weighting factor . Compared to conventional train-
ing using the standard MSE loss function as shown in
Fig. 1, our newly proposed training with 2CL offers more
information to the network to learn which part of the
noisy spectrum belongs to the speech component that
should be untouched, and which part is the added noise
that should be attenuated. By tuning close to 1, 2CL
will penalize high residual noise power stronger than
severe speech component distortion. Thus, the trained
network tends to suppress more noise but maybe at the
cost of more speech distortions. When is close to 0,
the trained network will behave conversely, so that it will
offer better speech component quality and may not pro-
vide much noise attenuation. Controlling the trade-off
between speech component quality and noise attenuation
is impossible when using the conventional single-target
MSE loss function (2). Note that the enhanced speech
S k is not part of the loss anymore, only implicitly,
keeping in mind that S k S k D k . Further-
more, for a speech enhancement algorithm, a highly dis-
torted residual noise can be even more disturbing than
the original unattenuated noise signal for human listen-
ers [44]. The conventional networks trained with MSE
tend to have a strong noise distortion because of the
TF bin attenuation behavior as mentioned in the “Intro-
duction” section. Conversely, the network trained by the
proposed 2CL may have less TF bin attenuation, because
the TF bin attenuation is also harmful to the speech
component and will be penalized by the first term of
2CL. As a consequence, the networks trained by the pro-
posed 2CL are likely to offer more natural residual noise,
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even though the residual noise quality is not explicitly
considered in (8).

3.2.2 Reference iIRMMSE
For our proposed 2CL (8), the global optimal solution
of the implicitly estimated mask can be derived as (see
Appendix 2):

M2CL-opt k
S k 2

S k 2
1 D k 2 , (9)

which is similar to an ideal ratio mask (IRM) proposed in
[25] with 1, however, with the important difference
that through our loss formulation in the signal domain (as
opposed to an MSE on masks), (8) only implicitly trains a
network with mask output, whereas the original IRM [25]
(which we call “baseline eIRM MSE”) aims at minimizing
the MSE explicitly on the mask. Nevertheless, due to the
similar global optimum (9), we compare our 2CL also to a
network, which can perform an implicit IRM (iIRM) esti-
mation. By doing this, we train a network with the same
training setup as the baseline MSE shown in Fig. 1, using
anMSE loss function.We construct an iIRM loss based on
the standard MSE loss JMSE from (2) as

J iIRM
k

S k Starget k
2
, (10)

with Starget k Y k M2CL-opt k being the
enhanced speech amplitude spectrum obtained from an
oracle IRM (9). Comparing to the baseline MSE loss (2),
only the training target is different. This method is used
as a reference (we do not call it baseline) to show the dif-
ference to our proposed 2CL, so we dubbed this method
“Reference iIRMMSE.”
Note that it can be shown that our new 2CL (8), and the

reference iIRM MSE (10) have loss functions which are
different by an important time- and frequency-dependent
weighting factor. The interested reader is referred to
Appendix 3.

3.3 New components loss with 3 components
3.3.1 New 3CL
Based on the proposed 2CL, to explicitly put the residual
noise quality into consideration during training, we also
propose an advanced CL, which is defined as

J3CL 1
k

S k S k
2

k
D k 2

k

D k

D 2

D k

D 2

2

,

(11)

with [0, 1] and [0, 1] being the weight-
ing factors to control the speech component quality, the
noise suppression, and now also the residual noise qual-
ity. In order to have stable training and not to enlarge
the speech component MSE (first term in (11)) during
training, we limit the tuning range of the weighting fac-
tors to 0 1. This CL with three terms
(dubbed “3CL”) is also used to train the speech enhance-
ment neural network as shown in Fig. 3, without requir-
ing any additional training material compared to when
using 2CL.
The first two terms of the 3CL in (11) are the same as

in (8), and the additional third term is the loss between
the normalized spectra of the filtered and the unfiltered
noise component and is supposed to preserve residual
noise quality. In order to decouple noise attenuation and
residual noise quality, firstly, this additional term is not
directly calculated from the filtered and the unfiltered
noise spectra, but utilizing the normalized ones. Sec-
ondly, both positive and negative differences between the
filtered and the unfiltered noise spectra are punished
equally, which means this loss should be non-negative. So,
this additional term can have the form of the standard
MSE, which is shown in (11). This additional loss aims
to preserve the residual noise quality even more, enforc-
ing a similarity of residual noise and the original noise
component. Note that many alternative definitions of the
residual noise quality loss term are possible; however,
it should always be ensured that a fullband attenuation
(D k D k , 1) should lead to a zero loss
contribution, since it perfectly preserves residual noise
quality.

4 Experimental setup
4.1 Databases and experimental setup
4.1.1 Database
The used clean speech data in this work is taken from the
Grid corpus [54]. The Grid corpus is particularly useful
for our experiments, since it provides clean speech sam-
ples from many different speakers in a sufficient amount
of data for our experiments, which is critical for speaker-
independent training. To make our trained CNN speaker-
independent, we randomly select 16 speakers, containing
8 male and 8 female speakers, and use 200 sentences per
speaker for the CNN training. The duration of each sen-
tence is exactly 3 seconds. The superimposed noises used
in this paper are obtained from the CHiME-3 dataset
[55]. Both the clean speech and the additive noise signals
have a sampling rate of 16 kHz. To generalize the net-
work and also to increase the amount of training data,
the noisy speech always contains multiple SNR conditions
and includes various noise types. We use pedestrian noise
(PED), café noise (CAFE), and street noise (STR) to gen-
erate the training data. We simulate six SNR conditions
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from 5 to 20 dB with a step size of 5 dB. The SNR level is
adjusted according to ITU-T P.56 [56]. Thus, the training
material consists of 16 200 3 6 57, 600 sentences,
in total 48 h. From the complete training material, 20% of
the data is used for validation and 80% is used for actual
training.
During the test phase, the clean speech data is taken

from four further Grid speakers, two males and two
females, with 10 sentences each neither seen during train-
ing nor during validation. The used test noise contains
both seen and unseen noise types. The seen test noise
includes PED and CAFE noise, but extracted from differ-
ent files, which have not been used during training and
validation. To perform a noise type-independent test, we
additionally create noisy test data using unseen bus noise
(BUS), which is also taken from CHiME-3 and is not seen
during training and validation. The test data also contains
the six SNR conditions.

4.1.2 Experimental setup
Speech and noise signals are subject to an FFT size of
K 256, using a periodic Hann window, and 50% over-
lap. We use the CNN illustrated in Fig. 2 for the mask
estimation. Although more complex deep learning archi-
tectures could be used, we choose this CNN structure
to illustrate our concept. The number of the input and
output frequency bins Kin is set to 129 3 132 for
each frame’s DFT, as shown in Fig. 2. The additional 3
frequency bins are taken from the redundant bins (from
k 129 to k 131), which are used to make it com-
patible with the two times maxpooling and upsampling
operation in the CNN. The input context is Lin 5. The
number of filters in each convolutional layer represented
by F in Fig. 2 is set to 60. The used height of the filter ker-
nels is h H 15. In the test phase, we only extract the
first 129 frequency bins from the 132 output frequency
bins to reconstruct the complete spectrum, which is used
to obtain the time domain signal by IDFT with OLA. Fur-
thermore, a minibatch size of 128 is used during training.
The learning rate is initialized to 2 10 4 and is halved once
the validation loss does not decrease for two epochs. The
CNN activation functions are exactly the same as used
in [48].
In the baseline training for the perceptual weighting fil-

ter loss PW-FILT, the linear prediction order represented
byNp in (14) is set to 16. The perceptual weighting factors
1 and 2 in (14) are set to 0.92 and 0.6, respectively.

4.2 Quality measures
We use both the white-box approach [42] which provides
the filtered clean speech component s n and the fil-
tered noise component d n , as well as standard measures
operating on the predicted enhanced speech signal s n .
In this paper, we use the following measures [10]:

4.2.1 Delta SNR
SNR SNRout SNRin, measured in dB. SNRout and

SNRin are the SNR levels of the enhanced speech and
the noisy input speech, respectively, and are measured
after ITU-T P.56 [56], based on s n , d n and s n , d n ,
respectively. This measure should be as high as possible.

4.2.2 PESQMOS-LQO
This measure uses s n as reference signal and either the
filtered clean speech component s n or the enhanced
speech s n as test signal according to [46, 57], being
referred to as PESQ s and PESQ s , respectively. A high
PESQ score indicates better speech (component) percep-
tual quality.

4.2.3 Perceptual objective listening quality prediction
(POLQA)

This metric is one of the newest objective metrics for
speech quality [58]. POLQA is measured between the ref-
erence signal s n and the predicted clean speech s n
according to [58] and is denoted as POLQA s . The same
with PESQ, a higher POLQA score is favored.

4.2.4 Segmental speech-to-speech-distortion ratio

SSDR
1
1

1

SSDR [ dB]

with 1 denoting the set of speech-active frames [10], and
using

SSDR max min SSDR , 30 dB , 10 dB ,

with

SSDR 10 log10
n

s2 n

n
s n s n 2 , (12)

with denoting the sample indices n in frame , and
being used to perform time alignment of the filtered signal
s n . A low distortion of the filtered speech components
leads to a high SSDR.

4.2.5 Segmental noise attenuation (NAseg)

NAseg 10 log10
1

NAframe , [ dB] (13)

with

NAframe
n d2 n

n d2 n
,

where denotes the set of all frame indices. We measure
NAseg for the purpose of parameter optimization, so we
can easily choose the weighting factors that offer a strong
noise attenuation as well as a good speech component per-
ceptual quality. In the test phase, we use the SNR metric
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to reflect the overall SNR improvement caused by noise
suppression instead of using a single NAseg metric.

4.2.6 The weighted log-average kurtosis ratio (WLAKR)
This metric measures the noise distortion (especially
penalizing musical tones) using d n as reference sig-
nal and the filtered noise component d n as test signal
according to ITU-T P.1130 [47]. A WLAKR score that is
closer to 0 indicates less noise distortion [44, 59]. Accord-
ingly, in our analysis, we will show averaged absolute
WLAKR values.

4.2.7 STOI
We use STOI tomeasure the intelligibility of the enhanced
speech, which has a value between zero and one [40]. A
STOI score close to one indicates high intelligibility.
We group these measurements to noise component

measures ( SNR and WLAKR), speech component mea-
sures (SSDR and PESQ s ), and total performance mea-
sures (PESQ s , POLQA s , and STOI).

5 Results and discussion
5.1 Hyperparameter optimization
To allow for an efficient hyperparameter search, we opti-
mize the weighting factors for our proposed compo-
nents loss functions by using only 12.5% of the valida-
tion set data. The total performance measures PESQ s ,
POLQA s , and STOI are averaged over all training noise
types and all SNR conditions.

5.1.1 2CL hyperparameter
The performance for different weighting factors for
2CL (8) is shown in Table 1. The baseline MSE in
Table 1 represents the conventional mask-based CNN
as shown in Fig. 1 and is trained using the MSE loss
function. It becomes obvious that a choice of in (8)
being far away from 0.5 leads to either bad perceptual
speech quality or low speech intelligibility. This behavior
is expected, since speech enhancement requires a suf-
ficiently strong noise attenuation as well as an almost
untouched speech component. To choose the best weight-
ing factor from Table 1, we first discard all columns
where at least one measure is below or equals the baseline
MSE and subsequently select from the remaining values

Table 1 Optimization of hyperparameter for the new 2CL (8)
on 12.5% of the validation set. The selected setting is
gray-shaded

Baseline New J2CL

MSE 0 0.1 0.45 0.5 0.55 0.75 0.9

PESQ s 2.21 1.78 2.10 2.48 2.50 2.41 2.60 2.59

POLQA s 1.91 2.11 1.86 2.21 2.23 2.22 2.39 2.26

STOI 0.72 0.72 0.74 0.73 0.73 0.73 0.70 0.68

0.45, 0.5, 0.55 the best performing, which is 0.5.
The selected setting is gray-shaded as shown in Table 1.
In Fig. 4, we plot the obtained NAseg vs. PESQ s val-

ues for the various combinations of hyperparameters as
shown in Table 1. Here, from top to bottom, each marker
depicts a certain SNR condition varying from 20 to 5 dB
in steps of 5 dB. The further a curve is to the right and
to the top, the better the overall performance. We can see
that the performance for the selected hyperparameter
0.5 (dot-dashed pink line, circle markers) is a quite bal-
anced choice. Furthermore, the settings with 0.45 and
0.55, which are close to our chosen one, show quite sim-
ilar performance. This can be seen both from the values
in Table 1, and from the quite close lines in Fig. 4, indi-
cating the sensitivity of the 2CL towards hyperparameter
changes is not high.

5.1.2 Reference iIRMMSE hyperparameter
To further exploit the behavior of the reference iIRM net-
work and to make a fair comparison to our proposed 2CL,
we also optimized the hyperparameter in the oracle IRM
mask (9). We excluded the case of 0, since when

0, the training target becomes Starget Y , which
offers no noise suppression. The performance for different
weighting factors for the reference iIRM MSE meth-
ods is shown in Table 2. Similar to the hyperparameter
optimization process for our 2CL, settings, where at least
one measure is below the baseline MSE, are discarded.
Among the remaining cases, we select the which offers
the highest overall perceptual quality measured by PESQ
and POLQA. It turns out that the setting of 0.55 offers
the best results.

Fig. 4 Noise attenuation NAseg vs. speech component quality
PESQ s for different parameters for the new 2CL (8) on 12.5% of
the validation set. From top to bottom, the markers are
corresponding to six SNR conditions from 20 to 5 dB with a step
size of 5 dB. The selected setting 0.5 is gray-shaded in the legend
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Table 2 Optimization of hyperparameter for the reference
iIRMMSE (10) on 12.5% of the validation set. The selected
setting is gray-shaded

Baseline New JiIRM

MSE 0.1 0.45 0.5 0.55 0.75 0.9

PESQ s 2.21 2.25 2.43 2.47 2.49 2.56 2.62

POLQA s 1.91 1.96 2.13 2.21 2.25 2.34 2.34

STOI 0.72 0.73 0.72 0.72 0.72 0.71 0.70

Similarly, we also plot the obtained NAseg vs. PESQ s
values for different hyperparameters from Table 2 as
shown in Fig. 5. It can be seen that the selected hyperpa-
rameter 0.55 (dot-dashed pink line, circle markers)
is more to the top and to the right compared to other
hyperparameter settings. So, the selected setting can offer
a higher noise attenuation as well as a better speech com-
ponent quality at the same time, which indicates a more
balanced performance.

5.1.3 3CL hyperparameters ,
We also optimize the combination of the weighting fac-
tors and for 3CL in (11) as shown in Table 3. The
baseline MSE in Table 3 is the same as the one in Table 1.
Interestingly, a good performance is achieved mostly1
when the weighting factors for speech component qual-
ity 1 and noise attenuation are equal or very
close to each other—as is the case for our 2CL choice
of 0.5 in Table 1. This is the case for 3CL when

0.05, 0.1, 0.15, 0.2, 0.3, 0.4 and the corresponding
(in that order) 0.9, 0.8, 0.7, 0.6, 0.4, 0.2 , as shown in
Table 3 marked by . Thus, tuning the weighting factors
for speech component quality and noise attenuation in
an unbalanced way will degrade the overall performance,
especially for STOI or PESQ as shown in Table 3. As
the best combination in Table 3, we select 0.1 and

0.8, highlighted by a gray-shaded font. The additional
term of 3CL (11), weighted with , is supposed to pre-
serve the residual noise quality. It can further improve the
overall performance of PESQ and POLQA as can be seen
when comparing the gray-shaded columns of Tables 1 and
3. The reason could be that PESQ and POLQA measures
favor natural residual noise.
For the combinations of hyperparameters in Table 3, we

also plot NAseg vs. PESQ s as shown in Fig. 6. All curves
marked by fulfill 1

2 , meaning that the noise atten-
uation and the speech distortion 1 contribute
equally to the 3CL loss (11). Obviously, these curves show
a comparably good speech component quality as well as a
strong noise attenuation at the same time. The overall dif-
ferences between these curves are very small, which is also

1Note that the case of 0.6 and 0.2 is also quite good on PESQ and
POLQA, but performs poorly on STOI.

Fig. 5 Noise attenuation NAseg vs. speech component quality
PESQ s for different parameters for the reference iIRMMSE (10)
on 12.5% of the validation set. From top to bottom, the markers are
corresponding to six SNR conditions from 20 to 5 dB with a step size
of 5 dB. The selected setting 0.55 is gray-shaded in the legend

reflected in Table 3. This also indicates that the sensitivity
of the 3CL is very low, as long as we keep this condition.
In Fig. 6, the curve for 0.8 and 0.1 shows very
strong noise attenuation, but with quite low PESQ s . This
is expected since the contribution of the noise attenuation
in 3CL loss (11), which is controlled by , is the strongest
from the investigated values. On the contrary, when
0.1 and the corresponding 0.4, 0.6 , we obtain the
highest PESQ s and the weakest noise attenuation. Our
selected hyperparameter combination (dot-dashed pink
line, circle markers) is among the curves marked by
showing quite balanced performance.

5.1.4 Baseline eIRMMSE hyperparameter
For the baseline eIRM MSE, we set the target oracle IRM
Mtarget k in (3) to the globally optimummask of our 2CL
shown in (9). Then, we optimized the hyperparameter
for eIRM MSE. The same hyperparameter settings are
searched as for the reference iIRM MSE, and the results
are shown in Table 4 and Fig. 7. The hyperparameter set-
tings, where at least one measure is below or equal to
the baseline MSE, are discarded. Among the remaining

Table 3 Optimization of hyperparameters and for the new
3CL (11) on 12.5% of the validation set. The selected setting is
gray-shaded

BaselineNew J3CL ,

MSE 0.05 0.1 0.1 0.1 0.15 0.2 0.3 0.4 0.6 0.8

0.9 0.4 0.6 0.8 0.7 0.6 0.4 0.2 0.2 0.1

PESQ s 2.21 2.47 2.192.242.54 2.50 2.49 2.47 2.51 2.592.60

POLQA s 1.91 2.25 1.881.972.28 2.23 2.23 2.20 2.26 2.342.24

STOI 0.72 0.73 0.740.740.73 0.73 0.73 0.73 0.73 0.710.68
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Fig. 6 Noise attenuation NAseg vs. speech component quality
PESQ s for different parameters and for the new 3CL (11) on
12.5% of the validation set. From top to bottom, the markers are
corresponding to six SNR conditions from 20 to 5 dB with a step size
of 5 dB. The selected setting is gray-shaded in the legend. All curves
marked by fulfill 1

2 , meaning that the noise attenuation and
the speech distortion contribute equally to the 3CL loss (11)

settings, the hyperparameter , which offers the highest
overall PESQ and POLQA scores, is selected. It turns out
that the setting of 0.75 offers the best results and is
gray-shaded. Note that for our selected setting 0.75,
the noise power in the target oracle IRM (9) is overesti-
mated, which may increase the noise attenuation, but at
the cost of stronger distortions to the residual noise and
the speech components.

5.1.5 PW-PESQ hyperparameters 1, 2

For the baseline loss function JPW-PESQ, to allow a fair
comparison, the weighting factors 1 and 2 in (5) are
also optimized, and the results are shown in Table 5.
To limit the range of tuning parameters, we define 1

2 1. Since optimizing JPW-PESQ during training aims
to improve the perceptual quality of the enhanced speech,
we choose the optimal weighting factors, with which the
best PESQ s is achieved. Furthermore, we discard the
settings that offer a STOI lower than the baseline MSE.
The selected setting 1 0.2, 2 0.8 in Table 5 provides
a balanced performance and is also gray-shaded.

Table 4 Optimization of hyperparameter for the baseline
eIRMMSE (3) on 12.5% of the validation set. The selected
setting is gray-shaded

Baseline New JeIRM

MSE 0.1 0.45 0.5 0.55 0.75 0.9

PESQ s 2.21 2.36 2.56 2.58 2.61 2.70 2.76

POLQA s 1.91 1.98 2.32 2.34 2.38 2.50 2.52

STOI 0.72 0.75 0.74 0.74 0.74 0.73 0.72

Fig. 7 Noise attenuation NAseg vs. speech component quality
PESQ s for different parameters for the baseline eIRMMSE (3)
on 12.5% of the validation set. From top to bottom, the markers are
corresponding to six SNR conditions from 20 to 5 dB with a step size
of 5 dB. The selected setting 0.75 is gray-shaded in the legend

Weplot NAseg vs. PESQ s for Table 5 as shown in Fig. 8.
It can be seen that our selected hyperparameter combina-
tion (solid blue line, asterisk markers) offers mostly very
good (among the two best) PESQ s and a strong noise
attenuation, yielding a balanced performance.

5.2 Experimental results and discussion
We report the experimental results on the test data for
seen noises types (PED and CAFE) and unseen BUS noise
separately. We investigate a CNN trained with the newly
proposed 2CL and 3CL losses, and with the other base-
line losses, which are the conventional MSE w.r.t. speech
spectral amplitude and w.r.t. IRM, the auditory-related
PW-PESQ and PW-FILT, and the recently proposed two-
masks SNR. The measures on the seen noise types are
shown in Tables 6 (all SNRs averaged) and 7 ( 5 dB SNR);
the results on unseen BUS noise are shown in Tables 8 (all
SNRs averaged) and 9 ( 5 dB SNR). The performance is
averaged over all test speakers and if applicable all SNR
conditions. In each column, the scheme offering the best
performance is in bold font. For the CNN trained with

Table 5 Optimization of hyperparameters 1 and 2 for
baseline PW-PESQ (5) on 12.5% of the validation set. The
selected setting is gray-shaded

Baseline Baseline JPW-PESQ
1, 2

MSE 1 0.01 0.1 0.2 0.4 0.5 0.6 0.8 0.9

2 0.99 0.9 0.8 0.6 0.5 0.4 0.2 0.1

PESQ s 2.21 2.22 2.22 2.23 2.18 2.18 2.15 2.12 2.21

POLQA s 1.91 1.90 1.87 1.89 1.84 1.87 1.81 1.84 1.85

STOI 0.72 0.71 0.72 0.72 0.73 0.73 0.72 0.72 0.72
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Fig. 8 Noise attenuation NAseg vs. speech component quality
PESQ s for different parameters 1 and 2 for the baseline PW-
PESQ (5) on 12.5% of the validation set. From top to bottom, the
markers are corresponding to six SNR conditions from 20 to 5 dB with
a step size of 5 dB. The selected setting is gray-shaded in the legend

2CL and 3CL, the selected settings are gray-shaded, as
shown in Tables 1 and 3, respectively.

5.2.1 Seen noise types
First, we look at the performance on the seen noise types
as shown in Table 6. It becomes obvious that the CNN
trained by our proposed 2CL and 3CLmostly offers better
SNR improvement than the CNN trained by the baseline

MSE and the auditory-related losses, reflected by a higher
SNR. Among the CLs, 3CL offers the highest SNR on

average. This is supposed to be attributed to the second
term of both 2CL (8) and 3CL (11) weighted by , rep-
resenting the filtered noise component power, which is
explicitly forced to be low during the training process. The
CNN trained by PW-FILT loss also offers quite good noise
attenuation, but with a poor residual noise quality, which
is reflected by a very high WLAKR score. Among the
baseline methods, the CNN trained by PW-PESQ always
shows the best residual noise quality. Surprisingly, the
proposed 2CL also offers a better residual noise quality
compared to the CNN trained with conventional MSE,
even though the residual noise quality is not considered
in the 2CL definition (8). The proposed 3CL offers a very
good, for CAFE also the best residual noise quality, as well
as the strongest noise attenuation at the same time. This
is expected, and is likely from the contribution of the third
term in 3CL (11), which is supposed to preserve residual
noise quality. During training, this term is explicitly forced
to be low to keep a naturally sounding residual noise, by
enforcing a similarity of the residual noise and the original
noise component.
The baseline eIRM MSE shows very strong noise atten-

uation reflected by a high SNR score at the cost of lim-
ited residual noise and speech component qualities (high
WLAKR and low PESQ s scores). This can be caused by
the overestimated noise power in the target IRM for our
selected 0.75. As expected, the performance of the

Table 6 Performance for seen noise types (PED and CAFE) on the test set; All SNRs averaged. Best approaches from Tables 1 and 3
are gray-shaded; the best scheme is in boldface

Noise Method Noise component Speech component Total

SNR WLAKR SSDR PESQ s PESQ s POLQA s STOI

PED Baseline MSE 5.84 0.24 11.70 2.94 2.42 1.92 0.70

Baseline eIRM MSE 6.89 0.33 11.43 2.94 2.65 2.13 0.69

Baseline PW-FILT 6.37 0.45 11.52 2.87 2.53 1.91 0.70

Baseline PW-PESQ 5.81 0.16 11.84 2.96 2.47 1.89 0.70

Baseline two-masks SNR 6.92 0.37 12.27 2.88 2.59 2.08 0.70

Reference iIRM MSE 6.90 0.21 12.24 2.97 2.64 2.10 0.69

2CL ( 0.5) 6.18 0.22 12.34 3.04 2.67 2.11 0.71

3CL ( 0.1, 0.8) 7.05 0.18 12.21 3.00 2.67 2.13 0.71

CAFE Baseline MSE 5.76 0.26 11.44 2.87 2.33 1.90 0.69

Baseline eIRM MSE 7.27 0.23 11.45 2.89 2.57 2.16 0.69

Baseline PW-FILT 6.32 0.60 11.42 2.84 2.45 1.93 0.69

Baseline PW-PESQ 5.78 0.21 11.57 2.90 2.35 1.90 0.69

Baseline two-masks SNR 7.14 0.20 12.12 2.91 2.53 2.10 0.70

Reference iIRM MSE 7.20 0.13 12.10 3.00 2.58 2.11 0.69

2CL ( 0.5) 7.22 0.13 12.20 3.05 2.60 2.12 0.70

3CL ( 0.1, 0.8) 7.30 0.13 12.10 3.03 2.62 2.17 0.70
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Table 7 Performance for seen noise types (PED and CAFE) on the test set; SNR 5dB. Best approaches from Tables 1 and 3 are
gray-shaded; the best scheme is in boldface

Noise Method Noise component Speech component Total

SNR WLAKR SSDR PESQ s PESQ s POLQA s STOI

PED Baseline MSE 6.10 0.24 3.03 1.83 1.44 1.07 0.49

Baseline eIRM MSE 8.46 0.50 2.50 2.00 1.53 1.12 0.48

Baseline PW-FILT 8.17 0.30 2.73 1.76 1.46 1.14 0.50

Baseline PW-PESQ 6.43 0.11 3.00 1.85 1.45 1.35 0.51

Baseline two-masks SNR 8.60 0.44 2.99 1.74 1.46 1.12 0.49

Reference iIRM MSE 8.19 0.31 3.04 2.02 1.52 1.18 0.48

2CL ( 0.5) 8.25 0.21 3.10 2.09 1.58 1.28 0.50

3CL ( 0.1, 0.8) 8.58 0.21 2.97 2.05 1.58 1.23 0.50

CAFE Baseline MSE 7.56 0.13 2.74 1.76 1.39 1.22 0.49

Baseline eIRM MSE 10.06 0.28 2.40 1.96 1.55 1.08 0.48

Baseline PW-FILT 8.99 0.41 2.46 1.71 1.42 1.07 0.49

Baseline PW-PESQ 7.74 0.12 2.75 1.81 1.42 1.22 0.51

Baseline two-masks SNR 9.84 0.23 2.76 1.71 1.43 1.09 0.49

Reference iIRM MSE 9.96 0.13 2.81 1.99 1.51 1.13 0.49

2CL ( 0.5) 10.15 0.11 2.88 2.04 1.57 1.16 0.50

3CL ( 0.1, 0.8) 9.93 0.10 2.84 2.06 1.54 1.17 0.50

eIRM MSE is more unbalanced compared to the refer-
ence iIRM MSE method, which has already been shown
in [17, 18]. Since both POLQA and PESQ measured on
the overall enhanced speech seem to favor high noise
attenuation (high SNR score), the baseline eIRM MSE
still offers good results on these measures, on average,
however with the worst intelligibility (reflected by the
lowest STOI score).
Compared to our proposed CLs, the baseline two-masks

SNR loss offers a similarly strong SNR on average.
This is expected, since the goal of the SNR loss is to
maximize the output SNR of the trained network. Sim-
ilar to the MSE loss, however, the SNR loss leads to an
unnatural-sounding residual noise, reflected by a high
WLAKR score, and a poor speech component quality,
reflected by a low PESQ s score. This behavior is par-
ticularly obvious for PED noise. Since PESQ s favors
high noise attenuation (reflected by high SNR), the two-
masks SNR loss offers a good PESQ s score among the
baselines. However, comparing to our proposed CLs, the
two-masks SNR loss clearly falls behind both in PESQ s
and in POLQA s . Note that the network trained by the
two-masks SNR loss also has more parameters due to the
two decoder heads, compared to the network trained by
our proposed CLs.
As introduced before, the CNN trained with the base-

line MSE tends to attenuate regions with very low SNR
to optimize the global MSE [27], which may lead to
strong noise distortion and speech component distor-
tion. The proposed 2CL penalizes this speech component

distortion by the first term of (8), weighted by 1 ,
which is not only good for preserving the speech compo-
nent quality, but also for maintaining a naturally sounding
residual noise. The CNNs trained by our proposed 2CL
and 3CL by far provide the best speech component qual-
ity, which is reflected by a higher SSDR and about 0.1
higher PESQ s on average, compared to all the baseline
losses. This is attributed to the first term of 2CL (8) and
3CL (11), which is the loss function for the filtered speech
component, and is supposed to preserve detailed struc-
tures of the speech signal and punishes the attenuation of
the speech component. Among the CNNs trained by the
components losses, 2CL offers slightly better PESQ s and
about 0.1 dB higher SSDR compared to 3CL. One possible
reason is that the weight for speech distortion in 3CL (11)
represented by 1 0.1 0.8 0.1 is less compared to the one
in 2CL (8) represented by 1 0.5 0.5. Our proposed 2CL
and 3CL losses provide the best overall enhanced speech
quality, which is reflected by obtaining the highest PESQ s
and POLQA s scores. In addition to that, 2CL and 3CL
obtain slightly better speech intelligibility reflected by 0.01
higher STOI score for seen noise types on average. Among
the CL-based CNNs, 3CL is better by offering a stronger
noise attenuation, a more natural residual noise, and the
best enhanced speech quality, yielding a more balanced
performance.
The performance on the seen noise types at SNR
5 dB is shown in Table 7. Again, the baseline losses two-

masks SNR, eIRM MSE, and the PW-FILT can offer very
good SNR improvement comparable to our proposed CLs,
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Table 8 Performance for unseen noise (BUS) on the test set; All SNRs averaged. Best approaches from Tables 1 and 3 are
gray-shaded; the best scheme is in boldface

Noise Method Noise component Speech component Total

SNR WLAKR SSDR PESQ s PESQ s POLQA s STOI

BUS Baseline MSE 4.50 0.20 13.14 3.03 2.39 2.39 0.71

Baseline eIRM MSE 6.19 0.24 14.00 3.31 2.63 2.62 0.75

Baseline PW-FILT 5.56 0.39 13.43 3.12 2.50 2.35 0.75

Baseline PW-PESQ 4.73 0.19 13.27 3.00 2.42 2.34 0.75

Baseline two-masks SNR 5.96 0.23 14.28 3.38 2.64 2.57 0.75

Reference iIRM MSE 6.08 0.19 14.25 3.34 2.61 2.61 0.74

2CL ( 0.5) 5.60 0.18 14.30 3.38 2.63 2.64 0.74

3CL ( 0.1, 0.8) 6.28 0.18 14.23 3.35 2.68 2.64 0.75

however, with worse residual noise and speech compo-
nent qualities, reflected by very high WLAKR and very
low PESQ s scores. For CAFE noise, the proposed 2CL
shows higher SNR compared to 3CL. The same as in
Table 6, the proposed 3CL and the baseline PW-PESQ
provide the best residual noise quality for CAFE and PED
noise, respectively. The proposed 2CL and 3CL offer the
best speech component quality PESQ s and overall
enhanced speech quality PESQ s . At SNR 5 dB, the
CNN trained by the PW-PESQ loss offers slightly better
speech intelligibility reflected by 0.01 higher STOI score
compared to the CNNs trained by other losses. The two-
masks SNR loss offers 0.07. . . 0.16 points lower POLQA s
and PESQ s scores compared to our proposed CLs, due
to the strong distortions of the residual noise and the
speech components. The performance of the baseline
eIRM MSE becomes even more unbalanced in very harsh
SNR conditions, which leads to a poor POLQA s score
and the lowest STOI score.
Now, let us have a look into the reference iIRM MSE

in Tables 6 and 7. We observe that it offers better per-
formance compared to the baseline MSE for most of the
measures. This shows that the implicit constraint of the

ideal mask (9) is advantageous for reference iIRM MSE,
although on high level, it employs the same loss (2) as the
baseline MSE. Comparing the performance of the refer-
ence iIRM MSE method with our proposed 2CL on the
seen noise types, the reference iIRM MSE averaged over
SNRs offers similar SNR and WLAKR scores compared
to our proposed 2CL. In low SNR, the reference iIRM
MSE shows a worse residual noise quality compared to
the 2CL, as can be seen in Table 7. This is particularly
prominent in PED noise, reflected by a 0.1 points higher
WLAKR score. In both Tables 6 and 7, our proposed 2CL
offers better speech component quality than the reference
iIRMMSE, reflected by higher SSDR and PESQ s scores.
Even more, 2CL and 3CL offer consistently better overall
enhanced speech quality compared to the reference iIRM
MSE.

5.2.2 Unseen noise
The performance on the unseen BUS noise is shown in
Tables 8 and 9. Again, among the baseline losses, the eIRM
MSE, the PW-FILT, and the two-masks SNR always pro-
vide quite strong SNR, however, with very low residual
noise quality (high WLAKR score). The same as before,

Table 9 Performance for unseen noise (BUS) on the test set; SNR 5dB. Best approaches from Tables 1 and 3 are gray-shaded; the
best scheme is in boldface

Noise Method Noise component Speech component Total

SNR WLAKR SSDR PESQ s PESQ s POLQA s STOI

BUS Baseline MSE 6.99 0.22 4.92 2.11 1.55 1.59 0.61

Baseline eIRM MSE 9.09 0.37 5.24 2.54 1.75 1.57 0.63

Baseline PW-FILT 8.03 0.24 5.07 2.17 1.58 1.40 0.64

Baseline PW-PESQ 7.05 0.16 4.86 2.05 1.55 1.58 0.64

Baseline two-masks SNR 8.54 0.33 5.66 2.50 1.70 1.54 0.64

Reference iIRM MSE 8.55 0.27 5.67 2.55 1.73 1.58 0.63

2CL ( 0.5) 8.31 0.20 5.66 2.57 1.73 1.63 0.63

3CL ( 0.1, 0.8) 8.56 0.21 5.67 2.60 1.77 1.61 0.63
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2CL and 3CL provide both very good noise attenuation
and residual noise quality. On average, the CNN trained
by 3CL offers the highest SNR compared to the ones
trained by other losses. The PW-PESQ loss offers very
good residual noise quality, sometimes even ranking best.
Again, the proposed CLs can offer the best speech compo-
nent quality SSDR, PESQ s and total enhanced speech
quality PESQ s , POLQA s . Averaged over SNR condi-
tions (Table 8), the proposed 3CL provides better overall
enhanced speech quality reflected by an about 0.2 points
higher PESQ s compared to the baseline MSE and the
auditory-related losses. Unlike the performance on the
seen noise types, the two-masks SNR can offer a compara-
ble overall enhanced speech quality to our 2CL, however,
still falls behind our 3CL. Except for the baselineMSE, the
remaining baseline losses and our proposed CLs provide
very comparable speech intelligibility as shown in the last
column of Tables 8 and 9. As before, the proposed 3CL
performs best by offering good and balanced results.
Similarly, the reference iIRM MSE offers lower resid-

ual noise quality (particularly in low-SNR condition)
and speech component quality (averaged over SNR con-
ditions) compared to our proposed 2CL. Therefore,
although it is somehow better in SNR, it slightly falls
behind in the total enhanced speech quality measured by
PESQ s and POLQA s . To sum up, the network trained
by our proposed 2CL is better than the reference iIRM
MSE. We see by experimental evidence that in gradient-
based learning, the two different loss formulations (10)

and (8) offer different performance, even though they
share the same global optimum (9).

5.2.3 Summary of results and discussion
In total, the CNN trained by our proposed compo-
nents loss offers the best speech component quality for
both seen and unseen noise types, in both averaged and
very harsh noise conditions. At the same time, the two
proposed CLs also mostly offer the highest SNR, the
best speech component quality, as well as a very good,
in some cases even the best residual noise quality. So,
the CNN trained by our CLs show both a strong and
a balanced performance by not only providing a strong
noise attenuation, but also providing a naturally sound-
ing residual noise, and a less distorted speech component.
Likely from the contribution of all these aspects, our pro-
posed CLs also provide the best enhanced speech quality
and speech intelligibility in almost all experiments. Mean-
while, the investigated baselines have problems with at
least one of the employed quality measures. Surprisingly,
compared to the 2CL results, the additional third term
in 3CL (11), which is supposed to preserve good resid-
ual noise quality, not only provides the same, sometimes
even a better residual quality, but also indirectly increases
noise attenuation during training. In total, the CNN
trained by our 3CL offers the best and the most balanced
performance.
In Table 10, we provide a final overview of the methods

over all metrics averaged, by simply showing how often

Table 10 Test set performance ranking for both seen noise types (PED and CAFE) and unseen noise types (BUS), based on how
many times each loss function provides the best scores in all employed instrumental metrics. Best approaches from Tables 1 and 3 are
gray-shaded; the best scheme is in boldface

Noise Method Times of best scores in employedmetrics

All SNRs averaged SNR= 5 dB In total

Seen noise types Baseline MSE 0 1 1

Baseline eIRM MSE 1 0 1

Baseline PW-FILT 0 0 0

Baseline PW-PESQ 1 5 6

Baseline two-masks SNR 0 1 1

Reference iIRM MSE 1 0 1

2CL ( 0.5) 8 6 14

3CL ( 0.1, 0.8) 9 3 12

Unseen noise types Baseline MSE 0 0 0

Baseline eIRM MSE 0 1 1

Baseline PW-FILT 1 1 2

Baseline PW-PESQ 1 2 3

Baseline two-masks SNR 2 1 3

Reference iIRM MSE 0 0 0

2CL ( 0.5) 4 1 5

3CL ( 0.1, 0.8) 5 3 8
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each method scores best (boldface numbers) in Tables 6
and 7 (seen noise types) and Tables 8 and 9 (unseen
noise types). We easily see the dominance and balanced
performance of both 2CL and 3CL for all noise types in
the SNR averaged case. In very low SNR, 2CL is best on
seen noise types, while 3CL generalizes better and is best
on unseen noise types. The best among the baselinemeth-
ods in this analysis seems to be PW-PESQ, however, with
mediocre PESQ and POLQA performance as can be seen
in Tables 6 to 9.

6 Conclusions
In this paper, we illustrated the benefits of a compo-
nents loss (CL) for mask-based speech enhancement. We
introduced the 2-components loss (2CL), which controls
speech component distortion and noise suppression sep-
arately, and also the 3-components loss (3CL), which
includes an additional term to control the residual noise
quality. Our proposed 2CL and 3CL are naturally dif-
ferentiable for gradient-based learning and do not need
any additional training material or extensive computa-
tional effort compared to, e.g., auditory-related loss func-
tions. Furthermore, we point out that these new loss
functions are not limited to any specific network topol-
ogy or application. In the context of a speech enhance-
ment framework that uses a convolutional neural net-
work (CNN) to estimate a spectral mask, our new CL
formulations provide better or at least more balanced per-
formance across various instrumental quality measures
than the investigated baselines. For unseen noise types,
we excel even perceptually motivated losses by an about
0.2 points higher PESQ score. Averaged over all SNR
conditions and all metrics combined, both 2CL and 3CL
show significantly more 1st rank results than any of the
baseline losses. The recently proposed so-called SNR loss
with two masks not only requires a network with more
parameters due to the two decoder heads, but also falls
behind on PESQ and POLQA and particularly w.r.t. resid-
ual noise quality. The new 2CL and 3CL loss functions
are easy to implement, and example code is provided at
https://github.com/ifnspaml/Components-Loss.

Appendix 1
Baseline PW-FILT: The perceptual weighting filter
applied in this loss function is borrowed from CELP
speech coding, e.g., the adaptive multi-rate (AMR) codec
[60], in order to shape the coding noise / quantization
error to be less audible by the human ear. This weighting
filter is calculated according to [60] as

W z
1 A z 1
1 A z 2

, (14)

with the predictor polynomial A z Np
i 1a i iz i,

a i are the linear prediction (LP) coefficients of frame
, Np is the prediction order, and 1, 2 are the percep-
tual weighting factors. During the search of the codebooks
in CELP encoding, the error between the clean speech
and the coded speech is weighted by the weighting fil-
ter and subsequently minimized. As a result, the weighted
error becomes spectrally white, meaning that the final
(unweighted) quantization error has a frequency distribu-
tion that is proportional to the frequency characteristics
of the inverse weighting filter 1 W z , which has similar-
ities to the shape of the clean speech spectral envelope.
This property of the weighting filter allows to exploit the
masking effect of the human ear: More energy of the
quantization error will be placed in the speech formant
region, where 1 W z is at some level below the spectral
envelope [29].
After the original CELP weighting filter has been revis-

ited, the corresponding perceptual weighting filter loss is
now straightforward, as shown in (4), where both S k
and S k are effectively weighted by the weighting filter
frequency response

W k W z
z ej

2 k
K

. (15)

Similar to the original application of the weighting filter
in speech coding, where the quantization error becomes
less audible, the residual noise is also expected to be less
audible compared to using the MSE loss. As a result,
improved perceptual quality of the enhanced speech has
been reported in [29].
Baseline PW-PESQ: As with the standard PESQ, the

PESQ loss as proposed in [31] consists of a symmetri-
cal and an asymmetrical distortion, both are computed
frame-by-frame in the loudness spectrum domain, which
is closer to human perception [31]. The authors of [31]
adopt the transformation operations from the amplitude
spectrum domain to the loudness spectrum domain for
the target and enhanced speech signals directly from the
PESQ standard [41]. The symmetrical distortion L s for
frame is obtained directly from the difference between
the target and enhanced speech loudness spectra. Audi-
tory masking effects should also be considered in calculat-
ing L s . The corresponding asymmetrical distortion L a

is computed based on the symmetrical distortion L s , but
weighting the positive and negative loudness differences
differently. Since human perceptions of the positive and
negative loudness differences are not the same, different
auditory masking effects must be considered, respectively.
Then, the PESQ loss is defined as:

JPESQ 1 L s
2 L a , (16)

where 1 and 2 are the weighting factors, and are set to 0.1
and 0.0309, respectively [31]. Since JPESQ is highly non-

https://github.com/ifnspaml/Components-Loss
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linear and not fully differentiable, the authors propose to
combine the PESQ loss with the conventional MSE that is
fully differentiable as the final loss to make the gradient-
based learning more stable. Thus, the used loss function
for training is defined as (5) as proposed in [31].
Baseline two-masks SNR: During the training process,

the proposed SNR loss JSNR is calculated for each output
decoder head separately and is summed up as the final
loss [39]. We use the JSNR calculated on the speech out-
put decoder head as an example. To mitigate the power
scaling problem as mentioned before, the power-law com-
pression is applied to the speech amplitude spectrum of
the predictions and the targets separately [39]. Then, the
negative SNR loss is calculated by:

JSNR 10 log10
k

S k 1 2 2

log10
k

S k 1 2 S k 1 2 2
,

(17)

which is minimized during the training process. By
replacing S k and S k with D k and D k , we
can obtain the negative SNR loss for the noise output
decoder head.
Please note that the SNR as used in (17) is different

from the SNR definition in Section IV.B, which is mea-
sured after ITU-T P.56 [56], based on s n , d n and
s n , d n , respectively. The value range of JSNR is in
between and , which can be problematic in
stabilizing the training process. To mitigate this prob-
lem, a compression function 20 tanh JSNR is used in
[39] for optimization to limit the SNR value between
20 and 20 dB.

Appendix 2
Gradient-based optimization requires differentiation. To
obtain the differentiation of the proposed 2CL (8) w.r.t.
M k , we need to replace S k andD k in (8) by (6) and
(7), respectively, resulting in:

J2CL 1
k

M k S k S k 2

k
M k D k 2 .

(18)

Since a sigmoid activation function is used for the out-
put layer of the employed CNN, the estimatedmaskM k
has a value between 0 and 1, so M k andM k are the
same. Then, we obtain:

J2CL

M k
2 1 M k S k S k S k

2 M k D k 2

2 M k 1 S k 2 D k 2

2 1 S k 2.
(19)

By setting (19) to 0, we obtain the optimal mask for our
proposed 2CL as:

M2CL-opt k
1 S k 2

1 S k 2 D k 2 , (20)

which results in (9).

Appendix 3
In the reference iIRM MSE loss (10), we can replace
S k and Starget k by Y k M k and Y k
M2CL-opt k , respectively, withM2CL-opt k obtained from
(9), and rewrite (10) to an equivalent loss formulation as:

J iIRM
k

Y k 2

M k
S k 2

S k 2
1 D k 2

2

.
(21)

Similarly, we can derive the equivalent formulation of
our proposed 2CL (8) with the help of (6) and (7) as:

J2CL

k
1 S k M k S k 2

k
D k M k 2

k
1 S k 2 D k 2

M k
S k 2

S k 2
1 D k 2

2

constant.

(22)

Note, for our selected 0.5, (21) becomes equivalent
to:

J iIRM
k

Y k 2 M k
S k 2

S k 2 D k 2

2

,

(23)
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while (22)—apart from a factor 1
2—becomes equivalent to:

J2CL
k

S k 2 D k 2

M k
S k 2

S k 2 D k 2

2

constant.

(24)

Since the constant term will vanish in the gradient com-
putation, the “only” difference between (23) and (24) is the
weights of the squared mask error, which are Y k 2 and
S k 2 D k 2 , respectively. At this point, it is very

important to note that this difference is highly relevant,
particularly in the important low-SNR region. In case
S k D k (complex numbers!), for a certain time-
frequency bin , k , we obtain Y k 0 in (23), leading
to a zero weight in the loss J iIRM (23). Such situation at
least approximately often occurs in low-SNR conditions.
In consequence, no backpropagation and accordingly no
learning takes place, while with our 2CL (24), the weight
is even higher, the lower the local SNR in that time-
frequency bin gets. This seems to be the crucial advantage
of our proposed 2CL vs. the so-called “Reference iIRM
MSE.” This drawback of (23) can be observed by the typ-
ically lower residual noise quality of a noise reduction at
low-SNR conditions, while the 2CL ((24) or (22)) reveals
quite good residual noise quality.
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