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Abstract

Due to the ad hoc nature of wireless acoustic sensor networks, the position of the sensor nodes is typically unknown.
This contribution proposes a technique to estimate the position and orientation of the sensor nodes from the
recorded speech signals. The method assumes that a node comprises a microphone array with synchronously
sampled microphones rather than a single microphone, but does not require the sampling clocks of the nodes to be
synchronized. From the observed audio signals, the distances between the acoustic sources and arrays, as well as the
directions of arrival, are estimated. They serve as input to a non-linear least squares problem, from which both the
sensor nodes’ positions and orientations, as well as the source positions, are alternatingly estimated in an iterative
process. Given one set of unknowns, i.e., either the source positions or the sensor nodes’ geometry, the other set of
unknowns can be computed in closed-form. The proposed approach is computationally efficient and the first one,
which employs both distance and directional information for geometry calibration in a common cost function. Since
both distance and direction of arrival measurements suffer from outliers, e.g., caused by strong reflections of the sound
waves on the surfaces of the room, we introduce measures to deemphasize or remove unreliable measurements.
Additionally, we discuss modifications of our previously proposed deep neural network-based acoustic distance
estimator, to account not only for omnidirectional sources but also for directional sources. Simulation results show
good positioning accuracy and compare very favorably with alternative approaches from the literature.

Keywords: Geometry calibration, Acoustic distance estimation, Deep neural network, Coherent-to-diffuse power
ratio, Direction of arrival

1 Introduction
A wireless acoustic sensor network (WASN) consists of
sensor nodes, which are connected via a wireless link and
where each node is equipped with one or more micro-
phones, a computing and a networking module [1, 2]. A
network of distributed microphones offers the advantage
of superior signal capture, because it increases the proba-
bility that a sensor is close to every relevant sound source,
be it a desired signal or an interfering source. Informa-
tion about the position of an acoustic source may be used
for acoustic beamforming and for realizing location-based
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functionality, such as switching on lights depending on a
speaker’s position or steering a camera to a speaker who
is outside its field of view. Source position information
is also beneficial for the estimation of the phase offset
between the sampling oscillators of the distributed sensor
nodes [3, 4].
However, source location information can only be

obtained from the audio signals without using additional
prior knowledge, e.g., about source position candidates,
like it is used in fingerprinting-based methods [5, 6], if the
position of the sensors, i.e., the microphones, is known.
This, however, is an unrealistic assumption, because one
of the key advantages of WASNs is that they are typi-
cally an ad hoc network formed by non-stationary devices,
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e.g., the smartphones of users, and, possibly, stationary
devices, such as a TV or a smart speaker. For such a setup,
the spatial configuration and even the number of sensor
nodes is unknown a priori and may even be changing over
time, e.g., with people, and thus smartphones, entering
and leaving the setup.
Geometry calibration refers to the task of determining

the spatial position of the distributed microphones [7]. In
case of sensor nodes equipped with an array of micro-
phones [8], the orientation of the array is also of interest.
An ideal calibration algorithm should infer the geome-
try of the network while the network is being used, i.e.,
solely from the recorded audio signals, neither requir-
ing the playback of special calibration signals nor human
assistance through manually measured distances. The cal-
ibration should be fast, not only during initial setup but
also when detecting a change in the network configuration
[9] which triggers a re-calibration.
There is a further desirable feature, which is the inde-

pendence from synchronized sampling clocks across the
network (see [10–12]). Clearly, the tasks of geometry cali-
bration and synchronization of the sensor nodes’ sampling
clocks are often closely linked [7]. Geometry calibration
approaches relying on time difference of arrival (TDoA)
[13, 14], time of arrival (ToA) [15], or time of flight (ToF)
[16] information investigate time points of sound emission
and/or intersignal delays, requiring that the clocks of the
sensor nodes are synchronized.
Only the direction of arrival (DoA)-based approach

does not require clock synchronization at (sub-)sample
precision. Here, the assumption is that sensor nodes are
equipped with microphone arrays to be able to estimate
the angle under which an acoustic source is observed.
This requires that the microphones comprising the array
share the same clock signal, while the clocks at differ-
ent nodes only need to be coarsely synchronized, e.g.,
via [17–20]. That coarse synchronization, i.e., a synchro-
nization with an accuracy of a few tens of milliseconds,
is necessary to identify same signal segments across
devices. DoA-based calibration obviously suffers from
scale indeterminacy: only a relative geometry can be esti-
mated, as no information is available to infer an absolute
distance.
Once measurements are given, be it ToA, TDoA, DoA

or even combinations thereof [21, 22], the actual estima-
tion of the spatial arrangement of the network amounts to
the optimization of a cost function, which measures the
agreement of an assumed geometry with the given mea-
surements [13, 23–27]. This typically is a non-linear least
squares (LS) problem [28, 29], for which no closed-form
solution is known. Due to the non-convexity of the prob-
lem, iterative solutions depend on the initialization. What
complicates matters further is the fact that the acoustic
measurements, such as DoAs, suffer from reverberation,

which results in outliers that can spoil the geometry cali-
bration process. To combat those, the iterative optimiza-
tion is often embedded in a random sample consensus
(RANSAC) method [30], which, however, significantly
increases the computational load.
The approach presented here offers two innovations.

First, we employ acoustic distance estimates, in addition
to DoA measurements, which will solve the scale ambi-
guity of purely DoA-based geometry calibration and still
renders clock synchronization at sample precision unnec-
essary. Compared to our previous approach presented in
[31] which already utilized DoA and distance estimates in
a two-stage manner, the approach proposed in the paper
at hand combines both types of estimates directly in a
common cost function.
In [32, 33], it has been shown how the distance between

an acoustic source and a microphone array can be esti-
mated from the coherent-to-diffuse power ratio (CDR),
the ratio between the power of the coherent, and the
diffuse part of the received audio signal. The authors
employed Gaussian processes (GPs) to estimate the dis-
tance between a close pair of microphones and the acous-
tic source. This technique performed well if the GP was
trained in the target environment but generalized poorly
to new acoustic environments. Better generalization capa-
bilities were achieved by deep neural network (DNN)-
based acoustic distance estimation, where the network
was exposed to many different acoustic environments
during training [31]. However, this approach to distance
estimation needs signal segments where a coherent source
is active for a time around 1 s to work well. This require-
ment excludes impulsive source signals but is generally
fulfilled by speech. Therefore, we consider speech as
source signal but do not exclude other acoustic sources.
In the contribution at hand, we build upon the DNN
approach and further generalize it to perform better in the
presence of directional sources.
The second contribution of this paper is the formulation

of geometry calibration as a data set matching problem,
similarly to [13], however, employing both distance and
DoA estimates. Since data set matching can be efficiently
realized, it greatly reduces the computational complex-
ity of the task and thus the time it takes to estimate
the geometry compared to a gradient-based optimization
of a cost function. Moreover, we integrate the data set
matching into an error-model-based re-weighting scheme
and present a formal proof of convergence for it. The
re-weighting scheme robustifies the geometry calibra-
tion process w.r.t. observations with large errors without
the need of using a RANSAC. Additionally, a detailed
experimental investigation of the proposed approach to
geometry calibration is presented beside the mathemat-
ical analysis. Furthermore, the formulation as a data set
matching problem allows the inference of the network’s
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geometry even if it only consists of two sensor nodes, each
equipped with at least three microphones which do not lie
on a line.
The paper is organized as follows: In Section 2, the

geometry calibration problem and the notation is sum-
marized, followed by the description of the cost function
we investigate for geometry estimation in Section 3. Sub-
sequently, the distance estimation via DNNs is briefly
described in Section 4. In Section 5, the experimental
results are summarized before we end the paper by draw-
ing some conclusions in Section 6.

2 Geometry calibration setup
We consider a WASN, where a set of sensor nodes
is randomly placed in a reverberant environment (see
Fig. 1). Note that we investigate geometry calibration
in a 2-dimensional space; however, the extension to 3-
dimensional space is in principle straight-forward.
We assume that the internal geometric arrangement of

each node’s microphone array is known and that all micro-
phones making up an array are synchronously sampled,
which we consider a realistic assumption. To be able to
identify which DoA and distance estimates made by the
different sensor nodes correspond to the same source sig-
nal, we further assume that a coarse time synchronization,
i.e., a synchronization with an accuracy of a few tens
of milliseconds, exists between the clocks of the differ-
ent sensor nodes. This can be established, e.g., by NTP
[17] or PTP [18]. We do, however, not require time syn-
chronization at the precision of a few parts per million
(ppm).
The WASN consists of L sensor nodes (red dots in

Fig. 1), each equipped with a microphone array centered
at positions nl nl,x nl,y

T with an orientation l, l
1, 2, , L relative to the global coordinate system, which
is spanned by the depicted coordinate axes x and y. Here,

Fig. 1 Geometry calibration problem (red: sensor nodes; dark blue:
acoustic sources; blue: source k; global coordinate system x, y ; local
coordinate systems ( ))

l corresponds to the rotation angle between the local
coordinate system of the l-th node and the global coor-
dinate system, i.e., the angle between the positive x-axes
of the global and the local coordinate system (measured
counterclockwise from the positive x-axis to the positive
y-axis). The K acoustic sources (blue dots in Fig. 1) are at
positions sk sk,x sk,y

T, k 1, 2, ,K . We assume
that only one source is active at any given time. Note
that the positions of the sensor nodes nl, their orienta-
tions l, and the positions of the acoustic sources sk are
all unknown and will be estimated through a geometry
calibration procedure from the observed acoustic source
signals.
The geometry calibration task amounts to determin-

ing the set geo n1, ,nL, 1, , L . Furthermore, all
source positions are gathered in the set s s1, , sK ,
which will be estimated alongside geometry calibration.
This results in the set of all unknowns geo s.
Since a sensor node does not know its own position or

orientation within the global coordinate system, all obser-
vations are given in the node’s local coordinate system
(see Fig. 2 for an illustration). In the following, the super-
script l denotes that a quantity is measured in the local
coordinate system of the l-th sensor node. Thus, the posi-
tion of the k-th acoustic source, if expressed in the local
coordinate system of the l-th sensor node, is denoted

as s l
k s l

k,x, s
l
k,y

T
. Quantities without a superscript are

measured in the global coordinate system. For example,
sk corresponds to the position of the k-th acoustic source
described in the global coordinate system.
Each sensor node l, l 1, , L , computes DoA esti-

mates l
k and distance estimates d l

k to the acoustic
source k, k 1, ,K , all w.r.t. the node’s local coordi-
nate system. Altogether, this results in K LDoA estimates
and K L distance estimates available for geometry cali-
bration.

Fig. 2 Position of an acoustic source within the global coordinate
system x, y and local coordinate system ( ) of node
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3 Geometry calibration using DoAs and source
node distances

To carry out geometry calibration, the given observations
in the sensors’ local coordinate systems have to be trans-
ferred to a common global coordinate system. Then, a cost
function is defined that measures the fit of the transferred
observations to an assumed geometry. The minimization
of this cost function provides the positions and orienta-
tions of the sensor nodes, as well as the positions of the
acoustic sources.

3.1 Development of a cost function
The position s l

k of source k w.r.t. the local coordinate
system of sensor node l is given by

s l
k d l

k cos l
k sin l

k
T
. (1)

To project s l
k into the global coordinate system, the

following translation and rotation operation is applied:

sk R l s l
k nl (2)

d l
k

cos l
k l

sin l
k l

nl. (3)

Here,

R l
cos l sin l
sin l cos l

: Rl (4)

denotes the rotation matrix corresponding to the rotation
angle l.
If all distances and angles were perfectly known, all s l

k
would map to a unique position sk . Hence, the geometry
can be inferred by minimizing the deviation of the pro-
jected source positions from an assumed position sk by
minimizing the LS cost function J :

argmin
L

l 1

K

k 1
sk Rls l

k nl
2

2

: J

, (5)

with 2 denoting the Euclidean norm. Note that at least
K 2 spatially different acoustic source positions have to
be observed to arrive at an (over-)determined system of
equations which is defined by sk Rls l

k nl with l
1, , L and k 1, ,K .
There exists no closed-form solution for the non-linear

optimization problem in (5). Thus, (5) has to be solved
by an iterative optimization algorithm, e.g., by Newton’s
method as proposed in [23] or by gradient descent.
Prior works, e.g., [23], have shown that the iterative

optimization strongly depends on the initial values. Fur-
thermore, the optimization is computationally demand-
ing and, depending on the number of observed acous-
tic source positions, very time consuming, which limits

its usefulness for WASNs with typically limited compu-
tational resources. In the following, we will present a
computationally much more reasonable approach.

3.2 Geometry calibration by data set matching
We now interpret the relative acoustic source positions
(see (1)) as the vertices of a rigid body. Matching the rigid
body shapes as observed by the different sensor nodes
will result in an efficient way for geometry calibration as
described in [13]. In the following, we shortly recapitu-
late the concept of efficient geometry calibration based on
data set matching [34, 35]. Let

S l s l
1 s l

K . (6)

be the matrix of all K source positions, as measured in the
local coordinate system of sensor node l. Similarly, let S be
the same matrix of source positions, but now measured in
the global coordinate system. The dispersion matrix Dl is
defined as follows [35]:

Dl
1
K

S l s l 1T W l S s1T
T
, (7)

where 1 denotes a vector of all ones. W l is a diagonal
matrix with Wl k,k wkl, where i,j denotes the i-th row
and j-th column element of a matrix. s l corresponds to
the centroid of the observations made by sensor node l
and s is the centroid of the source positions expressed in
the global coordinate system:

s l

K

k 1
wkls l

k

K

k 1
wkl

and s

K

k 1
wklsk

K

k 1
wkl

. (8)

The weights wkl will be introduced in Section 3.3 to con-
trol the impact of an individual observation s l

k on the
geometry estimates.
Carrying out a singular value decomposition (SVD) of

the dispersion matrix gives Dl U VT. The estimate Rl
of the rotation matrix is then given by [34, 35]

Rl VUT, (9)

and the orientation of the corresponding sensor node by:

l arctan2 Rl 1,1 , Rl 2,1 . (10)

Here, arctan2 is the four-quadrant arc tangent. Thus, the
l-th sensor node position estimate nl in the reference
coordinate system is given by

nl s Rls l . (11)

Note that the described data set matching procedure
corresponds to minimizing the following cost function
[34]:
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J nl,Rl

K

k 1
wkl sk Rls l

k nl
2

2
. (12)

3.3 Geometry calibration by iterative data set matching
We now generalize the findings of the last section to an
arbitrary number L of sensor nodes. Moreover, we con-
sider the source positions as additional unknowns. The
resulting cost function

J
L

l 1

K

k 1
wkl sk Rls l

k nl
2

2
(13)

is optimized by alternating between the estimation of the
set of source positions s and the estimation of the sensor
node parameters geo.
Starting from an initial set of source positions s, the

geometry geo can be determined by optimizing (12) for
each sensor node l 1, , L by data set matching as
outlined in the last section. Note that the estimated posi-
tions are given relative to a reference coordinate system.
The origin and orientation of this reference coordinate
system is a result of the calibration process.
Given a geometry geo the positions sk can be estimated

for each acoustic source k 1, ,K via:

sk argmin
sk

L

l 1
wkl sk Rls l

k nl
2

2
. (14)

For this, a closed-form solution exists, which is given by

sk

L

l 1
wkl Rls l

k nl

L

l 1
wkl

. (15)

What remains is to describe how the weights wkl are
chosen. They should reflect how well the observations s l

k
fit to the model specified by geo and s. This can be
achieved by setting

wkl
1

sk Rls l
k nl 2

. (16)

With these weights and the ideas of [36], (13) can be inter-
preted as an iteratively re-weighted least squares (IRLS)
algorithm [37] which minimizes the following sum of
Euclidean distances:

argmin
L

l 1

K

k 1
sk Rls l

k nl 2
. (17)

Consequently, the resulting optimization problem is less
sensitive to outliers than the optimization problem in (5).

3.4 Implementation details
Algorithm 1 summarizes the iterative data set matching
used for geometry calibration. In the beginning the set of
observations 1 s 1

1 , s 1
2 , , s 1

K made by sensor
node 1 is used as initial estimate of the acoustic sources’
position set s. Experiments on the convergence behavior
have shown that the effect of the choice of the sensor node,
whose observations are used for initialization, is negligible
(see Section 5.2). Due to the fact that at this point no state-
ment can be made about the quality of the observations
s l
k , the initial weights are all set to one: wkl 1; k, l.
Subsequently, a first estimate of the geometry geo can

be derived by data set matching (line 3) utilizing s as
reference source positions. Then, geo is used to esti-
mate the sources’ positions s (line 4) based on (15) with
the weights still left as above. In the next iterations, the
weights are chosen as described in (16). The iterative
weighted data set matching procedure, i.e., lines 3–5 in
Algorithm 1, is repeated until geo and s converge. A
detailed analysis of the convergence behavior of this part
of the algorithm can be found in the Appendix.
Although outliers are already addressed by the weights

wkl to some extent, they can still have a detrimental influ-
ence on the results of the iterative optimization process if
the corresponding errors are very large. Therefore, after
convergence, the iterative weighted data set matching pro-
cedure is repeated again (lines 7–12); however, only on
that subset of observations fit that best fits to the model
defined by the current estimates geo and s.
There are two criteria that describe how well the obser-

vations s l
k made by sensor node l fit to the model

specified by geo and s. First, there are the distances

Algorithm 1: Iterative Geometry Calibration Using
Data Set Matching

Data: s 1
1 , s 1

2 , , s 1
K , s 2

1 , , s L
K ;

1 Init: s s 1
1 , s 1

2 , , s 1
K ,

w w11, ,wKL 1, , 1 ;
2 repeat
3 geo DSM_Calib , s, w ; {Eq. (12)}
4 s SRC_Loc , geo, w ; {Eq. (15)}
5 w Get_Weights , s, geo ; {Eq. (16)}
6 until Convergence;
7 repeat
8 fit Fit_Select s, geo, ; {Eq. (20)}
9 geo DSM_Calib fit, s, w ; {Eq. (12)}

10 s SRC_Loc , geo, w ; {Eq. (15)}
11 w Get_Weights , s, geo ; {Eq. (16)}
12 until Convergence;

Result: geo;
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between s l
k and the source position estimates s o

k , o
1, , L l , made by the other sensor nodes:

k l, o Rls l
k nl Ros o

k no
2
. (18)

Second, there is the distance between the observations
after being projected and the estimated source position
measured in the global coordinate system:

k l sk Rls l
k nl 2

. (19)

Note that the choice of k l, o and k l is motivated by
the fact that all relative source positions observed by the
single sensor nodes wouldmap on the same position in the
global coordinate system if the observations are perfect.
Combining the two criteria results in the function

Ck l k l
1

L 1

L

o 1
o l

k l, o , (20)

used for the selection of fit. The distance and DoA mea-
surements of source kmade by a node l are included in fit
only if the resulting relative source position belongs to the
best measurements made by a node l. With Ck l out-
liers can be identified based on the fact that they do not
align well with the source position estimates of the other
nodes for the current geometry.
In principle, this fitness selection could also be

integrated in the first iterative data set matching
rounds (lines 3–5). However, initial experiments have
shown that this may lead to a degradation of performance
if the number of observed source positions K is small.
This can be explained by the fact that observations are
discarded based on a model which is still not converged.

4 Acoustic distance estimation
To gather distance and, respectively, scaling information
that can be used for geometry calibration, we propose
to utilize the DNN-based distance estimator which we
introduced in [31]. This distance estimator shows state-of-
the-art performance and good generalization capabilities
to different acoustic environments. In the following, we
just concentrate on an adaptation of the distance estima-
tor to directional sources and refer to [31] for a detailed
description.
Our approach to acoustic distance estimation consid-

ers a microphone pair recording a signal x t emitted by a
single acoustic source. The reverberant signal, being cap-
tured by the -th microphone, 1, 2 , is modeled as
follows [32]:

y t h t x t v t
h ,e t x t

c t

h , t x t v t
r t

, (21)

with v t corresponding to white sensor noise and h t
corresponding to the room impulse response which mod-
els the sound propagation from the source to the -
th microphone. The operator denotes a convolution.
h t can be divided into h ,e t modeling the direct path
and the early reflections and h , t modeling the late
reflections. Thus, y t can be split up into a coherent
component c t which corresponds to the direct path
and the early reflections and a diffuse component r t
produced by the late reflections and the sensor noise.
In [32] it was shown that the CDR, i.e., the power ratio of

the coherent signal component c t to diffuse signal com-
ponent r t , is related to the distance between the micro-
phone pair and the acoustic source (the larger the distance
the smaller the value of the CDR). The DNN-based dis-
tance estimator utilizes a time-frequency representation
of the CDR as an input feature.
Due to the large effort needed to measure room impulse

responses (RIRs) in various acoustic environments, we
here stick to synthetic RIRs for the training of the distance
estimator, using the RIR generator of [38]. However, there
are a lot of simplifying assumptions for the simulation of
RIRs. For example, the room is modeled as a cuboid, and
an omnidirectional characteristic is typically assumed for
the acoustic sources and microphones.
Especially the omnidirectional characteristic of the

acoustic sources is a large deviation from reality, because a
real acoustic source, like a speaker, typically exhibits direc-
tivity.While an omnidirectional source emits sound waves
with equal power in all directions, a directional source
emits most of the power into one direction. In both cases,
the sound waves are reflected multiple times on the sur-
faces of the room which mainly causes the late reflections
and accumulates to h , . Hence, a directional source point-
ing towards amicrophone array causes a less diffuse signal
compared to an omnidirectional source that is assumed
in the simulated RIRs. Consequently, a distance estima-
tor trained with simulated RIRs and applied to recordings
of directional sources, pointing towards the microphone
array, would exhibit a systematic error and underestimates
the distance. Furthermore, a directional source may cause
a more diffuse signal compared to an omnidirectional
source if it does not point towards a microphone array,
causing a systematic overestimation of the distance. How-
ever, this case is not further investigated as such recording
conditions are not included in the MIRD database [39]
which is used in the experimental section.
We approach this mismatch by applying a recently pro-

posed direct-to-reverberant ratio (DRR) data augmenta-
tion technique [40]. The DRR is defined as

t h2,e t

t h2, t
. (22)
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Considering (21), it is obvious that CDR and DRR are
equivalent [41] if the influence of the sensor noise is neg-
ligible. Consequently, an augmentation of the DRR results
into an augmentation of the CDR.
Therefore, during training, a scalar gain is applied to

h ,e t which contains the direct path and the early reflec-
tions of the RIRs. To avoid discontinuities within the RIR
caused by the scaling, a window wd t is employed to
smooth the product h ,e t :

h ,e t wd t h ,e t 1 wd t h ,e t .
(23)

Hereby,wd t corresponds to a Hann window of 5 ms size,
which is centered around the time delay td corresponding
to the direct path. td is identified by the location of the
maximum of h t .
Due to the fact that the directivity of the acoustic source

is unknown in general there is also no knowledge how
has to be chosen to adapt the simulated RIRs to the real
scenario. Nevertheless, it is known that the DRR of the
simulated RIRs has to be increased if a directional source
pointing towards the center of the microphone pair is
considered. Thus, 1, max is used, where max cor-
responds to the fixed upper limit of and min,max
denotes to uniformly draw a value from the interval
[min,max].
Furthermore, the DRR is only manipulated with proba-

bility Pr aug . Hence, beside manipulated examples, also
examples that are not manipulated are presented to the
DNN during training. The non-manipulated examples
should ease the process of learning that examples being
manipulated with different scaling factors belong to the
same distance.

5 Experimental results
In this section, the proposed approach to geometry cal-
ibration is evaluated. First, the adaptation of the DNN-
based acoustic distance estimation method to directional
sources is examined. For deeper insights into acoustic
distance estimation see [31]. Afterwards, the proposed
approach to geometry calibration is investigated based on
simulations of the considered scenario.

5.1 Acoustic distance estimation
In the following, the adaptation of the DNN-based dis-
tance estimator to directional sources is evaluated on the
MIRD database [39]. This database consists of measured
RIRs for multiple source positions on an angular grid at
a distance of 1 m and 2 m. The measurements took place
in a 6 m 6 m 2.4 m room with a configurable reverber-
ation time T60. From the data we used, the two subsets
corresponding to T60 360 ms and T60 610 ms, consid-
ering the central microphone pair with inter microphone
distance equal to 8 cm.

The setups of the MIRD database are limited w.r.t. the
number of source and sensor positions. Nevertheless, the
experimental data is sufficient to proof that the approach
works for directional acoustic sources and not only on
simulated audio data of omnidirectional sources. We refer
to [31] for a detailed investigation of a wider range of
considered setups using simulated data.
As described in Section 4, the distance estimator is

trained utilizing RIRs which are simulated using the
implementation of [38]. The training set consists of
100,000 source microphone pair constellations whereby
the properties of the considered room and the placement
of the microphone pair and acoustic source is randomly
drawn for each of these constellations. Table 1 summa-
rizes the corresponding probability distributions. We first
draw the position of the microphone pair and then place
the acoustic source relative to this position at the same
height using the distance d and the DoA .
The RIRs are used to reverberate clean speech signals

from the TIMIT database [42]. During training, these
speech probes are randomly drawn from the database.
For the evaluation of the distance estimator on the MIRD
database, we utilized R 100 speech probes which were
randomly drawn from the TIMIT database and then
reverberated by each of the RIRs.
In the following, the configuration and training scheme

of the distance estimator are explained. We employ 1 s
long speech segments to calculate the CDR which results
in a featuremap that is passed to the DNN. The short-time
Fourier transform (STFT), which is needed to estimate the
CDR, utilizes a Blackman window of size 25 ms, and a
frame shift of 10 ms. The CDR is calculated for frequen-
cies between 125Hz and 3.5 kHz, which corresponds to
the frequency range, where speech has significant power.
Table 2 shows the architecture of the DNN used for

distance estimation. The estimator is trained using Adam
[43] with a mini-batch size of B 32 and a learning rate of
3 10 4 for 500,000 iterations. Besides, the maximum DRR

Table 1 Description of the training set of the distance estimator
used on the MIRD database

Room width rw 5 m, 7 m

Room length rl 5 m, 7 m

Room height rh 2.2 m, 2.6 m

Reverberation time T60 250 ms, 700 ms

Position of the mic. pair nx 0.5 m, rw 0.5 m

ny 0.5 m, rl 0.5 m

nz 1 m, rh 1 m

Orientation of the mic. pair 0, 2

Distance d 0.3 m, 3 m

DoA 0, 2
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Table 2 Architecture of the DNN used for distance estimation on
the MIRD database

Block Output shape

CDR B 1 F M

2 Conv2d 3 3; 16 B 16 F M

MaxPool2d(2 1) B 16 F 2 M

2 Conv2d 3 3; 32 B 32 F 2 M

MaxPool2d(2 2) B 32 F 4 M 2

2 Conv2d 3 3; 64 B 64 F 4 M 2

MaxPool2d(2 1) B 64 F 8 M 2

2 Conv2d 3 3; 128 B 128 F 8 M 2

MaxPool2d(2 2) B 128 F 16 M 4

Conv2d 3 3; 256 B 256 F 16 M 4

MaxPool2d(2 1) B 256 F 32 M 4

Reshape B 256 F 32 M 4

3 Conv1d 3; 512 B 512 M 4

2 GRU 512 B 512

fcReLU 512 B 512

fcSoftmax Dc B Dc

Each conv{1,2}d layer includes ReLU as activation and batch normalization. Only the
last output vector of the gated recurrent unit (GRU) is forwarded to the fully
connected layers (fc). Dropout with a dropout probability equal to 0.5 is used on the
output of all GRU and fully connected layers except for the last fully connected layer.
Dc denotes the number of distance classes (distance estimation is formulated as a
classification problem; see [31].). For simplicity, we write, e.g., M 4 instead of
M 2 2

augmentation factor max is chosen to be equal to 3. After
training, we utilize the best performing checkpoint w.r.t.
the mean-absolute error (MAE) of the distance estimates
on an independent validation set.
The influence of the DRR manipulation probability

Pr aug can be seen in Table 3. Thereby, the MAE

ed
1

2 A R

2

c 1

A

a 1

R

r 1
d c, a dr c, a (24)

is used as metric. Here, d 1, a 1 m and d 2, a 2 m cor-
respond to the ground truth distance at DoA-candidate a.
dr c, a denotes the corresponding estimate using the r-th

Table 3 MAE ed/ m on theMIRD database and the corresponding
simulated RIRs

sim. RIRs MIRD

Pr(aug) 360ms 610ms 360ms 610ms

0 0.18 0.23 0.45 0.53

0.5 0.24 0.3 0.32 0.32

0.8 0.24 0.29 0.25 0.26

0.9 0.26 0.33 0.28 0.26

1 0.28 0.33 0.26 0.24

speech sample and A the number of DoA in the angu-
lar grid of the MIRD database. Furthermore, results for
distance estimation on a simulated version of the RIRs
of the MIRD database with omnidirectional sources are
provided (see Table 3).
Without DRR augmentation, i.e., for Pr aug 0, the

distance estimation error is large compared to the error
on simulated RIRs. This can be explained by the sys-
tematic error resulting from the fact that the simulated
RIRs used during the training include more diffuse signal
parts than the recorded RIR. With DRR augmentation the
error of the distance estimates on the MIRD database can
be reduced and the best performance is achieved if the
DRR of all examples is manipulated during training. How-
ever, DRR augmentation makes the learning process more
difficult, which increases the error on the simulated RIRs.

5.2 Geometry calibration
To evaluate the proposed approach to geometry cali-
bration, we generated a data set consisting of G 100
simulated scenarios. Thereby, each scenario corresponds
to a WASN with L 4 sensor nodes. Furthermore, each
scenario contains acoustic sources at a fixed amount of
K 100 spatially independent positions within the room.
This number can be justified by the fact that in realis-
tic environments, e.g., living rooms, acoustic sources like
speakers will move over time such that the amount of
observed acoustic source positions will also grow over
time. All rooms have a random width rw U 6 m, 7 m ,
random length rl 5 m, 6 m , and a fixed height rh
of 3 m. In the experiments, we investigate reverberation
times T60 from the set 300 ms, 400 ms, 500 ms, 600 ms .
Both, the nodes and the acoustic sources, are placed at

a height of 1.4 m, whereby the sensor nodes are equipped
with a circular array with six microphones and a diameter
of 5 cm. The way how the sensor nodes and the acoustic
sources are placed within the room is exemplarily shown
in Fig. 3.
We assume that at each of the possible K 100 source

positions, a 1 s long speech signal is emitted, whereby
the speech signals are randomly drawn from the TIMIT
database. The speech samples are reverberated by RIRs
gathered from the RIR generator of [38]. Subsequently,
the reverberant signals are used for distance and DoA
estimation.
We employ the convolutional recurrent neural network

(CRNN) which we proposed in [31] to compute the dis-
tance estimates used for geometry calibration. Feature
extraction, training set, and training scheme mainly coin-
cide with the ones described in Section 5.1. The descrip-
tion of the corresponding training set which consists of
10,000 source node constellations can be found in Table 4.
During training, DRR augmentation is used with a manip-
ulation probability of Pr aug 0.5.
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Fig. 3 Simulated setup; red: microphones; blue: acoustic sources; gray area: possible area to randomly place sensor nodes (microphone arrays); all
sensor nodes and acoustic sources have a minimum distance of 0.1 m to the closest wall; 1 m spacing between the gray areas

We take the three microphone pairs formed by the
opposing microphones of the considered circular micro-
phone array for distance estimation. The CDR is estimated
for each of these microphone pairs and the three resulting
feature maps are jointly passed to the CRNN.
DoA estimation is done using the complex Watson ker-

nel method introduced in [44] , where it was shown that
this estimator is competitive to state-of-the-art estima-
tors. The considered DoA candidates have an angular
resolution of 1ř and the concentration parameter of the
complex Watson probability density function is chosen to
be 5.
The fitness selection contained in our approach to

geometry calibration always selects the best 50% relative
source positions for each sensor node.
Figures 4 and 5 show the cumulative distribution func-

tion (CDF) of the distance and DoA estimation errors.
The majority of distance and DoA estimates exhibits only
small errors, so in general there will be enough reliable
estimates for geometry calibration. But in both cases,
there is also a non-negligible amount of estimates exhibit-
ing large errors which have to be considered as outliers. It

Table 4 Description of the training set of the distance estimator
used for geometry calibration

Room width rw 5 m, 7 m

Room length rl 5 m, 7 m

Room height rh 3 m

Reverberation time T60 250 ms, 700 ms

Position of the node nx 0.5 m, rw 0.5 m

ny 0.5 m, rl 0.5 m

nz 1.4 m

Orientation of the node 0, 2

Distance d 0.3 m, 6 m

DoA 0, 2

can also be observed that the amount of outliers increases
with increasing reverberation time T60. We refer to [31,
44] for a comparison of the used estimators to alternative
estimators.
After the geometry calibration process is started, more

and more observed relative source positions s l
k will

become available. The resulting effect on the geometry
calibration results can be seen in Fig. 6, which displays the
MAE of the sensor nodes’ position

ep
1

G L

G

g 1

L

l 1
nl,g nl,g 2 (25)

and orientation

eo
1

G L

G

g 1

L

l 1
ej l,g l,g , (26)

where denotes the phase of a complex-valued num-
ber. Further, nl,g and l,g are the ground truth values of the
location parameters of the l-th node in the g-th scenario
and nl,g and l,g denote the corresponding estimates. Note
that the geometry estimates are projected into the coor-
dinate system of the ground truth geometry using data
set matching to align the sensor node positions before the
errors are calculated.
Figure 6 shows that the geometry estimation error gets

smaller when more source positions have been observed
and thus more relative source position estimates exhibit-
ing a small error are available. Hence, the estimate of
the geometry will improve over time. However, reason-
able results can already be achieved with a small amount
of observed source positions. This especially holds for
scenarios with small reverberation times T60 where the
estimates of the relative source positions are less error-
prone.
In addition to the MAE of the geometry estimates, the

distribution of the corresponding error is displayed in
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Fig. 4 CDF of the distance estimation error

Figs. 7 and 8 for K 20 and K 100 observed source posi-
tions. For a small number of observed source positions,
i.e., K 20, the majority of node position and node orien-
tation estimates shows acceptably small errors. As can be
seen, there are still outliers exhibiting large errors, despite
the used error-model-based re-weighting method and the
fitness selection method.
If more source positions are observed, e.g., K 100, the

probability increases that a sufficient amount of good rela-
tive source position estimates is available, thus improving
the average calibration accuracy and also decreasing the
number of outliers.
Table 5 shows the influence of the individual outlier

rejection and error handling steps of our approach to
geometry calibration, namely the weighting in data set
matching (WLS), the weighting in source localization
(WLSSRC), and the fitness selection (Select). If all weights
are set to wkl 1; k, l, and fitness selection is omitted,
the geometry estimates are clearly worse compared to
the other cases depicted in the table. Introducing weight-
ing factors in data set matching and source localization
improves the results. However, the experiment with active

data selection reveals that the weighting is not powerful
enough to completely suppress the detrimental effect of
outliers, which can only be achieved by removing these
outliers from the processed data via fitness selection.
Figures 9 and 10 show the effect of fitness selection

on the distribution of the DoA and distance estimation
errors. Fitness selection causes larger errors to occur less
frequently for both quantities, removing a large portion
of the outliers. This especially holds for the distance esti-
mates.
These outliers are often caused by strong early reflec-

tions of sound on surfaces in the room, e.g., when a sensor
node is placed near to a wall, resulting in poor distance
and DoA estimates. However, outliers can also occur if
a source is too close to a sensor node, i.e., the far-field
assumption for DoA estimation is not met, or the distance
between a sensor node and an acoustic source is too large
which leads to a challenging situation for distance esti-
mation. Because of the large number of possible reasons
for outliers in the DoA and distance estimates, we refer
the reader to the relevant literature for a more detailed
discussion [31, 44, 45].

Fig. 5 CDF of the DoA estimation error



Gburrek et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:25 Page 11 of 17

Fig. 6 Influence of number of source positions on calibration performance

The convergence behavior of the sensor nodes’ positions
is shown in Fig. 11 based on the CDF of the average spread
of the sensor node position estimates

nl
1
I

I

i 1
nl,i nl 2 , (27)

whereby nl,i denotes the estimate of the position of the l-th
sensor node resulting from the i-th of the I considered ini-
tializations of s and nl

1
I

I
i 1 nl,i the corresponding

mean.
We compare two initialization strategies, namely the

proposed initialization using the observed source posi-
tions of one sensor node and a random initialization. For
the proposed initialization scheme, the geometry was esti-
mated using the observations of each of the sensor nodes
as initial values resulting in I L 4 different initializa-
tions. In the random case, all values of s are drawn
from a normal distribution and I 100 initialization were
considered.
It can be seen that the proposed initialization scheme

leads to smaller deviations in the results. In most cases,
the spread of the sensor node positions is even vanishingly
small. Consequently, the choice of the sensor node whose
source position estimates were used as initial values is not
critical for the proposed initialization scheme. Moreover,
the experiments showed that the spread of the estimated
node orientations is in the order of magnitude of 10 13

and can therefore be neglected.
In addition to geometry, our approach also provides

estimates of the positions of the sound sources. The MAE
of these estimates

Table 5 Influence of the weighting of the proposed geometry
calibration procedure for K 20 and T60 500 ms

WLS WLSSRC Select ep/m eo/

0.26 2.9

0.15 1.9

0.13 1.8

0.08 1.9

es
1

G K

G

g 1

K

k 1
sk,g sk,g 2 (28)

is given in Table 6. Again, the coordinate system of the
geometry estimates is aligned with the coordinate system
of the ground truth geometry using data set matching
before the errors are calculated. These results are com-
pared to the results of source localization, i.e., solving (14)
for each acoustic source, using the ground truth geom-
etry. It is shown that for small reverberation times T60,
the proposed iterative geometry calibration procedure
yields comparable results to source localization using the
ground truth geometry of the sensor network. As the
reverberation time increases and thus the observation
errors increase, the geometry calibration error increases
and consequently the source localization error increases.
Moreover, the effect of fitness selection is shown in

Table 6. Calculating the MAE es only for the subset of
observed source positions selected by the fitness selec-
tion always leads to a smaller error. Thus, the algorithm
succeeds in selecting a set of observations with smaller
errors.
Finally, in Table 7, we compare the proposed approach

to geometry calibration to state-of-the-art approaches
solely using distance [46] or DoA estimates [29]. Hereby,
the DoA-based approach utilizes the optional Maximum
Likelihood refinement procedure which was proposed in
[29]. Note that the considered distance-based approach
called GARDE only delivers estimates for the positions of
the sensor nodes and no orientations. Furthermore, the
DoA-based approach estimates a relative geometry which
has to be scaled subsequently. To this end, we employed
the ground truth source node distances to fix the scaling
as described in [31].
Table 7 shows that our approach is able to outperform

both approaches by far. This can be explained by the addi-
tional information which results from the combined usage
of distance and DoA information. In addition to that,
the considered DoA-based approach contains no outlier
handling while GARDE suffers from the outliers in the
distance estimates.
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Fig. 7 Distribution of the geometry calibration error for K 20

Fig. 8 Distribution of the geometry calibration error for K 100

Fig. 9 Effect of fitness selection on the distribution of DoA estimation errors for K 20
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Fig. 10 Effect of fitness selection on the distribution of distance estimation errors for K 20

The proposed approach also compares favorably in
terms of computational effort, when looking at the aver-
age computing time Tc, i.e., the average time which
is needed to estimate the geometry once. The aver-
age computing time for distance estimation (47 ms) and
the average computing time for DoA estimation (545
ms) are not included in Tc. Note that the DoA-based
approach utilizes a Fortran accelerated implementation
[47] to optimize the underlying cost function while all
other approaches are based on a Python implementation.
Moreover, Table 7 provides the average computing time
required to solve the optimization problem in (5) by the
Broyden-Fletcher–Goldfarb-Shanno (BFGS) method and
the average computing time of the proposed approach if
the weighting and the fitness selection is omitted which
also can be interpreted as solving (5). Thereby, the lat-
ter leads to the same results as the BFGS method while
being 70 times faster. This leaves room for the additional
computing time required for the weighting and fitness
selection in our approach. Consequently, despite its iter-
ative character the proposed approach shows competi-

tive computing time compared to the other considered
approaches while providing better geometry estimates.

6 Conclusions
In this paper, we proposed an approach to geometry cali-
bration in a WASN using DoA and distance information.
The DoA and distances are estimated from the micro-
phone signals and are interpreted as estimates of the
relative positions of acoustic sources w.r.t. the coordinate
system of the sensor node. Our approach uses these obser-
vations to alternatingly estimate the geometry and the
acoustic sources’ positions. Hereby, geometry calibration
is formulated as an iterative data set matching problem
which can be efficiently solved using a SVD.
In order to improve robustness against outliers and large

errors contained in the observations, we integrate the
iterative geometry estimation and source localization pro-
cedure into an error-model-based weighting and obser-
vation selection scheme. Simulations show that the pro-
posed approach delivers reliable estimates of the geome-
try while being computationally efficient. Furthermore, it

Fig. 11 Effect of the initialization on the convergence behavior of the sensor nodes’ positions for K 20 and T60 500 ms
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Table 6 MAE es/ m of source positions with and without fitness
selection (Select) for K 20

Geometry Select 300 ms 400ms 500 ms 600ms

Ground truth 0.04 0.06 0.07 0.08

Estimate 0.09 0.12 0.16 0.21

Estimate 0.08 0.07 0.12 0.16

requires only a coarse synchronization between the sensor
nodes.

Appendix
Convergence analysis of geometry calibration
using iterative data set matching
We now analyze the convergence behavior of the
iterative data set matching procedure, following the
ideas of [48]. Therefore, we consider the part of
iterative data set matching procedure where fitness
selection is not used as shown in Algorithm 2. In
the following, the superscript [ ] denotes the value
after the update in the -th iteration. Thus, the
sets of quantities resulting from the -th iteration of
the alternating optimization procedure are defined as

[ ]
geo n[ ]

1 , ,n[ ]
L , [ ]

1 , , [ ]
L , [ ]

s s[ ]
1 , , s[ ]

K ,

and [ ]
w w[ ]

11 , ,w[ ]
KL . R[ ]

l denotes the rotation

matrix corresponding to [ ]
l . Furthermore, the cost func-

tion is now interpreted as a function of [ ]
geo,

[ ]
s and

[ ]
w :

J [ ]
geo, [ ]

s , [ ]
w

L

l 1

K

k 1
w[ ]
kl s[ ]

k R[ ]
l s l

k n[ ]
l

2

2
.

(29)

Considering the 1 -th iteration of the alternating
optimization the following monotonicity property of the
cost function holds:

Algorithm 2: Part of Algorithm 1 considered for con-
vergence analysis
Data: ;

1 Init: [0]
s , [0]

w , 0;
2 repeat
3

[ 1]
geo DSM_Calib , [ ]

s , [ ]
w ;

4
[ 1]
s SRC_Loc , [ 1]

geo , [ ]
w ;

5
[ 1]
w Get_Weights , [ 1]

s , [ 1]
geo ;

6 1;
7 until Convergence;
Result: [ ]

geo;

Table 7 Comparison of the calibration results and average
computing time Tc

ep/m eo/ Tc/ ms

DoA based [29] + Scaling [31] 0.19 1.7 338

GARDE [46] 0.17 - 1864

BFGS solving (5) 0.22 2.0 70

Proposed (w/o FitSelect/Weights) 0.22 2.0 1

Proposed 0.04 1.3 83

K 100; T60 500 ms; Single core on an [Intel(R) Xeon(R) CPU E3-1240 v6 @ 3.70GHz,
32GB RAM]

Lemma 6.1 The inequality

J [ 1]
geo , [ 1]

s , [ 1]
w J [ ]

geo, [ ]
s , [ ]

w (30)

holds for all 0, i.e., each iteration monotonically
decreases the considered cost function.

Proof Inserting the definition of the weights

w[ ]
kl

1

s[ ]
k R[ ]

l s l
k n[ ]

l 2

(31)

into (29) leads to

J [ ]
geo, [ ]

s , [ ]
w

L

l 1

K

k 1
w[ ]
kl s[ ]

k R[ ]
l s l

k n[ ]
l

2

2

L

l 1

K

k 1

s[ ]
k R[ ]

l s l
k n[ ]

l
2

2

s[ ]
k R[ ]

l s l
k n[ ]

l 2
L

l 1

K

k 1
s[ ]
k R[ ]

l s l
k n[ ]

l 2

(32)

for the costs at the end of the -th iteration.
Firstly, data set matching is used to update the geometry
geo (see line 3 in Algorithm 2). As described in [34] data

set matching minimizes the cost function

J nl,Rl

K

k 1
w[ ]
kl s[ ]

k Rls l
k nl

2

2
(33)

for each of the L sensor nodes. Considering all L sensor
nodes together results in

[ 1]
geo argmin

geo

L

l 1
J nl,Rl argmin

geo

J geo, [ ]
s , [ ]

w .

(34)

Consequently,

J [ 1]
geo , [ ]

s , [ ]
w J [ ]

geo, [ ]
s , [ ]

w (35)

holds.
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The next step, i.e., the update of the source positions sk
(see line 4 in Algorithm 2), is done by minimizing

J sk
L

l 1
w[ ]
kl sk R[ 1]

l s l
k n[ 1]

l
2

2
(36)

for all K source positions. Note that J sk corresponds to
a sum of squared Euclidean distances, i.e, a convex func-
tion of sk , and, thus, is convex. Consequently, the resulting
linear least squares solution (see (15)) corresponds to the
global minimum of J sk . Summarizing this step for all K
acoustic sources gives

[ 1]
s argmin

s

K

k 1
J sk argmin

s

J [ 1]
geo , s, [ ]

w .

(37)

So it follows that

J [ 1]
geo , [ 1]

s , [ ]
w J [ 1]

geo , [ ]
s , [ ]

w (38)

and with (35) it holds:

J [ 1]
geo , [ 1]

s , [ ]
w J [ ]

geo, [ ]
s , [ ]

w . (39)

Finally, the influence of the weight update has to be dis-
cussed (see line 5 in Algorithm 2). Applying Titu’s lemma
to J [ 1]

geo , [ 1]
s , [ ]

w gives

J [ 1]
geo , [ 1]

s , [ ]
w

L

l 1

K

k 1

s[ 1]
k R[ 1]

l s l
k n[ 1]

l
2

2

s[ ]
k R[ ]

l s l
k n[ ]

l 2

L

l 1

K

k 1
s[ 1]
k R[ 1]

l s l
k n[ 1]

l 2

2

L

l 1

K

k 1
s[ ]
k R[ ]

l s l
k n[ ]

l 2

J [ 1]
geo , [ 1]

s , [ 1]
w

2

J [ ]
geo,

[ ]
s , [ ]

w
. (40)

With (39) and (40) it follows:

J [ 1]
geo , [ 1]

s , [ 1]
w

2

J [ ]
geo,

[ ]
s , [ ]

w
J [ ]

geo, [ ]
s , [ ]

w .

(41)

Since J [ ]
geo,

[ ]
s , [ ]

w 0 holds this results in

J [ 1]
geo , [ 1]

s , [ 1]
w

2
J [ ]

geo, [ ]
s , [ ]

w
2

(42)

and, finally, in

J [ 1]
geo , [ 1]

s , [ 1]
w J [ ]

geo, [ ]
s , [ ]

w . (43)

Due to the fact that J [ ]
geo,

[ ]
s , [ ]

w is monotonically
decreasing and has the lower bound J 0 it converges
to J 0 for .
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