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Abstract

The performance of speech recognition systems trained with neutral utterances degrades significantly when these
systems are tested with emotional speech. Since everybody can speak emotionally in the real-world environment, it
is necessary to take account of the emotional states of speech in the performance of the automatic speech
recognition system. Limited works have been performed in the field of emotion-affected speech recognition and so
far, most of the researches have focused on the classification of speech emotions. In this paper, the vocal tract
length normalization method is employed to enhance the robustness of the emotion-affected speech recognition
system. For this purpose, two structures of the speech recognition system based on hybrids of hidden Markov
model with Gaussian mixture model and deep neural network are used. To achieve this goal, frequency warping is
applied to the filterbank and/or discrete-cosine transform domain(s) in the feature extraction process of the
automatic speech recognition system. The warping process is conducted in a way to normalize the emotional
feature components and make them close to their corresponding neutral feature components. The performance of
the proposed system is evaluated in neutrally trained/emotionally tested conditions for different speech features
and emotional states (i.e., Anger, Disgust, Fear, Happy, and Sad). In this system, frequency warping is employed for
different acoustical features. The constructed emotion-affected speech recognition system is based on the Kaldi
automatic speech recognition with the Persian emotional speech database and the crowd-sourced emotional
multi-modal actors dataset as the input corpora. The experimental simulations reveal that, in general, the warped
emotional features result in better performance of the emotion-affected speech recognition system as compared
with their unwarped counterparts. Also, it can be seen that the performance of the speech recognition using the
deep neural network-hidden Markov model outperforms the system employing the hybrid with the Gaussian
mixture model.
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feature normalization
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1 Introduction
Speech is the natural medium of communication for
humans. In recent years, improvements in speech tech-
nology have led to a considerable enhancement in
human-computer interaction. The applications of such
technology are numerous, including speech and speaker
recognition, interactive voice response (IVR), dictation
systems, and voice-based command and control for ro-
bots, etc.
Despite all the recent advances in speech processing

systems, often these systems struggle with issues caused
by speech variabilities. Such variabilities in speech can
occur due to speaker-dependent characteristics (e.g., the
shape of the vocal tract, age, gender, health, and emo-
tional states), environmental noise, channel variability,
speaking rate (e.g., changes in timing and realization of
phonemes), speaking style (e.g., read speech vs. spontan-
eous speech), and accent variabilities (e.g., regional ac-
cents or non-native accents) [1].
Over the last decades, automatic speech recognition

(ASR) systems have progressed significantly. The func-
tion of these systems is to recognize the sequence of
words uttered by a speaker. Speech recognizers could be
used in many applications for more convenient human-
machine interaction, including mobile phones, smart
home devices, intelligent vehicles, medical devices, and
educational tools.
It is known that speech variabilities such as emotions

could affect speech recognition performance consider-
ably. Although most of the research in this area has been
focused on the recognition of speech emotions, limited
works have been performed in the area of emotion-
affected speech recognition (EASR).
Generally, in real-life applications, there is an incom-

patibility between training and testing conditions. The
current approaches for the reduction of the mismatch
between the speech sets of neutral training and emo-
tional testing of the EASR system can be categorized
into three main classes.
In the first class of approaches, called model adapta-

tion, a re-training of acoustic models is achieved. The
adaptation techniques in this group include maximum a
posteriori (MAP) and maximum likelihood linear regres-
sion (MLLR) [2]. Vlasenko et al. [3] employed MLLR
and MAP and applied them to the German emotional
database (EMO-DB) [4] to improve the recognition per-
formance. In an attempt to use a fast adaptation method,
Pan et al. [5] used the MLLR technique to construct
emotion-dependent acoustic models (AMs) by employ-
ing a small portion of the Chinese emotional database.
Here, first, the Gaussian mixture model (GMM)-based
emotion recognition is performed to improve the per-
formance of the speech recognition by selecting an ap-
propriate emotion-match model. Another study was

accomplished by Schuller et al. [6] in the framework of
model adaptation. They employed adaptation methods
in a hybrid ASR which is constructed by a combination
of an artificial neural network (ANN) and a hidden Mar-
kov model (HMM) to form the ANN-HMM ASR struc-
ture. Compared to a static adaptation strategy, it is
observed that maximum improvement in recognition is
obtained by a dynamic adaptation method. To remedy
the influence of emotion in recognition, Ijima et al. [7]
have involved the paralinguistic information into the
HMM process, which resulted in style estimation and
adaptation using the multiple regression HMM (MRHM
M) technique.
In the second group of methods, some knowledge

clues are added to the language model (LM) of the ASR
system to reduce the mismatch between the neutral
training and emotional testing conditions. This strategy
was taken by Athanaselis et al. [8] who explained how
an emotion-oriented LM can be constructed from the
existing British national corpus (BNC). In their method,
an increased representation of emotional utterances is
obtained by, first, identifying emotional words in BNC
using an emotional lexicon. Then, sentences containing
these words are recombined with BNC to construct a
corpus with a raised proportion of emotional material.
The corpus is then used to design emotionally enriched
LM to improve recognition performance with emotional
utterances.
The third class of approaches to compensate mismatch

of acoustic characteristics between neutral utterances
and emotionally affected speech materials involves those
that study acoustic and prosodic features intending to
provide robust features to overcome the performance
degradation in the EASR systems. In [9], the perform-
ance of the HMM-based emotional speech recognizer is
improved by using 12 cepstral coefficients, the logarithm
of energy, their first- and second-order delta parameters,
and additional features, such as the pitch frequency, its
slope, and per-speaker-syllable-z-normalization (PSSZN).
The study in [10] examines the changes in formant fre-
quencies and pitch frequency due to emotional utter-
ances. The HMM-based speech recognizer uses one log-
energy coefficient and cepstral coefficients plus their
delta and delta-delta parameters as its typical feature
vector. In this work, an emotion recognition process is
first conducted to find more appropriate parameters to
be included in the feature vector. The results show that
adding supplementary features such as pitch and form-
ant frequencies to the feature vector is useful in improv-
ing emotional speech recognition. In another study, Sun
et al. [11] proposed a new feature, called F-ratio scale
frequency cepstral coefficients (FFCCs) that employed
Fisher’s F-ratio to analyze the importance of frequency
bands for enhancing the mel-frequency cepstral
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coefficient (MFCC)/perceptual linear prediction (PLP)
filterbank design in emotional condition. The simulation
results show that employing the optimized features in-
creases the recognition performance of EASR as com-
pared to the conventional features of MFCC or PLP in
the sense of sentence error rate (SER).
The performance of a speech recognition system de-

grades when there is a mismatch between the set of
speakers used to train the system and that used to
recognize it. This mismatch arises due to the anatomical
differences of various speakers, as reflected in the vocal
tract structures among different speakers. The result is
that the system trained on specific speakers will perform
poorly in the presence of other speakers. Vocal tract
length normalization (VTLN) is one of the approaches
to reduce the mismatch between training data and rec-
ognition data in an ASR system. Lee et al. [12] per-
formed pioneering works in utilizing the VTLN
technique for diminishing the performance reduction in
an ASR system which is caused by variation of vocal
tract length among different speakers. The procedure of
speaker normalization is based on warping the frequency
axis of mel-filterbank linearly in the process of extracting
mel-frequency cepstrum features. To this aim, first, the
warping factor is estimated efficiently in a model-based max-
imum likelihood framework. Then, the normalization
process is conducted by scaling the frequency axis of the
speech signal with the calculated warping factor. The recog-
nition results show the effectiveness of this procedure for
telephone-based connected digit databases. In another ap-
proach to implement the frequency warping for VTLN, Pan-
chapagesan et al. [13] proposed a novel transformation
matrix to perform warping in the discrete-cosine transform
(DCT) calculation stage of the MFCC feature for speaker
normalization in the ASR system. Compared with other lin-
ear transformation approaches, employing the proposed
transformation matrix had a lower computational load with-
out modifying the standard MFCC feature extraction pro-
cedure. For presenting the effectiveness of the new linear
transformation method for VTLN, the DARPA resource
management (RM1) database was used [14].
Conceptually, for a person speaking emotionally, the

anatomical features of the speaker regarding the struc-
ture of his/her vocal tract are changed compared to
those of a neutral speaking person. This fact implies that
compensating the emotion-related variabilities on a
speech by the technique of VTLN could increase the
speech recognizer performance in emotional conditions.
To improve the recognition rate of emotional speech,
Sheikhan et al. [15] neutralized the MFCC features by
applying the VTLN technique for the emotional states of
Anger and Happy. The frequency warping of MFCCs is
accomplished after finding the most emotion-affected
frequency range. Finally, the neutralized MFCCs are

employed in an HMM-based speech recognizer trained
with neutral speech utterances. The simulation results
demonstrate that applying the frequency warping to
both modules of mel-filterbank and DCT yields better
recognition performance as compared to the case in
which the warping is applied only to the individual
modules.
The previous studies have focused on applying VTLN

as a normalization tool to MFCCs as the most popular
acoustic feature in the speech recognition framework.
The strategy taken in the present work is the same as in
[15] in that VTLN is used to normalize the acoustical
features extracted from an emotional utterance. How-
ever, our work differs from [15] in some aspects. Here,
the robustness of different features including MFCCs is
investigated in various emotional states with/without
employing the cepstral mean normalization (CMN) in
the EASR system. Next, a study was conducted to find
an optimal frequency range in which warping is per-
formed in the VTLN method. Also, the technique of
VTLN is applied to other acoustical features than
MFCCs to develop more robust features which can be
used in improving the performance of the EASR system.
Another aspect of the present work concerns the use of
the deep neural network (DNN) in the structure of
speech recognizer. Due to the high performance of
DNNs in the acoustic modeling over the classical
GMMs, the VTLN method is also employed with the
state-of-the-art DNN-HMM speech recognizer.
The paper is organized as follows. In Section 2, the

proposed EASR system and the technique of VTLN are
presented, which describe the concept of warping or
normalizing speech features in detail. Section 3 provides
the experiments and recognition results for speech ma-
terials from two known databases with neutral and dif-
ferent emotional states. The simulation results presented
in this section include examining the effect of applying
CMN in the feature extraction process, investigating the
influence of using different ranges of frequency warping,
and evaluating the performance of various frequency
warping methods for the GMM-HMM/DNN-HMM
EASR system. The concluding remarks are given in Sec-
tion 4.

2 Methods
2.1 Emotion-affected speech recognition system
The overall structure of the proposed EASR system is
depicted in Fig. 1. Here, different emotional utterances
serve as input to the system which is then converted into
a sequence of acoustic features by the unit of feature ex-
traction. However, the recognition rate of an ASR sys-
tem trained with neutral speech degrades when features
of emotional speech are fed into the system. This calls
for a procedure for the normalization of acoustic

Geravanchizadeh et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:31 Page 3 of 19



features before they are used by the speech recognizer
system. To this aim, the technique of VTLN is adopted
in feature extraction to alleviate the effects of emotion in
the speech recognition process. The VTLN approach
can be performed either by frequency warping in filter-
bank, DCT unit, or both. After the process of feature
normalization, the features are given to a speech
recognizer as the back-end processing stage. In this
work, the Kaldi speech recognizer [16] trained with neu-
tral utterances of the Persian and English datasets [17,
18] is employed as the baseline ASR system.

2.2 Feature extraction
Feature extraction aims to find a set of feature vectors
that are capable to capture the essential information as
much as possible from the input speech signal. An ideal
feature vector for emotional speech recognition applica-
tion should maximize the discriminating ability of
speech classes (e.g., phonemes) while it should not be af-
fected by speaker-specific characteristics such as shape
and length of the vocal tract.
Little research has been conducted on the robustness

and suitability of different acoustic features in the emo-
tional speech recognition framework. However, the stud-
ies made in the field of automatic speech recognition
reveal that the most notable acoustic features are MFCC
[19], modified mel-scale cepstral coefficient (M-MFCC)
[20], exponential logarithmic scale (ExpoLog) [20], gam-
matone filterbank cepstral coefficient (GFCC) [21], linear
prediction cepstral coefficient (LPCC) [22], relAtive spec-
TrAl perceptual linear prediction (RASTA-PLP) [23], and
power normalized cepstral coefficient (PNCC) [24].
It has been shown that M-MFCC and ExpoLog have

performed better than MFCC in speech recognition
under stress conditions [20]. The extraction procedure

of these features is similar to MFCC, but it differs from
that of MFCC in the frequency scaling of the filterbank.
GFCC was introduced as a robust feature for speech

recognition in a noisy environment [21]. The process of
GFCC feature extraction is based on the gammatone fil-
terbank, which is derived from psychophysical observa-
tions of the auditory periphery.
PNCC is one of the acoustic features which provides

notable results for the recognition of speech in noisy
and reverberant environments [24]. The extraction of
the PNCC feature is inspired by human auditory
processing.
In this paper, MFCC, M-MFCC, ExpoLog, GFCC, and

PNCC are employed as auditory features in the EASR
system.

2.3 Feature normalization
As it was pointed out earlier, the mismatch between
training and recognition phases causes performance deg-
radation in ASR systems [25]. One of the sources of this
mismatch can be associated with various speakers having
vocal tracts with different anatomical features. Previous
studies have shown that the acoustic and articulatory
characteristics of speech are affected by the emotional
content of the speech. There is evidence that, when a
typical speaker speaks emotionally, the position of the
tip of the tongue, jaw, and lips are changed, and this, in
turn, modifies the acoustic features such as formant fre-
quencies [26, 27]. This implies that the vocal tract length
variation can be considered as a function of the emo-
tional state of a person [28]. This, in turn, means that
during the recognition of emotional speech, techniques
are needed to decrease the influence of vocal tract length
variations that arise from the emotional state of the
speaker. Among different approaches that can be

Fig. 1 The general structure of the proposed EASR system
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considered, the VTLN method is employed in this work
as a way to remedy the mismatch problem in speech
recognition applications.

2.3.1 Methods of VTLN
The VTLN technique views the main difference between
two speakers as a change in the spectral content of
acoustical features due to the differences in vocal tract
length between speakers [29]. The idea of VTLN in
speech recognition can be extended to the emotional
speaking task, where the difference between emotional
and neutral speech is associated with the variation of the
frequency axis, originating from the vocal tract length
differences of emotional and neutral speaking styles.
To cope with the mismatch problem between neutrally

training and emotionally testing of an ASR system, the
VTLN technique provides a warping function by which
the frequency axis of the emotional speech spectrum is
transformed to the frequency axis of the neutral speech
spectrum. The normalization procedure can be per-
formed by linear or nonlinear frequency warping func-
tions such as piecewise linear, exponential functions, etc.
[12]. These functions operate based on a warping par-
ameter, which compresses or expands the speech spectra
as follows [29]:

Sneutral fð Þ ¼ Semotional f
0
α; fð Þ

� �
ð1Þ

Here, f′ is the frequency warping operation applied to
the frequency axis of the emotional speech spectrum
using α as the warping factor.
Most auditory-based acoustic features employ some

sort of frequency decomposition (e.g., using filterbanks)
and decorrelation of spectral features (e.g., using DCT
processing) in their computations. This means that the
warping of frequencies can be applied in the filterbank
and/or DCT processing stage(s) of the acoustic feature
extraction. Figure 2 represents the general block diagram
of employing frequency warping in the filterbank and/or
DCT domain(s) to compute the corresponding warped
features of MFCC [19], M-MFCC [20], ExpoLog [20],

GFCC [21], and PNCC [24] in one or both of the do-
mains. For comparison purposes, the dashed boxes rep-
resent the optional cases of no-frequency warping which
are used to generate the conventional features in their
unwarped form. Intermediate operations performed for
each feature extraction method are also illustrated. The
warping strategies are discussed in detail below.

2.3.1.1 Frequency warping in the filterbank domain
In this section, the procedure of applying frequency
warping to normalize filterbank-based acoustic features
is discussed. Generally, frequency warping in the mel-
filterbank is a well-known technique that was utilized in
speech recognition tasks for speaker normalization [12].
Sheikhan et al. [15] also used this approach for the
normalization of the MFCC feature for the emotional
states of Anger and Happy in EASR. This strategy is also
adopted in the present work for the normalization of
other filterbank-based features for different emotional
states (see Fig. 2).
Based on this strategy, frequency warping is applied to

the frequencies of a typical filterbank to change the posi-
tions of frequency components. In this work, the distinc-
tion between vocal tract length of the emotional and
neutral speech is modeled by a linear frequency warping
function. The warping is performed by a piecewise linear
function to preserve the bandwidth of the original signal.
Motivated by the approach introduced in [12], the fol-
lowing warping function is proposed to perform the fre-
quency warping in the filterbank stage of extracting
acoustic features:

f warped nð Þ ¼

f nð Þ f ≤ f 2l
α f nð Þ− f 2lð Þ þ f 2l f 2l ≤ f ≤ f 2h
f 3h− f 2lð Þ−α f 2h− f 2lð Þ

f 3h− f 2h
f nð Þ− f 3hð Þ þ f 3h f 2h≤ f ≤ f 3h

f nð Þ f ≥ f 3h:

8>>>><
>>>>:

ð2Þ

In this equation, f(n) are the frequency bins of the nth

frame, fwarped(n) are the corresponding warped frequen-
cies, and the parameter α is the warping factor that

Fig. 2 The process of frequency warping in the filterbank and/or DCT domain(s) to obtain the corresponding warped features of MFCC, M-MFCC,
ExpoLog, GFCC, and PNCC in one or both of the warping domains. The dashed boxes represent the no-frequency warping cases. Intermediate
operations performed for each feature extraction method are also shown
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controls the amount of warping. Here, formant frequen-
cies are considered to determine the warping intervals,
where f2l and f2h represent, respectively, the lowest and
highest values of second formants, and f3h depicts the
highest value of third formants. These values are ob-
tained as the average values among all second and third
formants extracted from the whole sentences of a par-
ticular emotional state. The warping factor α for a spe-
cific emotional state is computed as the ratio of the
average value of the second formants obtained from
neutral utterances to that obtained from emotional ut-
terances. The frequency warping is performed in the
range of (f2l, f2h), and the linear transformation in the
(f2h, f3h) gap is utilized to compensate the spectral
changes caused by the frequency warping and return the
warping factor to 1. As an example, Fig. 3 shows the dis-
tribution of formant frequencies obtained from all utter-
ances of the male speaker in the Persian ESD database
[17] for the emotional state of Disgust along with the
values for the warping intervals and warping factor. Fig-
ure 4 illustrates the piecewise linear warping function
obtained for a sample utterance of Disgust in the data-
base using Eq. (2). Here, the horizontal axis represents
the unwarped (i.e., emotional) frequencies whereas the
vertical axis indicates the warped (i.e., neutral)
frequencies.

2.3.1.2 Frequency warping in the DCT domain Here,
the procedure of applying frequency warping is exam-
ined in the DCT domain to normalize acoustic features.
The frequency warping in DCT was employed in speech

recognition tasks for speaker normalization [13]. The
same approach was utilized by Sheikhan et al. [15] for
the normalization of MFCCs extracted from the emo-
tional utterances of Anger and Happy in EASR. The ap-
proach is also adopted in the present work for the
normalization of other features in different emotional
states.
Referring to Fig. 2, after the processing performed in

the units of “Filterbank” and “Intermediate Operations,”
the DCT operation is applied to the input signal L to
compute the cepstral coefficients as:

c ¼ C:L; ð3Þ
where C is the DCT matrix with the components

given as:

Ckm ¼ αk cos
π 2m−1ð Þk

2M

� �� �
0≤k≤N−1
1≤m≤M

ð4Þ

Here, M represents the number of filters in the filter-
bank, N is the number of cepstral coefficients, and αk is
a factor calculated as:

αk ¼

ffiffiffiffiffiffiffi
1
M

r
; k ¼ 0ð Þffiffiffiffiffiffiffi

2
M

r
: k ¼ 1; 2;…;N−1ð Þ

8>><
>>:

ð5Þ

In the following, the linear frequency warping in the
DCT domain is described for those features that have
the DCT calculation in their extraction process [13].

Fig. 3 The distribution of formant frequencies, F1, F2, and F3, for Disgust obtained from all utterances of the male speaker in the Persian ESD
database [17]
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Step 1: The signal L is retrieved from the cepstral coef-
ficients using the inverse DCT (IDCT) operator:

L ¼ C−1:c: ð6Þ

Here, we consider the unitary type-2 DCT matrix for
which C−1 =CT. With this assumption L can be written
in the expanded form as:

L mð Þ ¼
XN−1

k¼0

c kð Þ αk cos
π 2m−1ð Þk

2M

� �
; m ¼ 1; 2;…;Mð Þ

ð7Þ

where c(k) (k = 0, 1,…,N − 1) are the cepstral
coefficients.
Step 2: Considering ψ(u) as the warping function of

the continuous variable u, the warped discrete output is
obtained by:

L̂ mð Þ ¼ L ψ uð Þð Þ u¼mj ; m ¼ 1; 2;…;Mð Þ
¼

XN−1

k¼0

c kð Þ αk cos
π 2ψ mð Þ−1ð Þk

2M

� �
:

ð8Þ

The warping function ψ(u) is computed as:

ψ uð Þ ¼ 1
2
þM:θp

u−1=2
M

� �
; ð9Þ

where θp(λ) is the normalized frequency warping
function given as:

θp λð Þ ¼
pλ; 0≤λ≤λ0ð Þ
pλ0 þ 1−pλ0

1−λ0

� �
λ−λ0ð Þ: λ0≤λ≤1ð Þ

8<
:

ð10Þ
Here, λ represents the normalized frequency, λ0 is the

normalized reference frequency specifying the range (0,
λ0) in which frequency warping is performed, and p is
the warping factor that controls the amount of warping.
By rewriting Eq. (8) in vector form, we obtain:

L̂ ¼ ~C:c; ð11Þ

where ~C represents the warped IDCT matrix given as:

~Cm;k ¼ αk cos
π 2ψ mð Þ−1ð Þk

2M

� �� �
1≤m≤M
0≤k≤N−1

ð12Þ

By rearranging Eq. (9), the warped IDCT matrix can
be written in terms of normalized frequency warping
function θp(λ):

2ψ uð Þ−1
2M

¼ θp
2u−1
2M

� �
; ð13Þ

~Cm;k ¼ αk cos πkθp
2m−1
2M

� �� �� �
1≤m≤M
0≤k≤N−1

ð14Þ

Step 3: Finally, by putting the warped discrete output
L̂ in Eq. (3), the warped cepstral coefficients ĉ are
computed as:

Fig. 4 The piecewise linear frequency warping function obtained for a sample utterance of Disgust in the Persian ESD database [17], with the
warping factor α = 1.3, f2l = 982, f2h = 1739, and f3h = 2800
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ĉ ¼ C:L̂ ¼ C:~C
	 


c;
¼ T:c;

ð15Þ

where the matrix TðT¼C:~CÞ is a linear transformation
that transforms the initial cepstral coefficients into the
warped coefficients.
In the present work, the above approach is applied to

acoustical features to obtain the DCT-warped MFCC,
M-MFCC, ExpoLog, GFCC, and PNCC. An example of
the warping function employed in the DCT unit is
depicted in Fig. 5.
Notably, the warping factors p used in the DCT warping

for different emotions are calculated in the same manner
as α obtained for the filterbank warping (refer to Eq. (2)).

2.3.2 Applying VTLN to acoustic features
In this section, based on the model for the extraction of
various acoustical features, different VTLN warping
methods are employed in the filterbank and/or DCT do-
main(s) to obtain warped (i.e., normalized) features which
are finally fed into the Kaldi ASR system. To this aim, the
filterbank warping is implemented by employing the warp-
ing function given in Eq. (2), whereas, in the DCT warping
procedure, the steps given in Frequency warping in the
DCT domain are adopted. The combined frequency warp-
ing is obtained by concatenating the respective frequency
warping operations in both filterbank and DCT domains.

3 Experiments and evaluations
3.1 Experimental setup
To examine the effectiveness of the frequency warping
for MFCC, M-MFCC, ExpoLog, GFCC, and PNCC in
the speech recognition system, the performances of
these features and their corresponding warped features
are evaluated in the Kaldi baseline ASR system for differ-
ent emotional states.
To this aim, the Persian ESD [17] and CREMA-D [18]

datasets are used to train and test the GMM-HMM/
DNN-HMM Kaldi speech recognizer.
The baseline system is trained using MFCC, M-

MFCC, ExpoLog, GFCC, and PNCC extracted from neu-
tral utterances of databases. The extracted features have
all 13 dimensions, except for GFCC which is 23-
dimensional. The delta and delta-delta features are
also calculated and added to the previously extracted
features to construct a complete acoustic feature. The
training procedure of the Kaldi baseline consists of
constructing appropriate lexicons, generating language
models, and training the acoustic models of the cor-
responding databases. First, the lexicons of the
Persian ESD and CREMA-D are generated. Then, the
corresponding language models are produced accord-
ing to the constructed lexicons. In the training of the
acoustic models in the GMM-HMM-based system, 3-
state monophone HMMs are used to model all

Fig. 5 Warping function based on Eq. (14) plotted for the emotional state of Happy in the Persian ESD database [17] with the warping factor p =
1.09, and λ0 = 0.8
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phonemes in the datasets (30 in Persian ESD, 38 in
CREMA-D), including silences and pauses. In con-
trast, the training of the acoustic models in the
DNN-HMM-based system requires triphone HMMs.
In this paper, the training of the DNN-HMM EASR
system is performed based on Karel Vesely’s method
[30] in the Kaldi toolkit.
The performance of the proposed EASR system is

assessed in three experiments. In the first experiment,
the effectiveness of CMN [12] is inspected without
employing the VTLN method in the EASR system. Here,
first, the GMM-HMM-based system is trained with/
without employing the CMN technique in extracting
features from neutral utterances. Then, speech recogni-
tion is performed based on the features extracted both
from the emotional and neutral utterances of the
corpora.
In the second experiment, the impact of employing

different values of the normalized reference frequency,
λ0, is studied on the performance of the GMM-HMM
Kaldi for different acoustic features. The optimal λ0 is
then chosen for the later frequency warping
experiments.
In the last experiment, the advantage of using

warped emotional speech features in the GMM-
HMM/DNN-HMM speech recognition system is ex-
plored. Here, the simulations are conducted with dif-
ferent structures of the Kaldi speech recognizer. First,
both the Persian ESD and CREMA-D datasets are
used to train and test the GMM-HMM Kaldi system.
Then, CREMA-D with sufficient utterances and
speakers is employed to evaluate the recognition per-
formance of the warped features with the state-of-
the-art DNN-HMM Kaldi recognizer. By considering
the benefits of employing the CMN technique in the
EASR system as observed in the first experiment, the
CMN procedure is applied to all features to compen-
sate for speaker variability in the Kaldi system. Here,
the performances of warped features in the filterbank
and/or DCT domain(s) are compared with those of
unwarped features in the Kaldi baseline.
The evaluation experiments of the proposed EASR sys-

tem are conducted for five emotional states, including
Anger, Disgust, Fear, Happy, and Sad.

3.2 Databases
The experimental evaluations are carried out by the Per-
sian emotional speech database (Persian ESD) [17] and
crowd-sourced emotional multi-modal actors dataset
(CREMA-D) [18]. Table 1 illustrates briefly the specifica-
tions of the Persian ESD and CREMA-D databases.
The Persian ESD is a script-fixed dataset that encom-

passes comprehensive emotional speech of standard
Persian language containing a validated set of 90

sentences. These sentences were uttered in different
emotional states (i.e., Anger, Disgust, Fear, Happy, and
Sad) and neutral mode by two native Persian speakers
(one male and one female). The recording of the data-
base was accomplished in a professional recording studio
in Berlin under the supervision of acoustic experts. As
shown in Table 1, the Persian ESD comprises 472 speech
utterances, each with a duration of 5 s on average, which
are classified into five aforementioned basic emotional
groups. The database was articulated in three situations:
(1) congruent: emotional lexical content spoken in a
congruent emotional voice (76 sentences by two
speakers), (2) incongruent: neutral sentences spoken in
an emotional voice (70 sentences by two speakers), and
(3) baseline: all emotional and neutral sentences spoken
in neutral voice (90 sentences by two speakers). In gen-
eral, sentences with different emotions do not have the
same lexical content. The validity of the database was
evaluated by a group of 34 native speakers in a percep-
tion test. Utterances having a recognition rate of 71.4%
or better were regarded as valid descriptions of the tar-
get emotions. The recordings are available at a sampling
rate of 44.1 kHz and mono channel.
The CREMA-D is an audio-visual script-fixed data-

set for the study of multi-modal expression and per-
ception of basic acted emotions. As shown in Table
1, the dataset consists of a collection of 7442 original
clips of 91 actors (48 males, 43 females, age 20–74)
of various races and ethnicities with facial and vocal
emotional expressions in sentences. The actors
uttered 12 sentences with various emotional states
(Anger, Disgust, Fear, Happy, Neutral, and Sad) and
different emotion levels (Low, Medium, High, and
Unspecified). Sentences with different emotions have
the same lexical content. Using perceptual ratings
from crowd sourcing, the database was submitted for
validation by 2443 raters to evaluate the categorical
emotion labels and real-value intensity values for the
perceived emotion. Participants assessed the dataset
in audio-only, visual-only, and audio-visual modalities
with recognition rates of 40.9%, 58.2%, and 63.6%,
respectively. In this paper, audio-only data with a
sampling rate of 16 kHz are used.

3.3 Evaluation criterion
The performance of an ASR system for a particular task
is often measured by comparing the hypothesized and
test transcriptions. In this context, the percentage of
word error rate (WER), as the most widely used metric,
is used to evaluate the recognition performance of the
proposed EASR system. After the alignment of the two-
word sequences (i.e., hypothesis and test), WER is
calculated by the rate of the number of errors to the
total number of words in the test utterances.
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3.4 Results and discussions
3.4.1 Effect of CMN on the recognition performance
In the first experiment, the effect of employing CMN in
the EASR system is explored. For this purpose, the base-
line ASR system trained with neutral utterances is tested
with emotional speech inputs (i.e., unmatched scenario)
with/without applying CMN to the extracted features.
For comparisons, the performance of the baseline system
is also evaluated in the case of neutrally trained/neutrally
tested inputs (i.e., matched scenario). For the simulations
of this scenario, the neutral utterances are split into two
sets; 80% for training and the remaining 20% for testing.
The experimental results are shown in Figs. 6 and 7 for
the Persian ESD [17] and CREMA-D [18] datasets,
respectively.
The outcomes of this experiment for both databases

reveal clearly that using the CMN method for the un-
matched scenario yields, on average, superior perform-
ance of the recognizer in terms of WER. This implies
that CMN decreases the destructive effects of emotional
speech. The evaluation results in the case of matched
scenario show no considerable effect of CMN on the
recognizer efficiency. Also, the recognition results in
Figs. 6 and 7 show significantly different recognition per-
formances for the emotional and neutral input utter-
ances. It is obvious that in the case of the neutrally
trained/neutrally tested experiment, the WER values are
small for the baseline system trained with different fea-
tures. However, when the neutrally trained system is
tested with emotional utterances, in general, WERs are
increased extremely. This fact indicates that the
emotion-affected speech represents a significant mis-
match condition of the ASR systems trained with neutral
utterances. Furthermore, by comparing the average
WER scores among all emotional states obtained for
both databases, one realizes that PNCC and GFCC have
the best and worst performance, respectively, introdu-
cing PNCC as the robust feature in the EASR system.

Due to the benefits of employing CMN in decreasing
WER, in the following experiments, we use the CMN
technique in the construction of the features.

3.4.2 Investigation of λ0values in frequency warping
Here, the impact of the normalized reference frequency,
λ0, on the recognition performance of different acoustic
features in the DCT domain and the combined filter-
bank and DCT domain is examined. The results of this
analysis for three values of λ0 are represented in Tables
2 and 3, respectively, for the Persian ESD and CREMA-
D datasets. Here, among all features investigated, it can
be observed that PNCC has the highest performance in
the GMM-HMM EASR system due to its robustness
against different emotional states. Also, changing the
value of λ0 has no sensible impact on improving the rec-
ognition results of this feature. By comparing the aver-
age WER values shown in Tables 2 and 3, it can be seen
(except for ExpoLog in “DCT Warping” and ExpoLog
and GFCC in “Filterbank & DCT Warping”) that the
best performance is achieved by λ0 = 0.4 for all acoustic
features. This value of λ0 is considered in the following
experiments to specify the range of frequency warping.

3.4.3 Frequency warping in the EASR system
The last experiment concerns evaluating the efficiency
of frequency warping in the filterbank and/or DCT do-
main(s) for the neutrally trained/emotionally tested
GMM-HMM/DNN-HMM EASR system.

3.4.3.1 GMM-HMM EASR system Tables 4 and 5 rep-
resent the performance scores of the GMM-HMM EASR
system for the warped emotional features of MFCC, M-
MFCC, ExpoLog, GFCC, and PNCC in the filterbank
and/or DCT domain(s) as compared with those of the
unwarped features for the Persian ESD [17] and
CREMA-D [18] datasets, respectively. Comparing the re-
sults of both tables shows, in general, that the WER

Table 1 The specifications of the Persian ESD and CREMA-D databases

Persian ESD CREMA-D

Male Female Total Male Female Total

Number of utterances Anger 31 31 62 671 600 1271

Disgust 29 29 58 671 600 1271

Fear 29 29 58 671 600 1271

Happy 29 29 58 671 600 1271

Neutral 90 90 180 575 512 1087

Sad 28 28 56 671 600 1271

Total 236 236 472 3930 3512 7442

Number of speakers 1 1 2 48 43 91

Number of sentences 90 12

Sampling rate 44.1 kHz 16 kHz
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values for the CREMA-D database are lower than the
corresponding values for the Persian ESD dataset. This
observation can be justified by the fact that the number
of neutral utterances used in CREMA-D to train the
GMM-HMM EASR is much higher than those given in
Persian ESD (1087 utterances vs. 180 utterances).
The evaluations presented in the tables can be inter-

preted from two perspectives; from the aspect of the
applied warping methods, and the aspect of the acoustic
features used in the construction of the EASR system. By
applying different warping methods to the acoustic fea-
tures, the results of both tables show that employing all
variants of the frequency warping methods improves the

recognition rates in terms of WER. In the case of PNCC,
WER values are close to each other for all warping
methods, showing no advantage of any warping technique
over others. Also, by comparing the average values of
WER, it is observed, in general, that (except for ExpoLog)
the effectiveness of applying the DCT warping to the
features is more superior to the filterbank warping and the
combined filterbank and DCT warping procedure.
Considering the success of applying the DCT warping in
decreasing the destructive effect of emotion in the EASR
system, this can be interpreted as saying that no further
improvement is reached by adding the capability of
filterbank warping to the DCT normalization process.

Fig. 6 WER scores (%) for the Persian ESD dataset with/without applying the CMN method to the acoustic features of a MFCC, b M-MFCC, c
ExpoLog, d GFCC, and e PNCC
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The results given in the tables can also be inter-
preted based on the performances of different acous-
tical features used in the implementation of the EASR
system. Comparing the average WER scores obtained
for various warped features in all emotional states in-
dicates that PNCC attains the lowest WER score,
whereas GFCC achieves the highest score. Accord-
ingly, among different acoustical features, the warped
PNCC can be employed as a robust feature in the
EASR system. This confirms the results obtained for
PNCC in the first experiment concerning the benefits
of applying CMN to the features. The high performance

of PNCC is associated with the use of different process-
ing stages in the implementation of PNCC, including the
use of a medium-time processing, power-law nonlinear-
ity, a noise suppression algorithm based on asymmetric
filtering, and a module that accomplishes temporal
masking [24]. Especially, in the medium-time processing
of PNCC, longer analysis window frames are considered,
which are proved to provide better performance for
noise modeling and/or environmental normalization.
The use of PNCC has been verified successfully in
emotion recognition [31] and emotional speech recogni-
tion [32] tasks.

Fig. 7 WER scores (%) for the CREMA-D dataset with/without applying the CMN method to the acoustic features of a MFCC, b M-MFCC, c
ExpoLog, d GFCC, and e PNCC
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To recognize the importance of the warping methods
as compared with “No Warping” for each feature and
emotional state, the t test [33] is employed as a statistical
analysis tool. The symbol * in Tables 4 and 5 indicates
the significant cases (i.e., p value < 0.05). According to
the results of the statistical analysis, except Disgust, sig-
nificant values of the WER are observed in most cases of
warping methods applied to the corresponding emo-
tional states.

3.4.3.2 DNN-HMM EASR system Speech recognition
systems employ HMMs to deal with speech temporal

variations. Generally, such systems use GMMs to
determine how each state of an HMM fits a frame or
a window of frames of coefficients representing the
acoustic input. A feed-forward neural network is an
alternative way to estimate the fit. This neural
network takes several frames of coefficients and
generates posterior probabilities over HMM states.
Research on speech recognizers shows that the use of
DNN in acoustic modeling outperforms the trad-
itional GMM on a variety of databases [34, 35]. This
is partly due to the accurate estimation of the state-
specific probabilities and better distinguishing of the

Table 2 The effect of modifying the normalized reference frequency, λ0, on the recognition performance of the proposed GMM-
HMM EASR system (in terms of WER (%)) for Persian ESD. The values of WER are obtained by applying different warping methods to
various acoustic features extracted from different emotional utterances

Feature
type

Warping type Emotional states

Anger Disgust Fear Happy Sad Average WER

MFCC DCT Warping λ0 = 0 42.30 24.54 36.08 29.70 26.43 31.81

λ0 = 0.4 28.20 22.34 31.32 18.78 18.25 23.78

λ0 = 0.7 38.36 21.79 31.87 19.14 21.48 26.53

Filterbank & DCT Warping λ0 = 0 42.13 23.81 34.25 30.05 21.48 30.34

λ0 = 0.4 27.05 21.61 32.42 20.21 15.97 23.45

λ0 = 0.7 40.82 22.71 33.52 22.72 21.29 28.21

M-MFCC DCT Warping λ0 = 0 36.07 19.41 27.11 24.15 20.15 25.38

λ0 = 0.4 17.21 16.30 21.61 16.10 19.01 18.05

λ0 = 0.7 29.67 15.93 21.98 17.35 17.49 20.48

Filterbank & DCT Warping λ0 = 0 34.26 17.95 25.82 23.79 20.72 24.51

λ0 = 0.4 22.79 15.93 24.73 17.35 20.53 20.27

λ0 = 0.7 31.48 15.38 27.84 18.96 18.25 22.38

ExpoLog DCT Warping λ0 = 0 37.87 16.12 26.01 26.83 20.34 25.43

λ0 = 0.4 37.54 14.65 25.64 27.55 20.34 25.13

λ0 = 0.7 30.00 13.00 23.26 20.04 16.54 20.57

Filterbank & DCT Warping λ0 = 0 30.49 13.55 15.02 22.72 15.78 19.51

λ0 = 0.4 32.46 13.92 16.12 28.98 19.01 22.10

λ0 = 0.7 26.89 12.82 17.22 22.18 20.53 19.92

GFCC DCT Warping λ0 = 0 40.66 44.51 48.72 44.90 27.38 41.23

λ0 = 0.4 26.89 39.74 43.77 39.53 26.81 35.35

λ0 = 0.7 28.52 40.66 43.96 42.58 31.94 37.53

Filterbank & DCT Warping λ0 = 0 39.67 43.77 47.44 44.01 27.19 40.42

λ0 = 0.4 28.36 40.84 45.60 40.79 29.09 36.94

λ0 = 0.7 30.82 40.84 44.51 43.83 34.79 30.96

PNCC DCT Warping λ0 = 0 3.93 5.13 5.31 6.80 5.70 5.37

λ0 = 0.4 4.10 5.13 4.40 6.26 4.56 4.89

λ0 = 0.7 4.10 5.13 4.40 6.26 4.56 4.89

Filterbank & DCT Warping λ0 = 0 3.93 5.13 4.58 6.62 5.70 5.19

λ0 = 0.4 3.93 5.31 4.95 6.44 5.32 5.19

λ0 = 0.7 3.93 5.31 4.95 6.44 5.32 5.19
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class boundaries which result in higher state-level
classification performance of HMMs. In this section,
the performance of frequency warping is examined
with the state-of-the-art DNN-HMM Kaldi speech
recognizer using CREMA-D as the database.
The results of the emotional speech recognition for

the warped features of MFCC, M-MFCC, ExpoLog,
GFCC, and PNCC in the filterbank and/or DCT
domain(s) are depicted in Table 6 as compared with
those of unwarped features for the CREMA-D dataset.
The results illustrate, in general, that using all variants
of the frequency warping methods increases the

recognition performance of the EASR system. A com-
parison of the average recognition performances for vari-
ous warped features in all emotional states reveals that
PNCC acquires the lowest WER score, whereas GFCC
obtains the highest score. Hence, among various acous-
tical features, the warped PNCC can be considered as a
robust feature in the EASR system. These findings are
consistent with the results obtained in the GMM-
HMM EASR experiments.
As in the GMM-HMM-based system, in this experi-

ment, the statistical analysis tool of t test [33] is used
for identifying the importance of the various warping

Table 3 The effect of modifying the normalized reference frequency, λ0, on the recognition performance of the proposed GMM-
HMM EASR system (in terms of WER (%)) for CREMA-D. The values of WER are obtained by applying different warping methods to
various acoustic features extracted from different emotional utterances

Feature
type

Warping type Emotional states

Anger Disgust Fear Happy Sad Average WER

MFCC DCT Warping λ0 = 0 8.11 5.54 11.20 6.39 6.50 7.55

λ0 = 0.4 7.78 5.47 9.20 4.92 5.71 6.62

λ0 = 0.7 7.19 5.74 10.06 4.98 6.18 6.83

Filterbank & DCT Warping λ0 = 0 7.80 5.09 9.69 5.40 6.06 6.81

λ0 = 0.4 7.78 5.44 9.25 4.67 5.65 6.56

λ0 = 0.7 7.60 6.70 10.91 5.60 7.20 7.60

M-MFCC DCT Warping λ0 = 0 8.11 6.53 10.33 6.42 6.97 7.67

λ0 = 0.4 7.28 6.35 9.50 5.79 6.09 7.00

λ0 = 0.7 7.67 6.25 9.32 5.84 6.85 7.19

Filterbank & DCT Warping λ0 = 0 7.38 6.26 9.32 6.06 6.77 7.16

λ0 = 0.4 7.42 6.16 9.32 5.90 6.50 7.06

λ0 = 0.7 8.33 6.85 10.19 6.19 7.88 7.89

ExpoLog DCT Warping λ0 = 0 8.25 7.25 12.32 7.88 9.63 9.07

λ0 = 0.4 7.47 6.87 11.48 6.41 8.73 8.19

λ0 = 0.7 7.52 7.17 11.38 5.85 8.53 8.09

Filterbank & DCT Warping λ0 = 0 7.17 6.63 11.22 6.49 8.75 8.05

λ0 = 0.4 6.97 7.00 10.56 6.11 8.52 7.83

λ0 = 0.7 7.22 7.47 10.33 5.94 9.10 8.01

GFCC DCT Warping λ0 = 0 55.73 23.07 44.39 39.48 27.97 38.13

λ0 = 0.4 55.33 22.68 43.67 35.85 27.97 37.10

λ0 = 0.7 56.64 24.46 45.28 37.09 30.07 38.71

Filterbank & DCT Warping λ0 = 0 54.95 22.33 43.28 38.36 26.89 37.16

λ0 = 0.4 55.99 23.02 44.31 36.82 29.32 37.89

λ0 = 0.7 57.76 25.49 46.39 38.69 32.09 40.08

PNCC DCT Warping λ0 = 0 4.49 1.96 6.25 2.17 2.26 3.43

λ0 = 0.4 4.52 2.03 6.75 3.08 2.37 3.75

λ0 = 0.7 4.52 2.03 6.75 3.08 2.37 3.75

Filterbank & DCT Warping λ0 = 0 3.97 1.83 5.96 1.71 1.99 3.09

λ0 = 0.4 4.44 1.98 6.21 2.56 2.09 3.46

λ0 = 0.7 4.44 1.98 6.21 2.56 2.09 3.46
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methods in comparison with “No Warping” for each
feature and emotional state. The significant cases of
the test (i.e., p value < 0.05) are specified with the
symbol * in Table 6.
Comparing the cases of “No Warping” for different

features and emotional states in Tables 5 and 6, it can
be observed that the DNN-HMM EASR system outper-
forms the GMM-HMM-based system in terms of the
WER values. This could be expected, since, as it was
explained before, DNN has a higher performance than
the traditional GMM as to the acoustic modeling in
speech recognition systems. Also, comparing the WER
values in both tables shows that the number of signifi-
cant cases in Table 6 is lower than that in Table 5. This
again can be justified by the fact that the DNN-HMM
Kaldi has a better performance than the GMM-HMM
Kaldi which prevents the warping methods from having
a large impact in reducing the mismatch between the
neutral training and emotional testing conditions. How-
ever, in contrast with the GMM-HMM Kaldi system, the
DNN-HMM Kaldi speech recognizer requires a larger
database and more computational time and complexity
in training/testing phases.

3.4.3.3 Comparisons between different frequency
warping methods As a further evaluation process, a
comparison has been performed between the results ob-
tained by the proposed GMM-HMM/DNN-HMM EASR
system with Persian ESD and CREMA-D as databases
and those obtained by Sheikhan et al. [15]. In this con-
text, it is noteworthy that the experiments conducted by
Sheikhan et al. [15] were limited only to MFCC as the
feature and Anger and Happy as the emotions. In con-
trast, our simulations consider more emotional states
and acoustic features. Table 7 gives a summary of the
performance comparisons between different warping
methods for the specified features and emotions, where
the symbol “>” is interpreted as “better” and “ ” means
“not better.”

4 Conclusion
In this paper, the improvement of the ASR system for
emotional input utterances is investigated, where the
mismatch between training and recognition conditions
results in a significant reduction in the performance of
the system. The main objective of the proposed EASR

Table 4 The recognition performance of the proposed GMM-HMM EASR system (in terms of WER (%)) for Persian ESD. The values of
WER are obtained by applying different warping methods to various acoustic features extracted from different emotional utterances.
The symbol * shows statistically significant cases (i.e., p value < 0.05)

Feature
type

Warping type Emotional states

Anger Disgust Fear Happy Sad Average WER

MFCC No Warping 42.30 24.54 36.08 29.70 26.43 31.81

Filterbank Warping 42.13 23.81 34.25 30.05 21.48* 30.34

DCT Warping 28.20* 22.34 31.32* 18.78* 18.25* 23.78

Filterbank & DCT Warping 27.05* 21.61* 32.42* 20.21* 15.97* 23.45

M-MFCC No Warping 36.07 19.41 27.11 24.15 20.15 25.38

Filterbank Warping 34.26 17.95 25.82* 23.79 20.72 24.51

DCT Warping 17.21* 16.30 21.61* 16.10* 19.01 18.05

Filterbank & DCT Warping 22.79* 15.93 24.73* 17.35* 20.53 20.27

ExpoLog No Warping 37.87 16.12 26.01 26.83 20.34 25.43

Filterbank Warping 30.49* 13.55* 15.02* 22.72* 15.78* 19.51

DCT Warping 37.54 14.65 25.64 27.55 20.34* 25.13

Filterbank & DCT Warping 32.46* 13.92* 16.12* 28.98 19.01* 22.10

GFCC No Warping 40.66 44.51 48.72 44.90 27.38 41.23

Filterbank Warping 39.67 43.77 47.44 44.01 27.19* 40.42

DCT Warping 26.89* 39.74* 43.77 39.53 26.81 35.35

Filterbank & DCT Warping 28.36* 40.84* 45.60 40.79 29.09* 36.94

PNCC No Warping 3.93 5.13 5.31 6.80 5.70 5.37

Filterbank Warping 3.93 5.13 4.58 6.62 5.70 5.19

DCT Warping 4.10 5.13 4.40* 6.26 4.56 4.89

Filterbank & DCT Warping 3.93* 5.31* 4.95 6.44 5.32* 5.19
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system is to mitigate the effects of emotional speech and
to enhance the efficiency of the recognition system. For
this purpose, the VTLN method is employed in the fea-
ture extraction stage to decrease the effects of emotion
in the recognition process. This goal is achieved by ap-
plying the frequency warping in the filterbank and/or
DCT domain(s). Accordingly, it is expected that the per-
formance of the warped emotional features approaches
that of the corresponding neutral features. The proposed
system incorporates the Kaldi ASR as the back end
which is trained with the different acoustical features
(i.e., MFCC, M-MFCC, ExpoLog, GFCC, and PNCC) ex-
tracted from neutral utterances. The EASR system
trained with neutral utterances is tested with emotional
speech inputs in emotional states of Anger, Disgust, Fear,
Happy, and Sad. The Persian emotional speech dataset
(Persian ESD) and crowd-sourced emotional multi-
modal actors dataset (CREMA-D) are used for the
simulations.
In the experiments, first, the effectiveness of the CMN

method is investigated in the recognition performance of
the emotional utterances for the neutrally trained/emo-
tionally tested GMM-HMM ASR system. The results of

this experiment show that employing this technique im-
proves the recognition scores. Then, the influence of
using different values of the normalized reference fre-
quency, λ0, is inspected on the performance of the
GMM-HMM-based system. The results of this experi-
ment lead to the selection of an optimal λ0 for the later
experiments. To evaluate the performance of the pro-
posed EASR system, the last experiment explores the ad-
vantage of using warped features in the GMM-HMM/
DNN-HMM speech recognition system. It is observed,
in general, that employing all variants of the frequency
warping methods improves the recognition performance
of both EASR systems in terms of WER. Also, the ex-
perimental results show that the DNN-HMM EASR sys-
tem achieves higher performance than the GMM-
HMM-based system in reducing the mismatch between
the neutral training and emotional testing conditions.
The higher performance of the DNN-HMM-based sys-
tem is due to the use of DNN for acoustic modeling in
the structure of Kaldi ASR. A comparison of different
warped features in both GMM-HMM and DNN-HMM
EASR systems confirms that the best WER score is
attained for PNCC, whereas the worst score is achieved

Table 5 The recognition performance of the proposed GMM-HMM EASR system (in terms of WER (%)) for CREMA-D. The values of
WER are obtained by applying different warping methods to various acoustic features extracted from different emotional utterances.
The symbol * shows statistically significant cases (i.e., p value < 0.05).

Feature
type

Warping type Emotional states

Anger Disgust Fear Happy Sad Average WER

MFCC No Warping 8.11 5.54 11.20 6.39 6.50 7.55

Filterbank Warping 7.80 5.09 9.69* 5.40* 6.06 6.81

DCT Warping 7.78* 5.47 9.20* 4.92* 5.71* 6.62

Filterbank & DCT Warping 7.78* 5.44 9.25* 4.67* 5.65* 6.56

M-MFCC No Warping 8.11 6.53 10.33 6.42 6.97 7.67

Filterbank Warping 7.38* 6.26 9.32* 6.06 6.77 7.16

DCT Warping 7.28 6.35 9.50* 5.79 6.09* 7.00

Filterbank & DCT Warping 7.42* 6.16 9.32* 5.90 6.50 7.06

ExpoLog No Warping 8.25 7.25 12.32 7.88 9.63 9.07

Filterbank Warping 7.17* 6.63 11.22* 6.49* 8.75 8.05

DCT Warping 7.47 6.87 11.48* 6.41* 8.73 8.19

Filterbank & DCT Warping 6.97* 7.00 10.56* 6.11* 8.52* 7.83

GFCC No Warping 55.73 23.07 44.39 39.48 27.97 38.13

Filterbank Warping 54.95 22.33 43.28* 38.36* 26.89* 37.16

DCT Warping 55.33 22.68 43.67* 35.85* 27.97* 37.10

Filterbank & DCT Warping 55.99 23.02 44.31 36.82* 29.32 37.89

PNCC No Warping 4.49 1.96 6.25 2.17 2.26 3.43

Filterbank Warping 3.97* 1.83 5.96 1.71* 1.99* 3.09

DCT Warping 4.52 2.03 6.75 3.08 2.37 3.75

Filterbank & DCT Warping 4.44 1.98 6.21 2.56 2.09 3.46
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for GFCC. The high performance of PNCC can be justi-
fied in the use of different processing stages in the
PNCC extraction method, which makes this feature ro-
bust against various emotional states.
The focus of this research is based on the

normalization of segmental or vocal tract-specific fea-
tures. However, the speech signal consists of both seg-
mental and supra-segmental (i.e., prosodic) information.
It is known that prosodic features such as pitch and

intonation can also be influenced by the emotional
states of a speaker. As future work, new compensation
methods can be devised to normalize such prosodic
features together with the vocal tract-related features
before feeding them to an ASR system. Furthermore,
since emotional speech is generally produced in a
real environment, this work can also be extended to
operate in scenarios such as reverberant and noisy
conditions.

Table 6 The performance of the proposed DNN-HMM EASR system (in terms of WER (%)) for CREMA-D by applying different
warping methods to various acoustic features and emotional states. The average WER values are given in the last column. The
symbol * shows statistically significant cases (i.e., p value < 0.05)

Feature
type

Warping type Emotional states

Anger Disgust Fear Happy Sad Average WER

MFCC No Warping 3.23 3.34 3.39 1.84 1.58 2.68

Filterbank Warping 3.54 3.39 4.05* 2.17 1.65 2.96

DCT Warping 2.91 3.22 3.21 1.74 1.58 2.53

Filterbank & DCT Warping 3.05 3.29 2.89 1.56 1.46 2.45

M-MFCC No Warping 3.21 3.54 4.28 1.82 1.99 2.97

Filterbank Warping 3.36 3.68 4.38 2.28* 2.05 3.15

DCT Warping 3.08 3.78 3.58* 1.59 1.94 2.79

Filterbank & DCT Warping 3.10 3.93 3.54* 1.49* 1.77 2.77

ExpoLog No Warping 2.65 4.03 3.86 1.76 1.77 2.81

Filterbank Warping 2.33* 3.91 3.73 1.42* 1.78 2.63

DCT Warping 2.48 3.76 3.96 1.61 1.75 2.71

Filterbank & DCT Warping 2.30 3.73 3.86 1.52 1.92 2.67

GFCC No Warping 22.75 5.93 11.67 6.93 3.03 10.06

Filterbank Warping 22.42 5.79 11.03 6.16* 2.91 9.66

DCT Warping 25.75* 5.69 9.94* 5.47* 3.35 10.04

Filterbank & DCT Warping 25.79* 5.73 9.89* 4.97* 3.45* 9.97

PNCC No Warping 3.31 2.69 2.15 1.37 1.13 2.13

Filterbank Warping 3.21 2.60 2.27 1.05* 1.04 2.03

DCT Warping 2.90 2.89 2.40 1.04 1.03 2.05

Filterbank & DCT Warping 2.65 2.85 2.45 1.19 1.01 2.03

Table 7 The performance comparisons between different frequency warping methods used in the proposed GMM-HMM/DNN-
HMM EASR system for the Persian ESD and CREMA-D datasets and the system of Sheikhan et al. [15] for various acoustic features
and emotional states

Sheikhan et al. [15] Proposed

GMM-HMM GMM-HMM
(Persian ESD and CREMA-D)

DNN-HMM
(CREMA-D)

Features: MFCC
Emotions: Anger, Happy

Features: MFCC, M-MFCC, GFCC, and PNCC
Emotions: Anger, Disgust, Fear, Happy, and Sad

Features: ExpoLog, GFCC, and PNCC
Emotions: Anger, Disgust, Fear, Happy, and Sad

Warping > No Warping Warping > No Warping Warping > No Warping

DCT > Filterbank DCT > Filterbank DCT Filterbank

Filterbank & DCT > DCT Filterbank & DCT DCT Filterbank & DCT > DCT

Filterbank & DCT > Filterbank Filterbank & DCT Filterbank Filterbank & DCT Filterbank
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