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Abstract

To improve the performance of speech enhancement in a complex noise environment, a joint constrained
dictionary learning method for single-channel speech enhancement is proposed, which solves the “cross
projection” problem of signals in the joint dictionary. In the method, the new optimization function not only
constrains the sparse representation of the noisy signal in the joint dictionary, and controls the projection error of
the speech signal and noise signal on the corresponding sub-dictionary, but also minimizes the cross projection
error and the correlation between the sub-dictionaries. In addition, the adjustment factors are introduced to
balance the weight of constraint terms to obtain the joint dictionary more discriminatively. When the method is
applied to the single-channel speech enhancement, speech components of the noisy signal can be more projected
onto the clean speech sub-dictionary of the joint dictionary without being affected by the noise sub-dictionary,
which makes the quality and intelligibility of the enhanced speech higher. The experimental results verify that our
algorithm has better performance than the speech enhancement algorithm based on discriminative dictionary
learning under white noise and colored noise environments in time domain waveform, spectrogram, global signal-
to-noise ratio, subjective evaluation of speech quality, and logarithmic spectrum distance.

Keywords: Single-channel speech enhancement, Joint constraint, Sparse representation, Dictionary learning,
Optimization function

1 Introduction
Speech is inevitably affected by the surrounding environ-
ment in real life. The background noise, such as mech-
anical sound, traffic horn, and human voice, seriously
affects the intelligibility and clarity of speech signals.
Speech enhancement is to extract pure speech signal
from the noisy speech signal as far as possible and re-
strict background noise. It has been widely used in mo-
bile communication, smart home, speech coding,
military equipment, and other practical application sce-
narios [1–5].
Unsupervised speech enhancement algorithms based

on short-time spectrum estimation include spectral sub-
traction [6], statistical model-based method [7],
subspace-based method [8], etc. These methods can

suppress the stationary noise significantly, but for the
non-stationary noise, they often cannot get a good noise
reduction effect. In recent years, supervised speech en-
hancement such as deep neural network and sparse dic-
tionary learning, which uses a pre-trained model to
obtain the prior information of the source signal, can get
a better denoising effect for non-stationary noise. Deep
neural network-based speech enhancement mainly real-
izes the mapping from noisy signal to clean signal by
learning the parameters of a multi-layer network from a
large number of sample data. Dictionary learning-based
speech enhancement mainly uses some signals to learn
dictionaries and get the sparse representation of a clean
signal. This paper focuses on the research of the
enhancement algorithm based on sparse dictionary
learning.
Speech enhancement methods based on sparse dic-

tionary learning have been a research hotspot for several
years [9–11]. The sparse dictionary representation model

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: sunlh@njupt.edu.cn
College of Telecommunications & Information Engineering, Nanjing
University of Posts and Telecommunications, Nanjing, China

Sun et al. EURASIP Journal on Audio, Speech, and Music Processing
        (2021) 2021:29 
https://doi.org/10.1186/s13636-021-00218-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-021-00218-3&domain=pdf
http://orcid.org/0000-0001-9442-9964
http://creativecommons.org/licenses/by/4.0/
mailto:sunlh@njupt.edu.cn


assumes that speech signals can be described as a linear
combination of several atoms derived from a dictionary
matrix. Sparse dictionaries are generally divided into two
categories. One is trained with data, such as the K-
singular value decomposition dictionary [12]. The other
is constructed with a fixed basis [13], such as the
discrete cosine transformation dictionary. Many scholars
have obtained abundant achievements in speech separ-
ation [14] and speech enhancement [15]. Sigg et al. pro-
jected the noisy speech on the joint dictionary held
together by the clean speech dictionary and the noise
dictionary [16]. The speech components and the noise
components in the noisy signal were represented by the
corresponding sub-dictionaries respectively. Thus, the
pure speech signal could be estimated. Mohammadiha
et al. proposed a speech enhancement method based on
Bayesian non-negative matrix factorization, which com-
bined non-negative matrix factorization with dictionary
learning and update methods to adapt to the change of
SNR [17]. Baby et al. proposed a speech enhancement
and automatic speech recognition algorithm based on
double dictionaries [18]. The method used speech sig-
nals as dictionary atoms to train the discrete Fourier
transform (DFT) domain dictionary and the correspond-
ing feature domain dictionary. In the reconstruction
stage, when the noisy signal is projected on the feature
domain dictionary, it has less operation dimension and
better enhancement effect. Sprechmann et al. proposed
a learnable low-rank coefficient model for speech en-
hancement, which constrained the reconstructed speech
and noise to be low rank [19]. With the introduction of
neural network technology, the sparse representation co-
efficients can be obtained more accurately. Whereas the

distinction between speech dictionary and noise dictionary
is not good enough, some residual noise and distortion
existed in the enhanced speech. Zhang et al. trained the dic-
tionary by constraining the relationship among speech,
noise, and noisy signal as well as the cross-interference be-
tween corresponding dictionaries, thereby improving the
discriminability of the joint dictionary [20]. However, due
to the fact that some speech components of the noisy signal
were still projected on the interference noise sub-
dictionary, the speech enhancement performance is not op-
timal. Fu et al. proposed a two-level complementary joint
sparse representation method to enhance single-channel
speech [21]. To suppress noise source confusion, a two-
level joint sparse representation was constructed using the
relationship among speech, noise, noisy signals, and the dis-
criminative property of joint dictionary to estimate a less
distorted speech signal. Jia et al. proposed a speech en-
hancement algorithm with alternate optimization of sparse
coefficient and dictionary [22]. The objective function of
dictionary learning was constrained by the Fisher criterion,
and then the discriminative dictionary and the correspond-
ing sparse coefficient are obtained. In this way, the cross
interference between joint dictionaries can be reduced.
To further effectively inhibit the cross projection be-

tween the sub-dictionaries of the joint dictionary, a new
optimization function is presented in this paper. The
optimization function not only jointly controls the re-
construction error of signals and dictionaries but also
constrains the cross projection and the correlation be-
tween the sub-dictionaries. Furthermore, the adjustment
factors are introduced to balance the weight of con-
straint items, which makes the joint dictionary more dis-
criminative. Thus, the clean speech components would be

Fig. 1 Speech enhancement based on joint dictionary
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more projected onto the clean speech sub-dictionary of
the joint dictionary with being affected as little as possible
by the noise sub-dictionary, which makes the enhanced
speech quality and intelligibility higher.
The remainder of the paper is organized as follows.

Section 2 introduces the joint dictionary learning and
the “cross projection” problem. Section 3 mainly elabo-
rates the proposed method. The experiments and results
analysis are presented in Section 4. Finally, the conclu-
sion of this work is presented in Section 5.

2 Speech enhancement based on joint dictionary
learning
2.1 Algorithm overview
Speech enhancement is to extract speech signals as pure
as possible from noisy speech signals. The single-channel
speech enhancement model is defined as follows:

y kð Þ ¼ x kð Þ þ n kð Þ; 1≤k≤T ; ð1Þ

where k is the discrete time sequence number.
y(k),x(k), and n(k) represent the discrete time signals of
noisy speech, clean speech, and interference noise signal
respectively. We aim to reduce the interference of noisy
signals and extract as pure speech signals as possible
from noisy signals.

For clarity, we defineYas the training set of noisy speech
signals, Xas the training set of clean speech signals, andN

as the training set of noise signals in the time domain.

The relationship betweenY,X, andNcan be written as

Y ¼ XþN: ð2Þ
Single-channel speech enhancement based on joint

dictionary learning is divided into two stages: training
stage and enhancement stage. In the training stage, the
sub-dictionaries corresponding to clean speech signal
and noise signal are trained, respectively, and then the
two sub-dictionaries are spliced into a joint dictionary.
In the enhancement stage, the noisy signal is projected
onto the joint dictionary to recover the enhanced speech
signal. The specific process is shown in Fig. 1.
In the training stage, the speech sub-dictionaryDxand

noise sub-dictionaryDnare usually learned from clean
speech signals and noise signals of the training set by
the K-SVD algorithm. Then, the two sub-dictionaries are
combined into a joint dictionaryD = [Dx,Dn]. The
objective function can be expressed as

D ¼ arg min
D

Y−DC 2
F :

���� ð3Þ

In the enhancement stage, the sparse coding matrix of
the noisy signal training setYon the joint dictionaryD =

Fig. 2 Projection of a given frame signal onto the joint dictionary

Sun et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:29 Page 3 of 14



[Dx,Dn] is C = [(Cx)T, (Cn)T]T, where Cxand Cnrepresent
the sparse coding coefficients of Y on the signal sub-
dictionary Dxand noise sub-dictionary Dnrespectively,
Tdenotes matrix transposition. The representation of
the noisy speech signal s on the joint dictionaryDis

S¼D� C¼ Dx;Dn½ � � Cx

Cn

� �
: ð4Þ

After the sparse coefficient matrixCof the noisy signal
in the joint dictionary is obtained by sparse coding algo-
rithm, we can reconstruct the desired target source sig-
nal ŝxaccording to

Ŝx ¼ DxCx: ð5Þ

2.2 “Cross projection” problem
The traditional speech enhancement algorithm based on
joint dictionary learning usually only considers the char-
acteristics of the given signal and does not consider the
similarity between sub-dictionary. Therefore, some
speech components in the noisy signal will be projected
on the interference noise sub-dictionary, resulting in

“cross projection” problem, which leads to source confu-
sion and poor enhancement effect.
The sparse coefficients of a frame of a clean speech signal

on the joint dictionary constructed by the method in Sec-
tion 2.1 are shown in Fig. 2. Figure 2 a represents the time-
domain waveform of a frame of clean speech signal, and
Fig. 2 b represents the sparse coefficient representation of
clean speech signal in the joint dictionary. The abscissa of
Fig. 2b represents the sequence numbers of 512 atoms in
the joint dictionary. The former 256 represents speech sig-
nal atoms, and the latter 256 represents noise signal atoms.
From the figure, we can see that there are some coefficients
of speech signals on the noise sub-dictionary, which has a
bad impact on the reconstructed speech signal. Therefore,
it is necessary to further strengthen the distinction between
sub-dictionaries with the constraint of the joint dictionary,
which helps to reduce the occurrence of “cross interfer-
ence” problem. Thus, speech components can be projected
onto the speech dictionary as much as possible to recon-
struct speech signals better.

3 Speech enhancement based on joint
constrained dictionary learning
The traditional single-channel speech enhancement al-
gorithm based on joint dictionary learning is easy to
cause mutual interference due to the lack of differenti-
ation between sub-dictionaries, which leads to source
confusion in the enhancement stage. In order to train a
better joint constraint dictionary for speech enhance-
ment, we propose a new optimization function with the
joint constraint relationship between the speech sub-
dictionary and the noise sub-dictionary.

3.1 New optimization function
The traditional construction method of joint dictionary
for speech enhancement uses the source signals training
sets to train the corresponding sub-dictionaries, and
then combines them to construct the joint dictionary.
This method only takes advantage of the characteristics
of the source signal itself, but does not consider the similar-
ity and interference between the source signals. When the
noisy speech signals are represented on the joint dictionary,
the noise has great interference on the speech components.

Fig. 3 Schematic diagram of speech enhancement

Table 1 Detailed process of the proposed speech
enhancement algorithm

In the training stage

Input: Speech signal, noise signal, and noisy speech of training set
Output: Trained joint dictionary
Step 1: Divide the training signals into frames by a rectangular window.
Step 2: Use the K-SVD algorithm to obtain the sub-dictionaries corre-
sponding to the speech signal and noise signal of the training set, and
then concatenate them to get the initial joint dictionary.
Step 3: Use the BP algorithm to calculate the sparse coefficient matrix of
noisy speech on the joint dictionary.
Step 4: Use the L-BFGS algorithm to solve the proposed optimization
function and update the joint dictionary.

In the enhancement stage

Input: Noisy speech signal of the testing set
Output: Reconstructed speech signal
Step 1: Preprocess the input signal by framing.
Step 2: Use the BP algorithm to calculate the sparse coefficients of noisy
speech on the joint dictionary.
Step 3: Use the speech sub-dictionary in the joint dictionary and the
corresponding sparse coefficients to recover the frame-level speech
signals.
Step 4: Connect all the frame-level signals to reconstruct speech signals.
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1In this paper, the characteristics of noisy signals, cross
interference, and dictionary correlation are fully consid-
ered. The discriminative joint dictionary is trained with
the discriminative constraint optimization function. The
objective function of dictionary learning can be written as

D¼ arg min
D

Y−DCk k2F þ X−DxCxk k2F þ N−DnCnk k2F
þ α DxCnk k2F þ β DnCxk k2F þ λ DT

xDn

�� ��2
F ;

ð6Þ

whereDxandDnare the sub-dictionaries corresponding
to speech and noise signals respectively, andDis a joint
dictionary composed ofDxandDn, denoted as D = [Dx,

Dn]. The coding matrix of the noisy training set Y on
the joint dictionary D is C = [(Cx)

T, (Cn)
T]T, where

Cxand Cndenote the sparse coding coefficients of the
noisy signalYover the signal sub-dictionaryDxand noise
sub-dictionaryDnrespectively. α, β, and λ are the adjust-
ment factors of balancing constraint weight.
The first term in (6) is to control the sparse represen-

tation of the noisy signal in the joint dictionary, so that
the reconstructed signal is close to the source signal.
The second and third terms restrict the approximate er-
rors when the speech signal and the noise signal are pro-
jected on the corresponding speech sub-dictionary and
noise sub-dictionary, respectively, which makes the
speech component in the noisy signal be projected on

Fig. 4 Influence of balance factor λ on performance

Fig. 5 Influence of balance factor α on performance
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the speech sub-dictionary as far as possible. To reduce
the cross interference between sub-dictionaries, the
fourth and fifth terms restrict the cross projection of the
speech component on the noise sub-dictionary and the
noise component on the speech sub-dictionary respect-
ively. When the speech components in the noisy signal
are sparsely represented on the joint dictionary, the rep-
resentation of the speech components on the noisy sub-
dictionary is controlled as small as possible. In addition,
it can be seen from reference [23] that the greater the
correlation between the signal and the noise sub-
dictionaries is, the more the projection of speech signal
on the noise dictionary, which is likely to cause the
“cross projection” problem. Therefore, we control the
correlation between the speech and noise sub-
dictionaries by constraining their inner product in the
last term to make the sub-dictionaries more discrimina-
tive. In the last three terms of (6), adjustment factors are
introduced to balance the weights of constraint terms,
which makes the objective function more stable and the
signal representation more sparse. The proposed method
in this paper not only considers the reconstruction error
of the noisy signal and source signal but also considers
the cross interference and the correlation between the

sub-dictionaries. The joint dictionary is trained by con-
straining the objective function, so that the speech com-
ponents in the noisy signal can be sparsely represented
in the speech sub-dictionary without being interfered by
the noise sub-dictionary. It should be noted that differ-
ent from [20], we further reduce the cross projection by
constraining the cross projection term and introducing
adjustment factors into the objective function.

3.2 Joint constrained dictionary learning
Learning the joint constraint dictionary with the new
optimization objective function mainly includes the fol-
lowing three stages:
(1) Initialize the joint dictionary: use K-SVD algorithm

to train speech sub-dictionaryDxand noise sub-
dictionaryDnfrom the training signalsX andN . The two
sub-dictionaries are concatenated into the initial joint
dictionaryD = [Dx,Dn].
(2) Sparse coding update: when the initial joint dictio-

naryDis fixed, we use the objective function (7) to obtain
the sparse coefficient matrixC

min∥C∥1s:t:Y ¼ DC: ð7Þ

Fig. 6 Influence of balance factor β on performance

Table 2 Increment of SNR in the white noise environment with different frame lengths (dB)

SNR (dB) Frame length = 128 Frame length = 256 Frame length = 512

− 10 6.7389 7.8283 7.0193

− 5 4.6526 5.8115 5.2284

0 2.8977 4.0693 3.5235

5 1.9062 2.3522 2.2963

10 0.2983 1.0279 0.5137
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BP algorithm [24] is selected to obtain the sparse rep-
resentation in this paper.
(3) Dictionary update: when the sparse coefficient

matrix Cis fixed, the dictionary is updated by the
optimization function (6) to obtain the discriminative
joint dictionary. To jointly optimize each sub-dictionary,

we introduce the matrixP1 ¼ I 0
0 0

� �
, P2 ¼ 0 0

0 I

� �
,

P3 ¼ 0 I
0 0

� �
, P4 ¼ 0 0

I 0

� �
, P5 ¼ I

0

� �
and P6

¼ 0
I

� �
, where 0 denotes a zero matrix and I represents

an identity matrix. Hence, (6) can be written as

Q ¼ ∥Y−DC∥2
F þ ∥X−DP1C∥

2
F

þ ∥N−DP2C∥
2
F þ α∥DP3C∥

2
F

þ β∥DP4C∥
2
F þ λ∥ DP5ð ÞTDP6∥

2
F :

ð8Þ

The problem of (8) can be solved by the limited-
memory BFGS algorithm (L-BFGS) [25]. The gradient
function of the objective function is

∂Q
∂D

¼ 2� ½ DCCT−YC
� �

þ DP1CC
TPT

1 þDP2CC
TPT

2

� �
− XCPT

1 þNCPT
2

� �
þ α DP3CCTPT

3

� �þ β DP4CCTPT
4

� �
þ λ DP5PT

5D
TDP6PT

6 þDP6PT
6D

TDP5PT
5

� ��:
ð9Þ

Finally, we use the L-BFGS algorithm to solve the
optimization function and obtain the discriminative joint
dictionaryD.

3.3 Speech enhancement
Once we have obtained the discriminative joint diction-
ary, we can refer to the speech enhancement method in
Section 2.1. We use the BP sparse coding algorithm to
calculate the coefficient matrix C = [(Cx)

T, (Cn)
T]T of the

noisy signal sin the joint dictionary and estimate the
clean target speech signal ŝx . The module can be de-
noted as Fig. 3. According to Dxand Cx, we recover the
estimated clean speech signal by

ŝx ¼ DxCx: ð10Þ

Table 3 Increment of SNR in the white noise environment with
different dictionary redundancy (dB)

SNR (dB) Redundancy = 1 Redundancy = 2 Redundancy = 3

− 10 7.8283 9.6935 10.0157

− 5 5.8115 7.0714 7.8376

0 4.0693 6.0125 6.8422

5 2.3522 4.6939 5.4729

10 1.0279 2.9905 3.2104

Fig. 7 Enhanced waveforms of different algorithms under 0-dB vehicle noise

Sun et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:29 Page 7 of 14



The detailed process of the enhancement algorithm is
shown in Table 1.

4 Experiment and results analysis
4.1 Dataset and experimental setup
The speech signals used in this paper come from the
LibriSpeech corpus with a sampling of 16 kHz, and
the noise signals are from the Noisex-92 corpus.
Three kinds of noise, including vehicle noise (Volvo),
white noise (White), and F-16 cockpit noise (F16), are
selected in the experiment. We randomly select 100
speech signals, including 80 sentences as the training
set and 20 sentences as the test set. The noisy signal
is generated by adding noise to the speech signal.
Signal-to-noise ratios (SNR) of the noisy speech is − 10 dB,
− 5 dB, 0 dB, 5 dB, and 10 dB.The speech signal and
noise signal are divided into frames by a rectangular
window, and the experimental results of the test
signals are averaged.

4.2 Influence of adjustment factor
In order to measure the influence of the adjustment fac-
tors in (6) on the speech enhancement performance, we
select the balance factors by averaging the global SNR
increment after speech enhancement under three kinds
of noise interference with SNR of 0 dB. The increment
refers to the increase of the global SNR after speech en-
hancement. With the increase of the value, the speech
enhancement effect is better.
Firstly, we measure the influence of λ on the speech

enhancement performance. We assume that the value of
the other two balance factors is 1. The mean value of
the global SNR increment under different λ is shown in
Fig. 4. When λ is 0, the inner product between sub-
dictionaries is not constrained, and the global SNR in-
crement is the lowest, which indicates that the correl-
ation between sub-dictionaries can improve the
discrimination of dictionaries and the enhancement ef-
fect of the system. When λ increases from 0 to 1, the
global SNR increment rises rapidly. When λ ranges from

Fig. 8 Enhanced waveforms of different algorithms under 0-dB white noise

Sun et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:29 Page 8 of 14



1 to 16, the global SNR increment declines slowly. It can
be explained by the fact that the dictionary atoms be-
come more distinguishable with the increase of λ. How-
ever, when λ > 1, the richness of the atoms is reduced,
which weakens the sparse representation ability of the
joint dictionary, causing large reconstruction error and
poor enhancement performance. Therefore, when the
value of α and β is 1, we select λ = 1 to obtain the opti-
mal sparse dictionary for the best speech enhancement
effect in the global SNR increment.
Secondly, we study the effects of balance factors α and

β. When λ is the optimal value 1 and β is the initial
value 1, the improved average values of global SNR with
different α are shown in Fig. 5. We can see when α is
from 0 to 0.3, the performance of the enhancement algo-
rithm is improved continuously, and when α goes from
0.3 to 1, the performance of the enhancement algorithm
begins to decline. Thus, when λ = 1 and β = 1, we
choose α = 0.3 to get the best performance. As can be
seen from Fig. 6, when λ and α are set as the best values
of 1 and 0.3, respectively, the mean value of global SNR

increment under different β is calculated. We think
about β in the range from 0 to 0.1. When β is 0.01, the
performance of the enhancement algorithm reaches the
peak. Therefore, in the following experiments, we take λ
= 1, α = 0.3, and β = 0.01.

4.3 Influence of parameters
The noisy speech with white noise whose SNR is − 10 dB,
− 5 dB, 0 dB, 5 dB, 10 dB is taken as the test set. We
analyze the influence of dictionary redundancy and frame
length on speech enhancement performance. The average
of the global SNR increment is used to make the judgment.

4.3.1 Influence of frame length
The performance of speech enhancement algorithms
with the frame lengths of 128, 256, and 512 is discussed
when the dictionary redundancy is 1. As can be seen
from Table 2, the frame length has a great influence on
the enhancement performance. When the frame length
is 256, the SNR increment of the proposed algorithm is
greater than that of other frame lengths. Therefore, we

Fig. 9 Spectrum enhanced of different algorithms under 0-dB vehicle noise
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choose the frame length of 256 in the subsequent
experiments.

4.3.2 Influence of dictionary redundancy
The performance of speech enhancement algorithms for
the sub-dictionary with the redundancy of 1, 2, and 3 is
discussed when the frame length is 256. According to
Table 3, we get the following results. (1) The greater the
dictionary redundancy, the better the speech enhance-
ment effect. (2) The SNR increment of the enhanced
speech increases greatly when the redundancy is in-
creased from 1 to 2, but the SNR increment of the en-
hanced speech increases slightly when the redundancy is
increased from 2 to 3. (3) It is also found in the actual
process that the time of training dictionary in speech en-
hancement will be longer with the increase of the sub-
dictionary redundancy. Therefore, in the actual applica-
tion, we need to select the dictionary redundancy by
considering performance requirements and operation
speed. Finally, we choose the sub-dictionary with a re-
dundancy of 2 to achieve speech enhancement in this
paper.

4.4 Performance comparison with other algorithms
(1) In order to better verify the enhancement effect of
our proposed joint constrained dictionary learning
method (JCDLM), we compare it with the K-singular
value decomposition method (K-SVDM) [12] and distin-
guishing dictionary learning method (DDLM) [20] in

white and colored noise environments. In the experi-
ment, the frame length is 256 and the redundancy of the
sub-dictionary is 2, so the size of the sub-dictionary
is256 × 512.
The waveforms of clean speech, 0-dB speech with ve-

hicle noise, and enhanced speech based on K-SVDM,
DDLM, and our proposed JCDLM are shown in Fig. 7.
As can be seen from the waveforms, the speech wave-
form enhanced by K-SVDM is still quite different from
the clean speech waveform, and the speech enhance-
ment effect is not ideal. The speech waveform enhanced
by DDLM is better than that by K-SVDM, but worse
than that by JCDLM. The speech waveform enhanced by
JCDLM is closer to the clean speech waveform, and the
non-speech segment waveform has fewer defects, which
shows a better enhancement effect based on JCDLM. It
can be explained that JCDLM not only considers the re-
construction error between the noisy signal and the
source signal but also considers the cross interference
between the sub-dictionaries. By constraining the object-
ive function to train the joint dictionary, the speech
components in the noisy signal can be sparsely
expressed in the speech sub-dictionary as far as possible
without the interference of the noise sub-dictionary.
Therefore, the enhanced speech waveform has less de-
fects than the other two algorithms, which is almost the
same as the clean speech waveform.
Figure 8 shows the speech enhancement effects of dif-

ferent algorithms when inputting 0-dB speech with

Fig. 10 Spectrum enhanced of different algorithms under 0-dB white noise
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white noise. From the figure, we can also observe that
the speech waveform using the speech enhancement al-
gorithm based on JCDLM is clearer and closer to the
clean speech waveform than that of K-SVDM and
DDLM. Therefore, it can be proved that the speech en-
hancement algorithm based on our proposed JCDLM
also has a good enhancement effect in the white noise
environment.
Under inputting 0-dB speech with vehicle noise, the

spectrums of clean speech, noisy speech, and enhanced
speech based on K-SVDM, DDLM, and JCDLM are
shown in Fig. 9. The energy of vehicle noise is mainly
concentrated in the low-frequency band, which affects
the intelligibility of speech. From Fig. 9, it can be ob-
served that compared with the other two algorithms, the
spectrum enhanced by JCDLM is more similar to that of
the clean speech in the low-frequency band, and the in-
formation components are more clearly preserved. It in-
dicates that the speech enhancement algorithm based on
our proposed JCDLM has a good enhancement effect in
the vehicle noise environment.
Figure 10 shows the enhanced spectrums of different

algorithms when inputting 0-dB white noise speech. As
can be seen from the figure, there is still a lot of residual
noise in K-SVDM speech enhancement, and the speech
enhancement effect is not ideal. The residual noise of
the speech after DDLM enhancement is relatively small,
but the harmonic structure in the low-frequency band is
not obvious, and some components in the clean speech
are lost. The enhanced speech by JCDLM not only
removes residual noise but also maintains a good har-
monic structure. Compared with the other two algo-
rithms, the enhanced speech quality is greatly improved.
The speech enhancement algorithm based on our pro-
posed JCDLM also performs well in a white noise
environment.
(2) In order to better compare the speech enhance-

ment effects of different algorithms, Table 4 shows the
SNR increment of speech enhancement in the different

noise environments. It can be concluded that compared
with K-SVDM and DDLM, the SNR increment of
JCDLM is higher in Volvo, White, and F16 noise envi-
ronments. Especially in the vehicle noise environment,
the SNR increment based on JCDLM is much higher
than the other two speech enhancement algorithms. It
can also be seen from the table that JCDLM has a more
obvious enhancement effect in the low-SNR environ-
ment than in the high-SNR environment.
(3) In order to better compare the speech enhance-

ment effects of various methods, we will further measure
the enhancement performance from the MOS calculated
by PESQ. The MOS of speech is directly proportional to
the intelligibility of speech. The higher the MOS, the
better the speech quality. The MOS of each method
under vehicle, white, and F16 noise with different input
SNR are shown in Fig. 11. It can be found that com-
pared with K-SVDM and DDLM, JCDLM has a higher
MOS in any noise environment, and the speech clarity
and intelligibility are improved to a certain extent, espe-
cially in the vehicle noise environment. Therefore, it can
be concluded that JCDLM has a better enhancement ef-
fect in the noise environment with SNR of − 10 to 10
dB, especially in the vehicle noise environment.
(4) We also use LSD to measure the enhanced speech

distortion. If the value of LSD is smaller, the spectrum
distortion of the enhanced speech is smaller and the sig-
nal is closer to the clean speech, which shows that the
speech enhancement effect is better. The LSDs of each
method under vehicle, white, and F16 noise with differ-
ent input SNR are shown in Fig. 12. Compared with the
other two algorithms, JCDLM has smaller LSD in the ve-
hicle noise, white noise, and F16 noise environments,
and the enhanced speech distortion is smaller. There-
fore, it shows that JCDLM can better describe the distri-
bution of sparse dictionary and coefficient matrix in the
same SNR noise environment and can restore clean
speech more accurately with a better enhancement
effect.

5 Conclusion
In the traditional single-channel speech enhancement al-
gorithm based on joint dictionary learning, clean speech
signal and noise signal are used to train the correspond-
ing sub-dictionaries, respectively, and then the two sub-
dictionaries are spliced into a joint dictionary. At last,
the noisy signal is projected onto the joint dictionary to
recover the enhanced speech signal. The traditional
speech enhancement algorithm based on joint dictionary
learning only considers the characteristics of the given
signal itself and does not consider the similarity between
them, so that some of the speech components in the
noisy signal will still be projected on the interference
noise sub-dictionary, which leads to the occurrence of

Table 4 Increment of SNR in different noise environments (dB)

Noise
type

Algorithm SNR/dB

− 10 − 5 0 5 10

Volvo K-SVDM 6.1768 4.8574 2.5872 − 0.2397 − 0.9569

DDLM 14.9362 12.5592 9.2094 6.4518 5.5384

JCDLM 17.2179 15.1633 10.7918 7.8586 6.0327

White K-SVDM 2.4519 2.2735 1.9674 1.7807 1.1582

DDLM 8.4895 5.887 4.9343 3.9035 2.4761

JCDLM 9.6935 7.0714 6.0125 4.6939 2.9905

F16 K-SVDM 1.9365 1.0518 0.9635 0.6829 0.2835

DDLM 7.7137 4.0154 1.493 1.1331 0.3107

JCDLM 8.0659 4.8726 2.0129 1.3358 0.4882
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cross projection and makes the speech enhancement
performance not reach the best. To solve this problem,
we consider the joint constraint relationship between
speech sub-dictionary and noise sub-dictionary and
propose a new optimization function in the training
stage. The function not only constrains the approxima-
tion error of reconstruction but also improves the dis-
crimination of sub-dictionaries. The weight coefficient is
used to allocate the constraints, which greatly reduces

the range of solutions and the training time, and makes
the signal representation in the joint dictionary sparser.
In the enhancement stage, the speech components of
the noisy signal can be more projected onto the speech
sub-dictionary without being interfered by the noise
sub-dictionary, so that the enhanced speech quality and
intelligibility are higher. The experimental results show
that the speech enhancement algorithm based on our
proposed joint constrained dictionary learning has a

Fig. 11 MOS in different noise environments
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Fig. 12 LSD in different noise environments
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better denoising effect comparing with the traditional K-
SVDM and DDLM in time domain waveform, spectro-
gram, global signal-to-noise ratio, subjective evaluation
of speech quality, and logarithmic spectrum distance.
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