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Abstract

The acoustic echo cannot be entirely removed by linear adaptive filters due to the nonlinear relationship between
the echo and the far-end signal. Usually, a post-processing module is required to further suppress the echo. In this
paper, we propose a residual echo suppression method based on the modification of dual-path recurrent neural
network (DPRNN) to improve the quality of speech communication. Both the residual signal and the auxiliary signal,
the far-end signal or the output of the adaptive filter, obtained from the linear acoustic echo cancelation are adopted
to form a dual-stream for the DPRNN. We validate the efficacy of the proposed method in the notoriously difficult
double-talk situations and discuss the impact of different auxiliary signals on performance. We also compare the
performance of the time domain and the time-frequency domain processing. Furthermore, we propose an efficient
and applicable way to deploy our method to off-the-shelf loudspeakers by fine-tuning the pre-trained model with
little recorded-echo data.
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1 Introduction
The acoustic echo is generated from the coupling between
the loudspeaker and themicrophone in full-duplex hands-
free telecommunication systems or smart speakers. It
severely deteriorates the quality of speech communication
and significantly degrades the performance of automatic
speech recognition (ASR) within the smart speakers. Typ-
ical linear acoustic echo cancelation (LAEC) methods
use adaptive algorithms to identify the impulse response
between the loudspeaker and the microphone [1]. Time-
domain least mean square (LMS) algorithms [2, 3] are
often employed in delay-sensitive situations. Frequency-
domain LMS algorithms are often utilized to guarantee
both fast convergence speed and low computational load
[2]. The frequency-domain adaptive Kalman filter (FDKF)
[4] is also a commonly used method with several efficient
variations proposed recently [5, 6].
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The performance of LAEC methods severely degrades
when nonlinear distortion is non-negligible in the acoustic
echo path [7]. Usually, a residual echo suppression (RES)
module is required to further suppress the echo. The RES
is usually conducted by estimating the spectrum of the
residual echo based on the far-end signal, filter coeffi-
cients, and the residual signal of LAEC [8–13]. However,
it is difficult for the signal-processing-based RES to bal-
ance well between the residual echo attenuation and the
near-end speech distortion.
Recently, deep neural network (DNN) has been intro-

duced into RES due to its powerful capability of modeling
nonlinear systems, including the time domain and time-
frequency (TF) domain methods. TF-domain methods
adopt the short-time Fourier transform (STFT) to extract
spectral features. The fully connected network (FCN)
was employed to exploit multiple-input signals in RES
[14]. The bidirectional or unidirectional recurrent neu-
tral network (RNN) was also introduced to RES [15–17].
These methods ignore the coupling between magnitude
and phase and are unable to recover the phase infor-
mation, leading to limited performance [18]. Inspired by
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the fully convolutional time-domain audio separation net-
work (Conv-TasNet) [18], we proposed a RES method
based on the multi-stream Conv-TasNet, where both the
residual signal of the LAEC system and the output of
the adaptive filter are adopted to form multiple streams
[19]. The benefit of introducing the auxiliary signals into
the network was validated by simulations. However, the
model employs a complicated network structure and is
not efficient enough to exploit the information of multiple
streams, resulting in large number of parameters which
restricts its practical application. Moreover, the benefit of
multi-streams is yet to be validated by experiments on
off-the-shelf loudspeakers.
Dual-path recurrent neural network (DPRNN) [20] was

recently proposed for speech separation task and achieves
the state-of-the-art (SOTA) performance on WSJ0-2mix
dataset. It utilizes an encoder module for feature extrac-
tion and employs RNNs for time series modeling. To over-
come the inefficiency of RNN inmodeling long sequences,
DPRNN splits the long sequential input into smaller
chunks and applies intra- and inter-chunk operations
iteratively. Compared with Conv-TasNet, DPRNN shows
superiority in both performance and parameter number
[20]. Moreover, its RNN-based structure has advantages
over Conv-TasNet in memory consumption when pro-
cessing online.
In this paper, we extend our previous work on multi-

stream Conv-TasNet. We adopt the residual signal of
LAEC and the auxiliary signal to create two streams,
and propose two DPRNN-structure networks in the time
domain and TF domain respectively to effectively exploit
their information. To validate the efficacy of our proposed
RES methods, we compare them with several typical
methods on both artificial-echo dataset and recorded-
echo dataset. Furthermore, we regard the well-trained
model on artificial-echo dataset as a pre-trained model
and fine-tune it on recorded-echo dataset. Different fine-

tuning strategies are investigated to achieve a balance
between the performance and the training cost.

2 Model description
2.1 Problem formulation
The AEC system with RES post-filter is depicted in Fig. 1,
where x(n) is the far-end signal, ŷ(n) is the output of the
adaptive filter, and H(z) represents the echo path trans-
fer function. The microphone signal d(n) consisting of the
echo y(n), the near-end speech s(n), and background noise
v(n) can be expressed as

d(n) = s(n) + y(n) + v(n) (1)

The signal of the LAEC sAEC(n) is given by subtracting
the output of the adaptive filter ŷ(n) from the microphone
signal d(n), with

ŷ(n) = ĥ(n) ∗ x(n) (2)
sAEC(n) = d(n) − ŷ(n) (3)

where ĥ(n) denotes the adaptive filter and ∗ represents
convolution operation. Due to the inevitable nonlinear
feature in the echo path, the LAEC cannot perfectly atten-
uate the echo, and sAEC(n) can be regarded as the mixture
of the residual echo, background noise, and the near-end
signal. The RES can be designed from the viewpoint of
speech separation, but unlike the standard speech sepa-
ration problem, the auxiliary information extracted from
the adaptive filter can be exploited to improve the perfor-
mance. In this paper, we employ sAEC(n) together with an
auxiliary signal, x(n) or ŷ(n), to construct a dual-stream
DPRNN (DSDPRNN).

2.2 Model design
Figure 2 outlines the structure of our proposed DPRNN-
based RES method, which consists of two encoder mod-
ules, a suppression module, and a decoder module. The
two encoder modules are used to extract features from

Fig. 1 The diagram of AEC system with RES post-filter
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Fig. 2 The structure of our proposed DPRNN-based RES method. The blue line and the red line represent stream A and stream B respectively

sAEC(n) and the auxiliary signal to form two streams,
streams A and B, respectively. The suppression module
suppresses the residual echo and recovers the near-end
signal by exploiting the information of streams A and B.
The decoder transforms the output of the suppression
module into masks and converts the masked feature back
to the waveform. The difference between the time-domain
and the TF-domain methods mainly lies in the encoder
and the decoder, while the structure of the suppression
module is the same.
Figure 3 shows the structure of the encoder and the

decoder in the time-domain method. The encoder takes a
time-domain waveform u as input and converts it into a
time series of N-dimensional representations using a 1-D

convolutional layer with a kernel size L and 50% overlap,
followed by a ReLU activation function

W = ReLU(Conv1d(u)) (4)

whereW ∈ R
G×N with lengthG is the output of the oper-

ation. Then, W is transformed into C-dimensional repre-
sentations by a fully connected layer and divided into T =
2G/K − 1 chunks of length K , where the overlap between
chunks is 50%. All chunks are then stacked together to
form a 3-D tensor W ∈ R

T×K×C . The decoder applies
overlap-add operation to the output of suppression mod-
uleYs ∈ R

T×K×C , followed by a PReLU activation [21], to
form the outputQ ∈ R

G×C . Then, anN-dimensional fully
connected layer with a ReLU activation is applied to Q to

Fig. 3 The structure of the encoder and the decoder in the time-domain method
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obtain themask ofW , and the estimation of clean speech’s
representation Ŝ is obtained by

Ŝ = ReLU
(
fFC2(Q)

) � W (5)
Q = PReLU

(
fOA

(
fFC1(Ys)

))
(6)

where fFCi , i = 1, 2 represents the fully connected layer,
fOA represents the overlap-add operation, and � denotes
the element-wise multiplication. A 1-D transposed convo-
lution layer is utilized to convert the masked representa-
tion back to waveform signal ŝ.
The intra-chunk operation of DPRNN can also be

applied in the frequency domain. Figure 4 shows the struc-
ture of the encoder and the decoder in the TF-domain
method. We first obtain the TF representation Z ∈ C

T ′×F

by the STFT operation with a Q-point Hamming win-
dow and 50% overlap, where F = Q/2 + 1 is the number
of effective frequency bins. We concatenate the real and
imaginary component of Z to form a 3-D tensor Z ∈
R
T ′×F×2. The 3-D representation W ′ ∈ R

T ′×K ′×C′ is
then obtained by a 2-D convolutional layer with C′ out-
put channel. The kernel size is 5 × 5 and the stride is
1 × 2, where K ′ = F−3

2 is the number of down-sampled
frequency bins. The frame length, the chunk size, and
the feature dimension T ′,K ′,C′ correspond to T ,K ,C in

the time-domain encoder respectively, and the output is
further processed by the same suppression module. The
decoder takes the output of suppression module Y ′

s as
input and successively applies two fully connected layers,
followed by a PReLU and a ReLU activation respectively,
to form the outputQ′ ∈ R

T ′×K ′×C′ . Then,Q′ is processed
by two independent 2-D transposed convolutional layers,
called Trans Conv_A and Trans Conv_P, with the kernel
size 5× 5 and the stride 1× 2. Trans Conv_A with a ReLU
activation function is utilized to estimate the mask of TF
bins. Trans Conv_P followed by a normalization opera-
tion for each TF bin is employed to estimate the real part
and imaginary part of the phase information. Finally, the
spectrogram of the output signal Ŝ ′ is estimated by

Ŝ ′ = (
abs(Z) ◦ 12) � (

A ×3 1
1×2) � P (7)

A = ReLU
(
f ATC(Q′)

)
∈ R

T ′×F×1 (8)

P = Norm
(
f PTC(Q′)

) ∈ R
T ′×F×2 (9)

where f ATC, f
P
TC, and Norm represent the functions of Trans

Conv_A, Trans Conv_P, and the normalization operation
for each TF bin respectively. We use 1I1×I2×...×IM , ◦, and
×i to denote an all-ones tensor, the outer product, and the

Fig. 4 The structure of the encoder and the decoder in the TF-domain method
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mode-i product [22]. The outer product between the ten-
sor H ∈ R

I1×I2×...×IM and the vector g ∈ R
J is defined

as

R = H ◦ g ∈ R
I1×I2×...×IM×J (10)

Ri1,i2,...,iM ,j = Hi1,i2,...,iM · gj (11)

Themode-i product between the tensorH and the matrix
D ∈ R

IM×J is defined as

R = H ×M D ∈ R
I1×I2×...×IM−1×J (12)

Ri1,i2,...,iM−1,j =
IM∑

iM=1
Hi1,i2,...,iM · DiM ,j (13)

Similar to the operation in [23], A and P in Eqs. 8 and
9 act as the amplitude mask and the phase prediction
result respectively. After that, an inverse STFT operation
is applied to convert Ŝ ′ back to the waveform signal ŝ′.
The suppression module consists of six DSDPRNN

blocks, each of which contains two dual-stream RNN
(DSRNN) blocks corresponding to intra-chunk and inter-
chunk processing respectively. Figure 5 presents the struc-
ture of the proposed DSRNN block, where each stream is
successively processed by an RNN layer, a fully connected
layer, and a normalization layer. The RNN layer in each
intra-chunk block is a bidirectional RNN layer applied
along the chunk dimension with C/2 output channels for
each direction, while the RNN layer in each inter-chunk
block is a unidirectional RNN layer with C output chan-
nels and is applied along the frame dimension. Let V0

i ∈
R
T×K×C denote the input tensors of stream i, then the

output of the RNN layer V1
i can be expressed as

V1
i = fRNNi

(
V0
i
)
, i = A or B (14)

where fRNNi represents the function of the RNN layer. The
feature in V1

A and V1
B is then mixed by

V2
A = V1

A +
(
1T ◦ 1K ◦ α

)
� V1

B (15)

V2
B = V1

B +
(
1T ◦ 1K ◦ β

)
� V1

A (16)

where α,β ∈ R
C are trainable parameters. The output V2

i
is concatenated to the corresponding raw input V0

i and
then processed by a fully connected layer with C output
channels. V3

i is obtained with a residual connection and
can be formulated as

V3
i = fFCi

([
V2
i ,V0

i
]) + V0

i , i = A or B (17)

where [ ·, ·] represents the concatenation operation. The
concatenation and projection are applied along the chunk
dimension in intra-chunk blocks, and these operations
are also applied along the feature dimension in inter-
chunk blocks. The output V4

i of the DSRNN block is then
obtained by a normalization layer to V3

i , except for those
in the last DSDPRNN block whereV3

i serves as the output

V4
i = fNormi

(
V3
i
)
, i = A or B (18)

where fNormi denotes the function of the normalization
layer. The features of streams A and B are processed iter-
atively by the intra-chunk and the inter-chunk DSRNN
blocks, and the output of stream A in the last DSDPRNN
block is regarded as the output of the suppressionmodule.
We use Group Normalization [24] with a group number
of 2. The input feature of the normalization layer X ∈
R
T×K×C is first divided into two groups as

X =
[
X̂ 1, X̂ 2

]
, X̂ 1, X̂ 2 ∈ R

T×K× C
2 , (19)

Fig. 5 The structure of the DSRNN block. The blue line and the red line represent stream A and stream B respectively
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and the output is formulated as

fNorm(X ) =
[
Ŷ1, Ŷ2

]
(20)

with

Ŷ i
l,k,c =

X̂ i
l,k,c − μ

(
X̂ i

l

)

√
σ

(
X̂ i

l

)
+ ε

· γ i
c + β i

c, i = 1, 2 (21)

and

μ
(
X̂ i

l

)
= 2

CK

K∑

k=1

C/2∑

c=1
X̂ i

l,k,c, i = 1, 2 (22)

σ
(
X̂ i

l

)
= 2

CK

K∑

k=1

C/2∑

c=1

[
X̂ i

l,k,c − μ
(
X̂ i

l

)]2
, i = 1, 2

(23)

where the subscripts l, k, c denote the index of the 3-D ten-
sor, γ i,β i ∈ R

C/2 are trainable parameters, and ε is a small
constant for numerical stability.

2.3 Training target
We choose the maximization of the scale-invariant
source-to-noise ratio (SISNR) [18] as the training target

starget = | < ŝ, s > |s
||s||2 (24)

enoise = ŝ − starget (25)

SISNR = 10 log10
||starget||2
||enoise||2 (26)

where ŝ, s are the estimated and the target clean sources
respectively,< ·, · > represents the dot product of vectors,
and ||s|| denotes the l2 norm of s.

3 Experiments
3.1 Dataset
Unlike telecommunication systems, where the far-end sig-
nal is usually speech, music often acts as the “far-end”
signal for smart loudspeakers. Therefore, we use both
speech and music as the far-end signal, and the near-
end signal is speech. We choose LibriSpeech [25] as the
speech dataset andMUSAN [26] as the music dataset. We
randomly choose 225, 25, and 40 different speakers from
LibriSpeech, and 497, 48, and 115 pieces of music from
MUSAN for training, validation, and test respectively. The
audio data is sampled at 16 kHz and split into 4-s seg-
ments. Totally, we use 26,556, 1083, and 920 segments of
4-s speech and 101,956, 1083, and 920 segments of 4-s
music for training, validation, and test respectively.
The clipping function and the sigmoidal function,

although not precise models for the actual nonlinearity of

the loudspeakers, are commonly utilized numerical mod-
els inmany previous works on nonlinear acoustic suppres-
sion [15, 17]. Thus, the clipping function, sigmoidal func-
tion, and convolution operation are successively applied
to the far-end signal to generate the simulated echo. The
clipping function is either soft-clipping or hard-clipping
function [27]

Clipsoft(x(n)) = xmaxx(n)
√|xmax|2 + |x(n)|2 (27)

Cliphard(x(n)) =
⎧
⎨

⎩

xmax, if x(n) > xmax,
−xmax, if x(n) < −xmax,
x(n), otherwise.

(28)

where xmax = � · max(abs(x(n))) determines the maxi-
mum value of the clipping function. Three types of soft-
clipping and three types of hard-clipping functions are
utilized with the parameter � set to 0.6, 0.8, and 0.9.
We also use the sigmoidal function [28] to approximate

the nonlinearity of a loudspeaker

NL(x(n)) = 1
1 + e[−a·b(n)] − 1

2
(29)

b(n) = 3
2
x(n) − 3

10
x2(n) (30)

a =
{
ap, b(n) > 0
an, b(n) ≤ 0 (31)

where the parameter (ap, an) is chosen from {(4,3), (4,1),
(2,3), (1,3), (3,3), (1,1)}.
For the convolution operation, we construct 40, 3, and 7

simulated rooms for training, validation, and test respec-
tively. The length and width of these rooms are randomly
chosen from [3, 8] m and the height is randomly chosen
from [2.5, 4.5] m. The reverberation time T60 is ran-
domly chosen from [200, 400] ms. Image method [29] is
employed to generate 10 room impulse responses (RIRs)
for each room, resulting in 400, 30, and 70 RIRs for
training, validation, and test respectively.
The frequency-domain Kalman filter [4] acts as the

LAEC to generate the residual echo, and the mean of its
echo attenuation on the artificial-echo dataset is about
17.0 dB. To obtain the simulated sAEC(n), we add both
the clean speech signal and the colored noise to the resid-
ual echo. The inverse-frequency-power of the colored
noise [30] is randomly chosen between 0 and 2. For the
training and validation set, the signal-to-echo ratio (SER)
(before processing of LAEC) is randomly chosen from
{−14.2,−16.2,−18.2,−20.2} dB and the colored noise is
added with the signal-to-noise ratio (SNR) randomly cho-
sen from {30, 20, 10} dB. For the test set, the SER is −18.2
dB and the SNR is 20 dB.
In total, we generate 106,224 segments of speech resid-

ual echo and 101,956 segments of music residual echo for
training, 1083 segments of speech residual echo and 1083
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segments of music residual echo for validation, and 920
segments of speech residual echo and 920 segments of
music residual echo for test.
The approach to generate the artificial nonlinear echo

is only a rough approximation for simulating the nonlin-
earity of the loudspeaker. To evaluate the performance
of our model in practical applications, we also record
echo signals from off-the-shelf loudspeakers using the
microphone, AcousticSensing CHZ-221. A pair of EDI-
FIER R12U (ER) loudspeakers and a pair of LOYFUN
LF-501 (LL) loudspeakers are used to record the echo
signals in a office with room size 6 m × 6 m × 3.2
m. The recording environment is shown in Fig. 6. For
each loudspeaker model, we obtain 10,800 segments of
4-s recorded-echo signals (5400 segments of speech and
music respectively) from one loudspeaker for training and
1840 segments (920 segments of speech andmusic respec-
tively) from another loudspeaker of the same kind for
test. The mean of the LAEC’s echo attenuation on the
recorded-echo dataset is about 24.3 dB. For the train-
ing set, the SER of ER echo is randomly chosen from
{−18.2,−20.2,−22.2,−24.2} dB, the SER of LL echo is
randomly chosen from {−22.2,−24.2,−26.2,−28.2} dB,
and the colored noise is added with the SNR randomly
chosen from {30, 20, 10} dB. For the test set, the SER of ER
echo is −22.2 dB, the SER of LL echo is −26.2 dB, and the
SNR is 20 dB. It should be noted that the recorded-echo
training set is only used in the fine-tuning stage.

3.2 Experiment configuration
We control the parameter number and processing delay
in the time-domain and the TF-domain methods for a

fair comparison. For the time-domain method, the num-
ber of filters N , kernel size L, chunk size K , and feature
dimension B in the encoder are 256, 8, 100, and 128
respectively. For the TF-domain method, the frame length
Q, the number of down-sampled frequency bins K ′, and
feature dimension B′ in the encoder are 400, 99, and 128
respectively. Thus, the tensor of the encoder in the time-
domain and the TF-domain methods are of the dimension
T × 100 × 128 and T × 99 × 128 respectively. The gated
recurrent unit (GRU) [31] is used as the RNN layer.
The model is trained by the Adam optimizer [32] for 80

epochs, with each epoch containing 26,556 pairs of train-
ing data and each batch containing 8 pairs. The initial
learning rate is set to 0.001 and is halved every time the
validation loss is not improved in two successive epochs.
We apply l2 norm gradient clipping with a maximum of 5.
Pytorch is employed for model implementation and four
Nvidia GeForce GTX 1080Ti are used for training.

3.3 Evaluation metrics
We use three metrics for performance evaluation: the
perceptual evaluation of speech quality (PESQ) [33], the
signal-to-distortion ratio (SDR) [34, 35], and the short-
time objective intelligibility (STOI) [36]. The echo return
loss enhancement (ERLE) of the DNN-based methods in
single-talk situations has been shown to be of a suffi-
ciently high number in the previous work [19]. In this
paper, we pay particular attention to RES performance in
the most difficult low-SER double-talk situations, and the
PESQ, SDR, and STOI are regarded to be better choices
than the ERLE since they can more effectively evaluate
the processed near-end speech quality. Furthermore, the

Fig. 6 The photo of the experiment site where we record the echo signal
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desired signal is the near-end speech in most AEC sce-
narios, while the interference might be either speech from
the far end, as in common communication applications, or
music played by the smart speakers. Therefore, we use the
PESQ instead of the perceptual evaluation of audio qual-
ity as an objective metric to measure the quality of the
processed near-end speech.

4 Results and discussions
4.1 Performance comparison
We compare the proposed methods with some typical
DNN-based RES methods to validate the efficiency of our
model. In the following comparison, we name our pro-
posed methods as DSDPRNN. We further use the suffix
“t” and “f” to represent the time-domain and the TF-
domain methods respectively and use the suffix “x” and
“y” to distinguish between the models in which x(n) or
ŷ(n) is used as the auxiliary signal. The LSTM-based
model (LSTM) [17] and the multi-stream Conv-TasNet
model (MSTasNet) are utilized for comparison. The mod-
els [14, 15] which have shown significantly inferior per-
formance in our previous work [19] are ignored in this
comparison.
The total number of trainable parameters and the

multiply-accumulate operations per second (MACCPs)
of these models is shown in Table 1. The model size of
our proposed methods is only 1/5 of the model size of
MSTasNet, and the computation cost is also slightly lower.
The time latency of MSTasNet is set to 410 sam-

ples for a fair comparison. The performance in terms of
PESQ, SDR, and STOI is shown in Table 2. The DSD-
PRNN methods outperform the LSTM and the MSTas-
Net in all artificial-echo conditions, validating that our
proposed methods provide an efficient way to exploit
the information of dual-stream. For recorded echo, the
advantage of the DSDPRNN methods over MSTasNet
is less obvious, but their generalization capability in
practical applications is still validated. The comparison
between the time-domain and the TF-domain methods
shows that the former tends to achieve slightly better
SDR scores, while the latter has slightly better perfor-
mance in terms of PESQ and STOI. Furthermore, we
observe that the methods with the auxiliary signal ŷ(n)

Table 1 The total number of trainable parameters and MACCPs
of our proposed methods and several typical DNN-based RES
methods

Model Model size MACCPs

LSTM 2.96M 0.30G

MSTasNet 14.8M 23G

DSDPRNN_t 2.84M 22G

DSDPRNN_f 2.77M 22G

Table 2 Performance of our proposed methods and several
typical RES methods

Echo Model PESQ SDR STOI

Artificial speech LAEC 1.48 −2.60 0.622

LSTM 2.14 6.33 0.780

MSTasNet 2.54 11.6 0.857

DSDPRNN_ty 2.61 12.3 0.866

DSDPRNN_tx 2.66 12.8 0.876

DSDPRNN_fy 2.75 12.4 0.880

DSDPRNN_fx 2.74 12.5 0.882

Artificial music LAEC 1.48 −2.90 0.634

LSTM 2.08 5.46 0.755

MSTasNet 2.43 10.7 0.830

DSDPRNN_ty 2.50 11.5 0.842

DSDPRNN_tx 2.61 12.6 0.865

DSDPRNN_fy 2.62 11.4 0.857

DSDPRNN_fx 2.64 11.6 0.863

ER speech LAEC 16.1 −2.05 0.697

LSTM 2.13 4.85 0.799

MSTasNet 2.66 11.6 0.890

DSDPRNN_ty 2.68 11.7 0.892

DSDPRNN_tx 2.62 11.5 0.887

DSDPRNN_fy 2.77 11.3 0.904

DSDPRNN_fx 2.66 10.6 0.895

ER music LAEC 1.70 −1.12 0.730

LSTM 2.25 5.95 0.826

MSTasNet 2.72 12.2 0.898

DSDPRNN_ty 2.75 12.6 0.900

DSDPRNN_tx 2.68 12.3 0.897

DSDPRNN_fy 2.79 11.9 0.907

DSDPRNN_fx 2.76 11.7 0.907

LL speech LAEC 1.95 1.67 0.806

LSTM 2.55 9.23 0.884

MSTasNet 2.99 15.0 0.932

DSDPRNN_ty 3.00 15.6 0.932

DSDPRNN_tx 2.87 14.9 0.920

DSDPRNN_fy 3.02 15.3 0.938

DSDPRNN_fx 3.04 15.7 0.938

LL music LAEC 1.97 2.16 0.820

LSTM 2.60 9.07 0.889

MSTasNet 3.04 15.6 0.934

DSDPRNN_ty 3.07 16.0 0.935

DSDPRNN_tx 2.89 14.8 0.921

DSDPRNN_fy 3.12 15.8 0.944

DSDPRNN_fx 3.13 16.0 0.943

achieve better performance in the attenuation of recorded
echo, implying their better generalization capability com-
pared with the methods using x(n) as the auxiliary
signal.
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4.2 Fine-tuning for off-the-shelf loudspeakers
Though the proposed methods generalize well to real
loudspeakers, better performance can be expected by
training on echo recorded from loudspeakers. The well-
trained model in the artificial-echo dataset can be
regarded as a pre-trained model and then fine-tuned by
the recorded-echo dataset in practice. We only test the
performance of the DSDPRNN with the auxiliary signal
ŷ(n). The purpose of the fine-tuning is to improve the
performance under limited supplementary training data.
We have tried the fine-tuning on the suppression mod-
ule, but found that the model overfits severely with small
amount of recorded data. Thus, we propose two strategies
to fine-tune the model by mainly retraining the decoder.
(1) Train the decoder module only and freeze the other
parameters. (2) Train the decoder and the last DSDPRNN
block and freeze the other parameters. We conduct two
experiments in the fine-tuning stage for cross validation.
In each experiment, we only use 12-h echo signals from
one loudspeaker as the training set. The batch size is
set to 16 and the exponential-decay strategy is used to
halve the learning rate every 1350 steps. The fine-tuning
stage uses two Nvidia GeForce GTX 1080Ti and takes
only about 3 h for training since the partly frozen param-
eters reduce the computational complexity for training
and the size of the recorded training data is far below
the size of the artificial echo. We use “Time” and “TF”
to distinguish the time-domain and the TF-domain DSD-
PRNNmethods and use the suffix “1”, “2” to represent the
models using the above two fine-tuning strategies respec-
tively. The performance of the pre-trained model is pre-
sented with no suffix as benchmark. Compared to strategy
2, the training time in the fine-tuning stage of strategy
1 decreases by 14% and the memory cost is reduced
by half.
The performances of the proposed methods after fine-

tuning with the ER echo dataset and the LL echo dataset
are shown in Tables 3 and 4 respectively. In artificial-
echo conditions, the performance degrades slightly after
fine-tuning, and similar results are observed using both
the fine-tuning strategies. The test results of the model
fine-tuned using the recorded training dataset from
the same kind of loudspeaker are highlighted by blue
font. The efficacy of both fine-tuning strategies can be
seen, and strategy 2 has significantly better performance
when the model is fine-tuned by the training dataset
from the same kind of loudspeaker. It also should be
noted that the performance improves slightly even when
the model is fine-tuned with training data from differ-
ent loudspeakers, indicating the generalization capabil-
ity of the fine-tuning method. Considering that only a
very limited data is required in the fine-tuning stage,
this scheme is easy to be applied to any off-the-shelf
loudspeakers.

Table 3 Performance of the pre-trained model and the
fine-tuned models with ER recorded echo

Echo Model PESQ SDR STOI

Artificial speech LAEC 1.48 −2.60 0.622

Time 2.61 12.3 0.866

Time_1 2.56 12.2 0.865

Time_2 2.57 12.1 0.864

TF 2.75 12.4 0.880

TF_1 2.70 12.4 0.875

TF_2 2.69 12.3 0.875

Artificial music LAEC 1.48 −2.90 0.634

Time 2.50 11.5 0.842

Time_1 2.44 11.4 0.841

Time_2 2.46 11.3 0.841

TF 2.62 11.4 0.857

TF_1 2.58 11.3 0.853

TF_2 2.57 11.3 0.852

ER speech LAEC 1.61 −2.05 0.697

Time 2.68 11.7 0.892

Time_1 2.70 12.0 0.894

Time_2 2.75 12.5 0.899

TF 2.77 11.3 0.904

TF_1 2.80 11.9 0.905

TF_2 2.88 12.4 0.912

ER music LAEC 1.70 −1.12 0.730

Time 2.75 12.6 0.900

Time_1 2.76 12.8 0.901

Time_2 2.80 13.0 0.906

TF 2.79 11.9 0.907

TF_1 2.83 12.3 0.908

TF_2 2.91 12.6 0.914

LL speech LAEC 1.95 1.67 0.806

Time 3.00 15.6 0.932

Time_1 3.00 15.8 0.933

Time_2 3.03 16.1 0.935

TF 3.02 15.3 0.938

TF_1 3.08 15.8 0.939

TF_2 3.13 16.1 0.943

LL music LAEC 1.97 2.16 0.820

Time 3.07 16.0 0.935

Time_1 3.03 16.1 0.936

Time_2 3.04 16.2 0.937

TF 3.12 15.8 0.944

TF_1 3.17 16.1 0.944

TF_2 3.18 16.2 0.946

5 Conclusion
In this paper, we propose efficient RES methods in both
the time domain and the TF domain on the modification
of DPRNN. We adopt the residual signal and the auxiliary
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Table 4 Performance of the pre-trained model and the
fine-tuned models with LL recorded echo

Echo Model PESQ SDR STOI

Artificial speech LAEC 1.48 −2.60 0.622

Time 2.61 12.3 0.866

Time_1 2.59 12.1 0.866

Time_2 2.60 12.0 0.864

TF 2.75 12.4 0.880

TF_1 2.73 12.4 0.879

TF_2 2.70 12.2 0.875

Artificial music LAEC 1.48 −2.90 0.634

Time 2.50 11.5 0.842

Time_1 2.47 11.4 0.842

Time_2 2.47 11.2 0.840

TF 2.62 11.4 0.857

TF_1 2.61 11.4 0.856

TF_2 2.58 11.2 0.852

ER speech LAEC 1.61 −2.05 0.697

Time 2.68 11.7 0.892

Time_1 2.70 11.9 0.894

Time_2 2.72 11.8 0.894

TF 2.77 11.3 0.904

TF_1 2.81 11.7 0.906

TF_2 2.83 11.6 0.908

ER music LAEC 1.70 −1.12 0.730

Time 2.75 12.6 0.900

Time_1 2.75 12.7 0.900

Time_2 2.77 12.8 0.902

TF 2.79 11.9 0.907

TF_1 2.83 12.2 0.909

TF_2 2.86 12.3 0.911

LL speech LAEC 1.95 1.67 0.806

Time 3.00 15.6 0.932

Time_1 3.02 15.9 0.934

Time_2 3.07 16.3 0.936

TF 3.02 15.3 0.938

TF_1 3.08 15.8 0.940

TF_2 3.22 16.5 0.947

LL music LAEC 1.97 2.16 0.820

Time 3.07 16.0 0.935

Time_1 3.07 16.2 0.936

Time_2 3.10 16.4 0.939

TF 3.12 15.8 0.944

TF_1 3.17 16.1 0.945

TF_2 3.24 16.5 0.948

signal extracted from the LAEC system to form dual-
stream for the DPRNN. Experiments validate the efficacy
of the proposed methods in double-talk situations com-
pared with several typical RES methods. Furthermore,

we propose an efficient and applicable way to improve
the performance on off-the-shelf loudspeakers by regard-
ing the well-trained model on artificial-echo dataset as a
pre-trained model, and fine-tuning it on recorded-echo
dataset. Two fine-tuning strategies are evaluated in exper-
iments, showing that the fine-tuning strategy of training
the decoder and the last DSSPRNN block achieves more
effective echo suppression on the recorded-echo dataset.
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