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Abstract

In this paper, we propose a novel algorithm for blind source extraction (BSE) of a moving acoustic source recorded by
multiple microphones. The algorithm is based on independent vector extraction (IVE) where the contrast function is
optimized using the auxiliary function-based technique and where the recently proposed constant separating vector
(CSV) mixing model is assumed. CSV allows for movements of the extracted source within the analyzed batch of
recordings. We provide a practical explanation of how the CSV model works when extracting a moving acoustic
source. Then, the proposed algorithm is experimentally verified on the task of blind extraction of a moving speaker.
The algorithm is compared with state-of-the-art blind methods and with an adaptive BSE algorithm which processes
data in a sequential manner. The results confirm that the proposed algorithm can extract the moving speaker better
than the BSE methods based on the conventional mixing model and that it achieves improved extraction accuracy
than the adaptive method.

Keywords: Blind source separation, Independent vector analysis, Speaker extraction, Speech enhancement, Moving
sources

1 Introduction
This paper addresses the problem when sound is sensed
by multiple microphones and the goal is to extract a
signal of interest originating from an individual source.
We particularly address the case when the corresponding
source is a speaker which is moving during the recording.
Unknown situation is considered where no information
about the environment and the positions of microphones
and sources is available and no training data are avail-
able. This is the task of blind source separation (BSS), or
particularly, of blind source extraction (BSE). These sig-
nal processing fields embrace numerous methods such
as nonnegative matrix/tensor factorization, clustering and
classification approaches, or sparsity-awareness methods;
see [1–3] for surveys. We will consider the approach of
independent component analysis (ICA) where signals are
separated into original signals based on the assumption
that the original signals are statistically independent [4]. In
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case of audio sources such as speakers, this fundamental
condition is met, which makes ICA attractive for practical
applications.
ICA can separate instantaneous mixtures of non-

Gaussian independent signals up to their indeterminable
order and scales [5]. Since acoustic mixtures are convo-
lutive due to delays and reverberation, the narrow-band
approach can be considered. Here, ICA is applied in
the short-time Fourier transform (STFT) domain sepa-
rately in each frequency bin; the approach referred to as
frequency-domain ICA (FDICA) [3, 6]. However, the sep-
arate applications of ICA in FDICA cause the so-called
permutation problem due to the indeterminable order of
separated signals: The separated frequency components
have a random order and must be aligned in order to
retrieve the full-band separated signals [7]. Independent
vector analysis (IVA) treats all frequencies simultaneously
using a joint statistical source model [8, 9]. The frequency
components of the original signals form the so-called vec-
tor components. IVA aims at maximizing higher-order
dependencies between the frequency components within
each vector component while the whole vector compo-
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nents should be independent [9]. IVA is thus an exten-
sion of ICA to joint separation of several instantaneous
mixtures (one per frequency bin).
A recent extension of IVA is independent low-rank

matrix analysis (ILRMA) where the vector components
are assumed to obey a low-rank source model. For exam-
ple, ILRMA combines IVA and nonnegative matrix eac-
torization (NMF) in [10, 11] and involves deep learn-
ing in [12]. The counterparts of ICA and IVA designed
for BSE, i.e., for the extraction of one independent
source, are called independent component/vector extrac-
tion (ICE/IVE) [13, 14]. Very recently, IVE has been
extended towards simultaneous source extraction and
dereverberation [15].
In principle, the aforementioned methods differ in

source modeling while they share the conventional time-
invariant linear mixing model. This model describes
situations that are not changing during the recording
time, which also means that the sources-speakers are
assumed to be static. To separate/extract moving sources,
the methods can be used in an adaptive way by being
applied on short intervals during which the mixture
is approximately static. Such modifications are typically
implemented to process data sample-by-sample (frame-
by-frame) or batch-by-batch using some forgetting update
of inner parameters [16–18]; many such methods have
been considered also in biomedical applications; see, e.g.,
[19]. Although these methods are useful, they have several
shortcomings. Namely, the sources can be separated in a
different order at different times due to the indeterminacy
of ICA; we refer to this as to the discontinuity problem.
Also, the separation accuracy is limited by the length of
context from which the time-variant separating parame-
ters are computed. The methods involve parameters such
as learning rate or forgetting factors for recursive process-
ing. Optimum values of those parameters depend on input
data in an unknown way. The control and tuning of these
adaptive implementations, therefore, poses a difficult and
application-dependent problem.
In this paper, we propose a novel algorithm for IVE

based on the constant separating vector (CSV) mix-
ing model, which is called CSV-AuxIVE. CSV-AuxIVE
belongs to the family of auxiliary function-based meth-
ods [17, 20, 21]. These methods use a majorization-
minimization approach for finding the optimum of a
contrast function derived based on the maximum like-
lihood principle and do not involve any learning rate
parameter. In particular, CSV-AuxIVE could be seen as
an extension of the recent OverIVA algorithm from [22]
allowing for the CSV mixing model. CSV has been first
considered in the preliminary conference report [23]. It
involves time-variant mixing parameters while it simul-
taneously assumes time-invariant (constant) separating
parameters. The model enables us to avoid the disconti-

nuity problem and to improve the extraction performance
because the extraction accuracy depends on the length of
the entire recording modeled by CSV [24]. The proposed
CSV-AuxIVE adopts these important features and pro-
vides a new blind method, which is much faster than the
gradient-based algorithm used in [23].
The article is organized as follows: in Section 2, the

technical definition of the BSE problem is given, the CSV
mixing model is described and explained from a prac-
tical point of view, and the contrast function for the
blind extraction is derived. In Section 3, the proposed
CSV-AuxIVE algorithm is described, including its piloted
variant that enables a partial control of convergence using
prior knowledge of the desired signal. Section 4 is devoted
to experimental evaluations based on simulated as well as
real-world data. The paper is concluded in Section 5. A
supplementary material to this paper contains a detailed
derivation of the gradient-based algorithm from [23]
referred to as BOGIVEw.

Notation Plain letters denote scalars, bold letters denote
vectors, and bold capital letters denote matrices. Upper
indices such as ·T , ·H , or ·∗ denote, respectively, trans-
position, conjugate transpose, or complex conjugate. The
Matlab convention for matrix/vector concatenation and
indexing will be used, e.g., [ 1; g]= [

1, gT
]T and (a)i is

the ith element of a. E[ ·] stands for the expectation opera-
tor, and Ê[ ·] is the average taken over all available samples
of the symbolic argument. The letters k and t are used as
integer indices of frequency bin and block, respectively;
{·}k is a short notation of the argument with all values of
index k, e.g., {wk}k means w1, . . . ,wK , and {wk,t}k,t means
w1,1, . . . ,wK ,T .

2 Problem formulation
A static mixture of audio signals that propagate in an
acoustic environment from point sources to microphones
can be described by the time-invariant convolutive model.
Let there be d sources observed by m microphones. The
signal on the ith microphone is described by

xi(n) =
d∑

j=1

L−1∑

τ=0
hij(τ )sj(n − τ), i = 1, . . . ,m, (1)

where n is the sample index, s1(n), . . . , sd(n) are the orig-
inal signals coming from the sources, and hij denotes the
time-invariant impulse response between the jth source
and ith microphone of length L.
In the short-time Fourier transform (STFT) domain,

convolution can be approximated by multiplication. Let
xi(k, �) and sj(k, �) denote, respectively, the STFT coeffi-
cient of xi(n) and sj(n) at frequency k and frame �. Then,
(1) can be replaced by a set of K complex-valued linear
instantaneous mixtures
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xk = Aksk , k = 1, . . . ,K , (2)

where xk and sk are symbolic vectors representing, respectively,
[ x1(k, �), . . . , xm(k, �)]T and [ s1(k, �), . . . , sd(k, �)]T , for
any frame � = 1, . . . ,N ; Ak stands for the m × d mix-
ing matrix whose ijth element is related to the kth Fourier
coefficient of the impulse response hij; K is the frequency
resolution of the STFT; for detailed explanations, see, e.g.,
Chapters 1 through 3 in [3].

2.1 Blind source extraction
For the BSE problem, we can write (2) in the form

xk = aksk + yk , k = 1, . . . ,K , (3)

where sk represents the source of interest (SOI), ak is the
corresponding column ofAk , called themixing vector, and
yk represents the remaining signals in xk , i.e., yk = xk −
aksk .
Since there is the ambiguity that any of the original

sources can play the role of the SOI, we can assume, with-
out loss of generality, that the SOI corresponds to the first
source in (2); hence, ak is the first column ofAk . The prob-
lem of guaranteeing the extraction of the desired SOI will
be addressed in Section 3.3.
The assumption that the original signals in (2) are inde-

pendent implies that sk and yk are independent. We will
also assume thatm = d, i.e., that there is the same number
of microphones as that of the sources. It follows that the
mixing matricesAk are square. By assuming also that they
are non-singular1 and that their inverse matrices exist, the
existence of a separating vector wk (the first row of A−1

k )
such thatwH

k xk = sk is guaranteed. We pay for this advan-
tage by the limitation that yk belongs to a subspace of
dimension d − 1. In other words, the covariance of yk is
assumed to have rank d − 1 as opposed to real recordings
where the typical rank is d (e.g. due to sensor and envi-
ronment noises). Nevertheless, the assumption m = d
brings more advantages than disadvantages as shown in
[10]. One way to compensate is to increase the number
of microphones so that the ratio d−1

d approaches 1. BSE
appears to be computationally more efficient than BSS
when d is large since, in BSE, yk is not separated into
individual signals.
In [13], the BSE problem is formulated by exploiting

the fact that the d − 1 latent variables (background sig-
nals) involved in yk can be defined arbitrarily. An effective
parameterization that involves only the mixing and sepa-
rating vectors related to the SOI has been derived. Specif-
ically, Ak and A−1

k (denoted asWk) have the structure

1 This assumption simplifies the theoretical development of algorithms and
does not hamper the applicability of the methods on real signals. For example,
practical recordings always contain some noise and so behave as mixtures
with a non-singular mixing matrix.

Ak = (
ak Qk

) =
(

γk hHk
gk 1

γk
(gkhHk − Id−1)

)
, (4)

and

Wk =
(
wH
k

Bk

)
=
(

βk
∗ hHk

gk −γkId−1

)
, (5)

where Id denotes the d × d identity matrix, wk denotes
the separating vector which is partitioned aswk =[βk ;hk];
the mixing vector ak is partitioned as ak =[ γk ; gk]. The
vectors ak and wk are linked through the so-called distor-
tionless constraint wH

k ak = 1, which, equivalently, means

β∗
k γk + hHk gk = 1, k = 1, . . . ,K . (6)

Bk =[ gk ,−γkId−1] is called the blocking matrix as it sat-
isfies that Bkak = 0. The background signals are given
by zk = Bkxk = Bkyk , and it holds that yk = Qkzk . To
summarize, (2) is recasted for the BSE problem as

xk =
(

γk hHk
gk 1

γk
(gkhHk − Id−1)

)(
sk
zk

)
, k = 1, . . . ,K . (7)

2.2 CSVmixing model
Now, we turn to an extension of (7) to time-varying
mixtures. Let the available samples of the observed sig-
nals (meaning the STFT coefficients from N frames) be
divided into T intervals; for the sake of simplicity, we
assume that the intervals have the same integer length
Nb = N/T . The intervals will be called blocks and will be
indexed by t ∈ {1, . . . ,T}.
A straightforward extension of (7) to time-varying mix-

tures is when all parameters, i.e., the mixing and sep-
arating vectors, are block-dependent. However, such an
extension brings no advantage compared to processing
each block separately. In the constant separating vector
(CSV) mixing model, it is assumed that only the mixing
vectors are block-dependent while the separating vec-
tors are constant over the blocks. Hence, the mixing and
de-mixing matrices on the tth block are parameterized,
respectively, as

Ak,t = (
ak,t Qk,t

) =
(

γk,t hHk
gk,t 1

γk,t
(gk,thHk − Id−1)

)

,

(8)

and

Wk,t =
(
wH
k

Bk,t

)
=
(

β∗
k hHk

gk,t −γk,tId−1

)
. (9)

Each sample of the observed signals on the tth block is
modeled according to

xk,t = Ak,t

(
sk,t
zk,t

)
, (10)
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Fig. 1 How the blind extraction of a moving speaker can be solved based on CSV. The narrow area (in gray) stands for a typical focus of a separating
filter obtained by the static mixing models. It is able to extract the speaker only from a particular position. The green area denotes the focus of a
separating filter obtained through CSV: it covers the entire area of the speaker’s movement during the recording. Such separating vector exists
because there is a sufficient number of microphones and because the interfering speaker is located outside the area of the target speaker

where sk,t and zk,t represent, respectively, the kth fre-
quency of the SOI and of the background signals at any
frame within the tth block. Note that, the CSV coincides
with the static model (7) when T = 1.
The practical meaning of the CSV model is illustrated

in Fig. 1. While CSV admits that the SOI can change
its position from block to block (the mixing vectors ak,t
depend on t), the block-independent separating vector wk
is sought such that extracts the speaker’s voice from all
positions visited during its movement. There are twomain
reasons for this: First, the achievable interference-to-
signal ratio (ISR) depends on wk so it has order O(N−1),
compared to when wk is block-dependent, which yields
ISR of order O(N−1

b ); this is confirmed by the theoreti-
cal study on Cramér-Rao bounds in [24]. Second, the CSV
enables BSE methods to avoid the discontinuity problem
mentioned in the previous section.
The CSV also brings a limitation. Formally, the mixture

must obey the condition that for each k a separating vector
exists such that sk,t = wH

k xk,t holds for every t; a condition
that seems to be quite restrictive. Nevertheless, prelimi-
nary experiments in [23] have shown that this limitation
is not crucial in practical situations and does not differ
much from that of static methods (spatially overlapping
speakers cannot be separated), especially when the num-
ber of microphones is high enough to provide sufficient
degrees of freedom.When the speakers are static, the rule
of thumb says that the speakers cannot be separated or,
at least, are difficult to separate through spatial filtering,
when their angular positions with respect to the micro-
phone array are the same. Hence, moving speakers cannot

be separated based on the CSV when their angular ranges
with respect to the array during the recording are over-
lapping. The experimental part of this work presented in
Section IV validates these findings.

2.3 Source model
In this section, we introduce the statistical model of the
signals adopted from IVE. Samples (frames) of signals
will be assumed to be identically and independently dis-
tributed (i.i.d.) within each block according to the prob-
ability density function (pdf) of the representing random
variable.
Let st denote the vector component corresponding to

the SOI, i.e., st =[ s1,t , . . . , sK ,t]T . The elements of st are
assumed to be uncorrelated (because they correspond to
different frequency components of the SOI) but depen-
dent, that is, their higher-order moments are taken into
account [9]. Let ps(st) denote the joint pdf of st and
pzk,t (zk,t) denote the pdf2 of zk,t . For simplifying the nota-
tion, ps(·) will be denoted without the index t although it
is generally dependent on t. Since st and z1,t , . . . , zK ,t are
independent, their joint pdf within the tth block is equal
to the product of marginal pdfs

ps(st) ·
K∏

k=1
pzk,t (zk,t). (11)

2We might consider a joint pdf of z1,t , . . . , zK ,t that could possibly involve
higher-order dependencies between the background components. However,
since pzk,t (·) is assumed Gaussian in this paper, and since signals from different
mixtures (frequencies) are assumed to be uncorrelated, as in the standard
IVA, we can directly consider z1,t , . . . , zK ,t to be mutually independent.
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By applying the transformation theorem to (11) using
(10), from which it follows that

(
sk,t
zk,t

)
= Wk,txk,t =

(
wH
k xk,t

Bk,txk,t

)
, (12)

the joint pdf of the observed signals from the tth block
reads

px({xk,t}k) = ps
({
wH
k xk,t

}
k
)

×
K∏

k=1
pzk,t (Bk,txk,t)| detWk,t|2. (13)

Hence, the log-likelihood function as a function of the
parameter vectors wk and ak,t and all available samples of
the observed signals in the tth block is given by

L({wk}k , {ak,t}k|{xk,t}k)

= Ê
[
log ps({ŝk,t}k)

] +
K∑

k=1
Ê
[
log pzk,t (ẑk,t)

]

+ log | detWk,t|2,

(14)

where ŝk,t = wH
k xk,t and ẑk,t = Bk,txk,t denote the cur-

rent estimate of the SOI and of the background signals,
respectively.
In BSS and BSE, the true pdfs of the original sources are

not known, so suitable model densities have to be cho-
sen in order to derive a contrast function based on (14).
To find an appropriate surrogate of ps(st), the variance of
SOI, which can be changing from block to block3 has to
be taken into account. Let f (·) be a pdf corresponding to a
normalized non-Gaussian random variable. To reflect the
block-dependent variance, ps(st) should be replaced by

ps(st) ≈ f
({

sk,t
σk,t

}

k

)( K∏

k=1
σk,t

)−2

, (15)

where σ 2
k,t denotes the variance of sk,t . Its unknown value

is replaced by the sample-based variance of ŝk,t , which is
equal to σ̂k,t =

√
wH
k Ĉk,twk where Ĉk,t = Ê

[
xk,txHk,t

]
is the

sample-based covariance matrix of xk,t .
It is worth noting that in the case of the static mixing

model, i.e. when T = 1, it can be assumed that σ 2
k,t = 1

because of the scaling ambiguity.
Similarly to [13], the pdf of the background is assumed

to be circular Gaussian with zero mean and (unknown)
covariance matrix Czk,t = E

[
zk,tzHk,t

]
, i.e., pzk,t ∼

CN (0,Czk,t ). Next, by Eq. (15) in [13] it follows that
| detWk,t|2 = |γk,t|2(d−2), which corresponds to the third
term in (14).
Now, by replacing the unknown pdfs in (14) and by

neglecting the constant terms, we obtain the contrast

3The variance can be changing from block to block not only due to the signal
nonstationarity, but also because of the movements of the source.

function in the form

C({wk}k , {ak,t}k,t)

= 1
T

T∑

t=1

{

Ê
[

log f
({

wH
k xk,t
σ̂k,t

}

k

)]

−
K∑

k=1
log(σ̂k,t)2

−
K∑

k=1
Ê
[
xHk,tB

H
k,tC

−1
zk,tBk,txk,t

]

+ (d − 2)
K∑

k=1
log |γk,t|2

}

. (16)

The nuisance parameterCzk,t will later be replaced by its
sample-based estimate Ĉzk,t = Ê

[
ẑk,t ẑHk,t

]
.

3 Proposed algorithm
3.1 Orthogonal constraint
Finding themaximumof (16) subject to the separating and
mixing vectors leads to their consistent estimation, hence
to the solution of the BSE problem. The parameter vectors
are linked through the distortionless constraint given by
(6). However, as was already noticed in previous publica-
tions [13, 22, 25], this constraint appears to be too weak as
it does not guarantee that both vectors finally found by an
algorithm correspond to the SOI. Therefore, an additional
constraint has to be imposed.
The orthogonal constraint (OGC) ensures that the cur-

rent estimate of the SOI ŝk,t = wxk,t has zero sample
correlation with the background signals ẑk,t = Bxk,t .
Hence the constraint is that Ê

[
ŝk,t ẑHk,t

]
= wH

k Ĉk,tBk,t = 0,
for every k and t, under the condition given by (6). In
Appendix A in [13], it is shown that the OGC can be
imposed by making ak,t fully dependent on wk through

ak,t = Ĉk,twk

wH
k Ĉk,twk

, t = 1, . . . ,T . (17)

Alternatively,wk can be considered as dependent on ak,t
[13]; however, we prefer the former formulation in this
paper, because in the proposed algorithm, the optimiza-
tion proceeds through the separating vectors wk .

3.2 Auxiliary function-based algorithm
In [20], N. Ono derived the AuxIVA algorithm using an
auxiliary function-based optimization (AFO) technique.
AuxIVA provides a much faster and more stable alterna-
tive to the natural gradient-based algorithm from [9]. The
main principle of the AFO technique lies in replacing the
first term in (16) by a majorizing term involving an auxil-
iary variable. Themodified contrast function is named the
auxiliary function. It is optimized in the auxiliary and nor-
mal variables alternately, by which the maximum of the
original contrast function is found.
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Very recently, a modification of AuxIVA for the blind
extraction of q sources, where q < d, has been proposed in
[22]; the algorithm is named OverIVA. In this section, we
will apply the AFO technique to find themaximumof (16).
The resulting algorithm, which could be seen as a special
variant of OverIVA designed for q = 1 and as an extension
for T > 1, will be called CSV-AuxIVE.
To find the suitable majorant of the first term of the con-

trast function (16) we can follow the original Theorem 1
from [20].

Theorem 1 Let SG be a set of real-valued functions of a
vector variable u defined as

SG = {G(u)|G(u) = GR(‖u‖2)}, (18)

where GR(r) is a continuous and differentiable function of
a real variable r satisfying that G′

R(r)
r is continuous every-

where and is monotonically decreasing in r ≥ 0. Then, for
any G(u) = GR(‖u‖2) ∈ SG,

G(u) ≤ G′
R(r0)
2r0

‖u‖22 +
(
GR(r0) − r0G′

R(r0)
2

)
(19)

holds for any u and r0 ≥ 0. The equality holds if and only
if r0 = ‖u‖2.

Proof See [20].

Now, letG(u) = log f (u) and assume that the conditions
of the theorem are satisfied. Then, by applying Theorem 1
on the tth block of the first term of (16) we get a relation

Ê
[
log f

({
sk,t
σk,t

}

k

)]
≤ Ê

[
G′
R(rt)
2rt

K∑

k

∣
∣∣
∣
sk,t
σ̂k,t

∣
∣∣
∣

2
]

+ Rt

= Ê
[
G′
R(rt)
2rt

K∑

k

wH
k xk,tx

H
k,twk

σ̂ 2
k,t

]

+ Rt

=
K∑

k

1
2

1
σ̂ 2
k,t

wH
k Ê

[G′
R(rt)
rt

xk,txHk,t

]
wk + Rt

(20)

where rt is an auxiliary variable and Rt depends
purely on rt ; the equality holds if and only if rt =√∑K

k=1 |wH
k xk,t|2/σ̂ 2

k,t . By applying (20) in (16), the auxil-
iary function obtains a form

Q
({wk , ak,t , rt}k,t

)

= 1
T

T∑

t=1

K∑

k=1

{
1
2
wH
k Vk,twk

σ̂ 2
k,t

− log σ̂ 2
k,t

− Ê
[
ẑHk,tC

−1
zk,t ẑk,t

]
+ (d − 2) log |γk,t|2

}
+ Rt ,

(21)

where

Vk,t = Ê[ϕ(rt)xk,txHk,t] , (22)

and ϕ(r) = G′
R(r)
r . Now, we can see that

C({wk , ak,t}k,t) ≤ Q({wk , ak,t , rt}k,t), (23)

where both sides are equal if and only if rt =√∑K
k=1

∣
∣wH

k xk,t
∣
∣2 /σ̂ 2

k,t for every t = 1, . . . ,T , so (21) is a
valid auxiliary function.
The optimization of Q proceeds alternately in the aux-

iliary variables rt and the normal variables wk . The opti-
mum of (21) in the auxiliary variables is obtained simply
by putting rt =

√∑K
k=1

∣
∣wH

k xk,t
∣
∣2 /σ̂ 2

k,t into (22). To find
the minimum in the normal variables, the partial deriva-
tive of the auxiliary function (21) is taken with respect to
wk when rt is independent, and ak,t are dependent through
the OGC (17). The derivative is put equal to zero, which
forms equations for the new update of the separating
vectors.
For the derivative of the first and second term in

(21), the following identities are used, which come from
straightforward computations using the Wirtinger calcu-
lus [26] and by using the OGC (17):

∂

∂wH
k

1
σ̂ 2
k,t

= −ak,t
σ̂ 2
k,t

, (24)

∂

∂wH
k
log σ̂ 2

k,t = ak,t . (25)

The computation of the derivative of the third and fourth
term of (21) is lengthy due to the dependence of the
parameters through the OGC constraint. To simplify, we
can use Equation 33 and Appendix C in [13], where the
derivative is actually computed for the case K = 1 and
T = 1, from which it follows that the result is equal
to

∑K
k=1 ak,t . By putting the derivatives of all the term

together, we obtain

∂Q
({wk , ak,t , rt}k,t

)

∂wH
k

∣
∣
∣∣
∣
w.r.t. (17)

= 1
T

T∑

t=1

{
Vk,twk

2σ̂ 2
k,t

− wH
k Vk,twk

2σ̂ 2
k,t

ak,t − ak,t + ak,t

}

.

(26)

The close-form solution of the equation when (26) is put
equal to zero cannot be derived in general. Our proposal
is to take

wk =
( T∑

t=1

Vk,t

σ̂ 2
k,t

)−1 T∑

t=1

wH
k Vk,twk

σ̂ 2
k,t

ak,t , (27)

which is the solution of a linearized equation where the
terms wH

k Vk,twk and σ̂ 2
k,t are treated as constants that are
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independent of wk . Hence, the general update rules of
CSV-AuxIVE are as follows:

rt =
√√
√√

K∑

k=1

∣
∣wH

k xk,t
∣
∣2 /σ̂ 2

k,t , (28)

Vk,t = Ê
[
ϕ(rt)xk,txHk,t

]
, (29)

ak,t = Ĉk,twk

wH
k Ĉk,twk

, (30)

σ̂k,t =
√
wH
k Ĉk,twk , (31)

wk =
( T∑

t=1

Vk,t

σ̂ 2
k,t

)−1 T∑

t=1

wH
k Vk,twk

σ̂ 2
k,t

ak,t , (32)

wk ← wk/

√√
√√

T∑

t=1
wH
k Vk,twk . (33)

The last step, which performs a normalization of the
updated separating vectors, has been found important to
the stability of the convergence. After the convergence
is achieved, the separating vectors are re-scaled using
least squares to reconstruct the images of the SOI on a
reference microphone [27].
In our implementation, we consider the standard non-

linearity ϕ(rt) = r−1
t proposed in [20], which is known

to be suitable for super-Gaussian signals such as speech.
For this particular choice, we propose one more modi-
fication in the proposed algorithm: compared to (28), rt
is put equal to

√∑K
k=1

∣
∣wH

k xk,t
∣
∣2. We have experienced

improved convergence speed with this modification. The
pseudo-code is summarized in Algorithm 1,

3.3 Semi-supervised CSV-AuxIVE
Owing to the indeterminacy of order in BSE it is not, in
general, known which source is currently being extracted.
The crucial problem is to ensure that the signal being
extracted actually corresponds to the desired SOI. In
BOGIVEw as well as in CSV-AuxIVE, this can be influ-
enced only through the initialization. The question of
convergence of the BSE algorithms has been considered in
[13].
Several approaches ensuring the global convergence

have been proposed, most of which are based on addi-
tional constraints assuming prior knowledge, e.g., about
the source position or a reference signal [18, 28–30].
Recently, an unconstrained supervised IVA using so-
called pilot signals has been proposed in [31]. The pilot
signal, which is assumed to be available as prior infor-
mation, is a signal that is mutually dependent with the
corresponding source signal. Therefore, the pilot signal
and the frequency components of the source have a joint

Algorithm 1: Pseudo-code of CSV-AuxIVE
Input: xk,t ,wini

k (k, t = 1, 2, . . . ), NumIter
Output: ak,t ,wk

1 foreach k = 1, . . . ,K, t = 1, . . . ,T do
2 Ĉk,t = Ê

[
xk,txHk,t

]
;

3 wk = wini
k /

(
wini
k
)
1;

4 end
5 Iter = 0;
6 repeat
7 foreach t = 1 . . .T do
8 foreach k = 1 . . .K do
9 σ̂k,t ←

√
wH
k Ĉk,twk ;

10 end

11 rt ←
√∑K

k=1
∣
∣wH

k xk,t
∣
∣2;

12 foreach k = 1 . . .K do
13 ak,t ← (

wH
k Ĉk,twk

)−1 (Ĉk,twk
)
;

14 Vk,t ← Ê
[
1
rt xk,tx

H
k,t

]
;

15 end
16 end
17 foreach k = 1 . . .K do
18 Compute wH

k according (32);

19 wk ← wk/
√∑T

t=1 wH
k Vk,twk ;

20 end
21 Iter ← Iter + 1;
22 until Iter < NumIter;

pdf. In the piloted IVA, the pilot signals are used as con-
stant “frequency components” in the joint pdf model,
which is helpful in solving the permutation problem as
well as the ambiguous order of the separated sources. In
[13], the idea has been applied in IVE, where the pilot
signal related to the SOI is assumed to be available.
Let the pilot signal (dependent on the SOI and indepen-

dent of the background) be represented on the tth block
by ot (ot is denoted without index k; nevertheless, it can
also be k-dependent). Let the joint pdf of st and ot be
p(st , ot). Then, similarly to (13), the pdf of the observed
data within the tth block is given by

px({xk}k,t) = p
({

wH
k xk,t

}
k,t , ot

)

×
K∏

k=1
pzk,t (Bk,txk,t)| detWk,t|2. (34)

Comparing this expression with (13) and taking into
account the fact that ot is independent of the mixing
model parameters, it can be seen that the modification of
CSV-AuxIVE towards the use of pilot signals is straight-
forward.
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In particular, provided that the model pdf
f
({

wH
k xk

}
k,t , ot

)
replacing the unknown p(·) meets

the conditions of Theorem 1, the piloted algorithm has
exactly the same steps as the non-piloted one with a sole
difference that the non-linearity ϕ(·) also depends on ot .
Therefore, the Eq. 28 will have form

rt =
√√
√
√

K∑

k=1

∣
∣wH

k xk,t
∣
∣2 + η2|ot|2, (35)

for t = 1, . . . ,T , where η is a hyperparameter controlling
the influence of the pilot signal [31].
Consequently, the semi-supervised of CSV-AuxIVE,

in this manuscript referred as piloted CSV-AuxIVE, is
obtained by replacing the update step (28) with (35).
Finding a suitable pilot signal poses an application-

dependent problem. For example, outputs of voice activity
detectors were used to pilot the separation of simulta-
neously talking people in [31]. Similarly, a video-based
lip-movement detection was considered in [32]. A video-
independent solution was proposed in [33] using spatial
information about the area in which the speaker is located.
Recently, the approach utilizing speaker identification was
proposed in [34] and further improved in [35]. All of
these approaches have been shown to be very useful, even
though the used pilot signals contain residual noise and
interference. The design of a pilot signal is a topic beyond
the scope of this paper. Therefore, in the experimental part
of this paper, we consider only oracle pilots as proof of
concept.

4 Experimental validation
In this section, we present results of experiments with
simulated mixtures as well as real-world recordings of
moving speakers. Our goal is to show the usefulness of
the CSV mixing model and to compare the performance
characteristics of the proposed algorithmwith other state-
of-the-art methods.

4.1 Simulated room
In this example, we inspect spatial characteristics of de-
mixing filters obtained by the blind algorithms when
extracting a moving speaker in a room simulated by the
image method [36].

4.1.1 Experimental setup
The room has dimensions 4 × 4 × 2.5 (width×length×
height) meters and T60 = 100 ms. A linear array of five
omnidirectional microphones is located so that its center
is at the position (1.8, 2, 1) m, and the array axis is parallel
with the room width. The spacing between microphones
is 5 cm.

The target signal is a 10 s long female utterance from
TIMIT dataset [37]. During speech, the speaker is mov-
ing at a constant speed on a 38◦ arc at a one-meter
distance from the center of the array; the situation is illus-
trated in Fig. 2a. The starting and ending positions are
(1.8, 3, 1) m and (1.2, 2.78, 1) m, respectively. The move-
ment is simulated by 20 equidistantly spaced RIRs on
the path, which correspond to half-second intervals of
speech, whose overlap was smoothed by windowing. As
an interferer, a point source emitting white Gaussian noise
is located at the position (2.8, 2, 1) m; that is, at a 1-m
distance to the right from the array.
The mixture of speech and noise has been processed in

order to extract the speech signal by the following meth-
ods: OGIVEw [13], BOGIVEw (the extension of OGIVEw
allowing for the CSV; derived in the supplementary mate-
rial of this article), OverIVA with m = 1 [22], which
corresponds with CSV-AuxIVE when T = 1, and CSV-
AuxIVE. All methods operate in the STFT domain with
the FFT length of 512 samples and 128 samples hop-size;
the sampling frequency is fs = 16 kHz. Each method has
been initialized by the direction of arrival of the desired
speaker signal at the beginning of the sequence. The other
parameters of the methods are listed in Table 1.
In order to visualize the performance of the extract-

ing filters, a 2 × 2 cm-spaced regular grid of positions
spanning the whole room is considered. Microphone
responses (images) of a white Gaussian noise signal emit-
ted from each position on the grid have been simulated.
The extracting filter of a given algorithm is applied to
the microphone responses, and the output power is mea-
sured. The average ratio between the output power and
the power of the input signals reflects the attenuation of
the white noise signal originating from the given position.

4.1.2 Results
The attenuation maps of the compared methods are

shown in Fig. 2b through 2f, and Table 2 shows the attenu-
ation for specific points in the room. In particular, the first
five columns in the table correspond to the speaker’s posi-
tions on the movement path at angles 0◦ through 32◦. The
last column corresponds to the position of the interferer.
Figure 2d shows the map of the initial filter correspond-

ing to the delay-and-sum (D&S) beamformer steered
towards the initial position of the speaker. The beam-
former yields a gentle gain in the initial direction with no
attenuation in the direction of the interferer.
The compared blind methods steer a spatial null

towards the interferer and try to pass through the tar-
get signal. However, OverIVA and OGIVEw tend to pass
through only a narrow angular range (probably the most
significant part of the speech). By contrast, the spa-
tial beam steered by CSV-AuxIVE towards the speaker
spans the whole angular range where the speaker has
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Fig. 2 Setup of the simulated room and the attenuation in dB achieved by DOA, OGIVEw, BOGIVEw, OverIVA, and CSV-AuxIVE from the experiment in
Section 4.1

appeared during the movement. BOGIVEw performs sim-
ilarly, however, its performance is poorer, perhaps due to
its slower convergence or proneness to getting stuck in a
local extreme. The convergence comparison of BOGIVEw
and CSV-AuxIVE is shown in Fig. 3. The nulls steered
towards the interferer by OverIVA and CSV-AuxIVE are
more attenuating compared to the gradient methods. In
conclusion, these results confirm the ability of the blind
algorithms to extract the moving source gained through
of the CSV mixing model. The results also show better
convergence properties of CSV-AuxIVE over BOGIVEw.

4.2 Moving speakers simulated by wireless loudspeaker
attached to turning arm

The goal of this experiment is to compare the perfor-

Table 1 Parameter setup for the tested methods in the
simulated room

Method # Iterations Step sizeμ Block size Nb

OGIVEw 1000 0.2 n/a

BOGIVEw 1000 0.2 250 frames

OverIVA 100 n/a n/a

CSV-AuxIVE 100 n/a 250 frames

mance of algorithms as they depend on the range and
speed of movements of the sources.

4.2.1 Experimental setup
We have recorded a dataset of speech utterances that were
played from a wireless loudspeaker (JBL GO 2) attached
to a manually actuated rotating arm. The length of each
utterance is 31 s. Sounds were recorded with 16 kHz sam-
pling rate using a linear array of four microphones with
16 cm spacing. The array center was placed at the arm’s
pivot. This allows the apparatus to simulate circular move-
ments of sources at a radius of approx. 1 m. The recording
setup was placed in an open-space 12 x 8 x 2.6 m room
with a reverberation time T60 ≈ 500ms. The recording
setup is shown in Fig. 4.

Table 2 The attenuation (dB) in selected points on the source
path and in the position of the interferer

0◦ 8◦ 16◦ 24◦ 32◦ Interferer

OGIVEw −1.09 −1.36 −2.02 −4.56 −5.08 −15.81

BOGIVEw −1.2 −2.14 −1.69 −3.12 −3.87 −15.86

OverIVA −5.85 −3.99 −3.08 −4.39 −5.12 −23.73

CSV-AuxIVE −3.22 −1.74 −1.27 −2.09 −2.67 −18.51
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Fig. 3 The convergence of CSV-AuxIVE and BOGIVEw in term of SIR improvement averaged over 200 randommixtures in the experiment of
Section 4.3; T60 = 100ms

The dataset consists of two individual, spatially sepa-
rated sources. The SOI is represented by a male speech
utterance and is confined to the angular interval from
0° through 90°. The interference (IR) is represented by
a female speech utterance and is confined to the interval
of −90° through 0°. The list of recordings is described in
Table 3. The recordings along with videos of the record-
ing process are available online (see links at the end of this
article).
Thirty-six mixtures were created by combining the SOI

and IR recordings in Table 3; the input SIR was set to
10 dB. The following three algorithms were compared:
CSV-AuxIVE with the length of blocks set to 100 frames,
the original AuxIVA algorithm [20], and a sequential on-
line variant of AuxIVA (On-line AuxIVA) from [17] with
the time-window length of 20 frames and the forgetting
factor set to 0.95. The algorithms operated in the STFT
domain with 1024 samples per frame and 768 samples

overlap. The off-line algorithms were stopped after 100
iterations. In case of AuxIVA and On-line AuxIVA, the
output channel containing the SOI was determined based
on the output SDR.
Performance was evaluated using segmental measures:

normalized SIR (nSIR), SDR improvement (iSDR), and the
average SOI attenuation (Attenuation); nSIR is the ratio
of the powers of the SOI and IR in the extracted signal
where each segment is normalized to unit variance; SDR
is computed using BSS_eval [38]. While iSDR and Atten-
uation reflect the loss of power of the SOI in the extracted
signal, nSIR reflects also the IR cancelation. The length of
segments was set to 1 s.

4.2.2 Results
The results in Fig. 5 show that AuxIVA and On-line
AuxIVA perform well only when the SOI is static. Their
performances drop when the SOImoves. On-line AuxIVA

Fig. 4 The recording setup for the experiment in Section 4.2. Black circles denote the position of microphones. The red and blue lines show the path
of the female and male speakers, respectively
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Table 3 Angular intervals and speed of SOI and IR movements in experiment 4.2

Recording index 1 2 3 4 5 6

Movement speed Static Slow Fast Slow Fast Very fast

Range of the movement: starting angle, ending angle

Static Small Small Large Large Large

SOI (male) − 45° − 55°, − 35° − 55°, − 35° − 90° ,0° − 90°, 0° − 90°, 0°

IR (female) 45° 35°, 55° 35°, 55° 0°, 90° 0°, 90° 0°, 90°

is slightly less sensitive to the SOI movement compared to
AuxIVA due to its adaptability. However, the overall per-
formance of On-line AuxIVA is low, because the algorithm
works with limited context.
CSV-AuxIVE shows significantly smaller sensitivity to

the SOI movements than the compared algorithms. This
is mainly reflected by Attenuation, which is only slightly
growing with the increasing range and speed of the SOI
movement. The higher performance of CSV-AuxIVE in
terms of iSDR and nSIR compared to AuxIVA and On-
line AuxIVA confirms the new ability of the proposed
algorithm gained due to the CSV mixing model.

The IR movements cause the performance of AuxIVA
and CSV-AuxIVE to decrease with the growing range of
the IR movement (small and large). The speed of move-
ment seems to play a minor role. This can be explained
by the fact that the off-line algorithms estimate time-
invariant spatial filters which project two distinct beams:
one towards the entire angular area occupied by the SOI
and one towards the area occupied by the IR. The for-
mer beam should pass the incoming signal through while
the latter beam should attenuate it. Provided that the esti-
mated filters satisfy these requirements, as long as the
sources stay within their respective beams, the speed with

Fig. 5 The accuracy of the blind extraction of the SOI in terms of iSDR, nSIR, and Attenuation in the experiment in Section 4.2. The indices on the SOI
and IR axes correspond with Table 3. Please note that, for better readability, the axes of the plots showing the Attenuation are reversed
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which they move does not matter. For the estimation of
the filters based on the CSV itself, the speakers should be
approximately static within each block as the mixing vec-
tors are assumed constant within the blocks. Hence, the
allowed speed should not be too high compared to the
block length.
In conclusion, the results reflect the theoretical capabil-

ities of the algorithms, or, more specifically, of the filters
that they can estimate. AuxIVA can steer only a narrow
beam towards the SOI, which can therefore be extracted
efficiently only if the SOI is not moving. On-line AuxIVA
can steer a narrow beams in the adaptive way, however,
the accuracy is lower due to a small context of data. CSV-
AuxIVE can reliably extract the SOI from a wider area
within the entire context of the data.

4.3 Real-world scenario using the MIRaGe database
This experiment is designed to provide an exhaustive test
of the compared methods in challenging noisy situations
where the target speaker is performing small movements
within a confined area.

4.3.1 Experimental setup
Recordings are simulated using real-world room impulse
responses (RIRs) taken from the MIRaGe database [39].
MIRaGe provides measured RIRs between microphones
and a source whose possible positions form a dense grid
within a 46 × 36 × 32 cm volume. MIRaGe is thus suit-
able for our experiment, as it enables us to simulate small
speaker movements in a real environment.
The database setup is situated in an acoustic laboratory

which is a 6 × 6 × 2.4 m rectangular room with variable
reverberation time. Three reverberation levels with T60
equal to 100, 300, and 600 ms are provided. The speaker’s
area involves 4104 positions which form the cube-shaped
grid with spacings of 2-by-2 cm over the x and y axes
and 4 cm over the z axis. MIRaGe also contains a com-
plementary set of measurements that provide information
about the positions placed around the room perimeter
with spacing of approx. 1 m, at a distance of 1 m from
the wall. These positions are referred to as the out-of-
grid positions (OOG). All measurements were recorded
by six static linear microphone arrays (5 mics per array
with the inter-microphone spacing of − 13, − 5, 0, + 5,
and + 13 cm relative to the central microphone); for more
details about the database, see [39].
In the present experiment, we use Array 1, which is

at a distance of 1 m from the center of the grid, and
the T60 settings of 100 and 300 ms. For each setting,
3840 noisy observations of a moving speaker were synthe-
sized as follows: each mixture consists of a moving SOI,
one static interfering speaker and noise. The SOI is mov-
ing randomly over the grid positions. The movement is
simulated so that the position is changed every second.

The new position is randomly selected from all positions
whose maximum distance from the current position is 4
in both the x and y axes. The transition between positions
is smoothed using the Hamming window of a length of
fs/16 with one-half overlaps. The interferer is located in a
random OOG position between 13 through 24, while the
noise signal is equal to a sum of signals that are located in
the remaining OOG positions (out of 13 through 24).
As the SOI and interferer signal, clean utterances of

4 male and 4 female speakers from the CHiME-4 [40]
dataset were selected; there are 20 different utterances,
each having 10 s in length per speaker. The noise signals
correspond to random parts of the CHiME-4 cafeteria
noise recording. The signals are convolved with the RIRs
to match the desired positions, and the obtained spatial
images of the signals on microphones are summed up so
that the interferer/noise ratio, as well as the ratio between
the SOI and interference plus noise, is 0 dB.
The methods considered in the previous sections are

compared. All these methods operate in the STFT domain
with an FFT length of 1024 and a hop-size of 256; the
sampling frequency is 16 kHz. The number of iterations
is set to 150 and 2,000 for the offline AFO-based and the
gradient-based methods, respectively. For the online Aux-
IVA, the number of iterations is set to 3 on each block. The
block length in CSV-AuxIVE and BOGIVEw is set to 150
frames. The online AuxIVA operates on block length of 50
frames with 75% overlap. The step-length in OGIVEw and
BOGIVEw is set to μ = 0.2. The initial separating vec-
tor corresponds to the D&S beamformer steered in front
of the microphone array. As a proof of concept for the
approaches discussed in Section 3.3, we also compare the
piloted variants of OverIVA and CSV-AuxIVE where the
pilot signal corresponds to the energy of ground truth SOI
on the frames.

4.3.2 Results
The SOI is blindly extracted from each mixture for the

IVE methods. For the IVA methods, the output channel
was determined by output SIR. The result is evaluated
through the improvement of the signal-to-interference-
and-noise ratio (iSINR) and signal-to-distortion ratio
(iSDR) defined as in [41] (SDR is computed after com-
pensating for the global delay). The averaged values of
the criteria are summarized in Table 4 together with the
average time to process one mixture. For a deeper under-
standing to the results, we also analyze the histograms of
iSINR by OverIVA and CSV-AuxIVE shown in Fig. 6.
Figure 6a shows the histograms over the full dataset of

mixtures, while Fig. 6b is evaluated on a subset of mixtures
in which the SOI has not moved away from the starting
position by more than 5 cm; there are 288 mixtures of this
kind. Now, we can observe two phenomena. First, it can
be seen that OverIVA yields more results below 10 dB in
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Table 4 The SINR improvement with standard deviation, SDR improvement with standard deviation and extraction fail percentage for
the MIRaGe database experiment

T60 100 ms T60 300ms Average

Mean iSINR
[dB]

Mean iSDR
[dB]

iSINR <−5
dB [%]

Mean iSINR
[dB]

Mean iSDR
[dB]

iSINR <−5
dB [%]

time per
mixture [s]

AuxIVA 7.23 ± 7.78 4.56 ± 2.15 0 5.44 ± 6.43 4.13 ± 1.88 0 11.37

AuxIVA online 5.35 ± 6.73 3.96 ± 3.01 0 4.12 ± 5.65 3.12 ± 1.98 0 16.32

OverIVA 7.55 ± 8.33 3.96 ± 2.14 8.83 5.34 ± 7.01 3.82 ± 2.00 8.43 8.00

CSV-AuxIVE 9.45 ± 7.24 4.02 ± 1.27 6.72 6.84 ± 6.52 3.48 ± 1.17 6.71 9.14

Piloted OverIVA 11.99 ± 5.42 5.10 ± 3.37 0.65 9.67 ± 4.58 3.00 ± 2.55 0.26 8.16

Piloted CSV-AuxIVE 13.72±3.51 6.14±2.13 0 11.41±3.54 4.73±1.91 0 9.14

BOGIVEw 4.32 ± 5.15 3.14 ± 1.56 15.32 2.28 ± 3.15 1.98 ± 1.02 22.15 86.45

OGIVEw 3.85 ± 4.33 3.58 ± 1.98 22.10 1.01 ± 2.17 2.14 ± 1.45 12.23 73.15

Fig. 6a than in Fig. 6b. This confirms that OverIVA per-
forms better for the subset of mixtures where the SOI
is almost static. The performance of CSV-AuxIVE tends
to be rather similar for the full set and the subset. CSV-
AuxIVE thus yields a more stable performance than the
staticmodel-basedOverIVAwhen the SOI performs small
movements. Second, the piloted methods yield iSINR <

−5 dB in a much lower number of trials than the non-
piloted methods, as confirmed by the additional criterion
in Table 4. This shows that the piloted algorithms have
significantly improved global convergence. Note that IVA
algorithms achieved iSINR< −5 dB in 0% of cases. For the
IVE algorithms, the percentage of iSINR < −5 dB reflects
the rate of extractions of a different source. In contrast,
for IVA algorithms, the sources are either successfully
separated or not, e.g. iSINR is around 0 dB.
4.4 Speech enhancement/recognition on CHiME-4

datasets
We have verified the proposed methods using the noisy
speech recognition task defined within the CHiME-4
challenge, specifically, the six-channel track [40].

4.4.1 Experimental setup
This dataset contains simulated (SIMU) and real-world4
(REAL) utterances of speakers in multi-source noisy envi-
ronments. The recording device is a tablet with six micro-
phones, which is held by a speaker. Since some recordings
involve microphone failures, the method from [42] is used
to detect these failures. If detected, the malfunctioning
channels are excluded from further processing of the given
recording.
The experiment is evaluated in terms of word error

rate (WER) as follows: the compared methods are used
to extract speech from the noisy recordings. Then, the
enhanced signals are forwarded to the baseline speech
recognizer from [40]. TheWER achieved by the proposed

4Microphone 2 is not used in the case of the real-world recordings as, here, it
is oriented away from the speaker.

methods is compared with the results obtained on unpro-
cessed input signals (Channel 5) and with the techniques
listed below.
BeamformIt [43] is a front-end algorithm used within

the CHiME-4 baseline system. It is a weighted delay-and-
sum beamformer requiring two passes over the processed
recording in order to optimize its inner parameters. We
compare the original implementation of the technique
available at [44].
The generalized eigenvalue beamformer (GEV) is a

front-end solution proposed in [45, 46]. It represents the
most successful enhancers for CHiME-4 that rely on deep
networks trained for the CHiME-4 data. In the imple-
mentation used here, a re-trained voice-activity-detector
(VAD) is used where the training procedure was kindly
provided by the authors of [45]. We utilize the feed-
forward topology of the VAD and train the network using
the training part of the CHiME-4 data. GEV utilizes the
blind analytic normalization (BAN) postfilter to obtain its
final enhanced output signal.
All systems/algorithms operate in the STFT domain

with an FFT length of 512, a hop-size of 128 and use
the Hamming window; the sampling frequency is 16 kHz.
BOGIVEw and CSV-AuxIVE are applied with Nb = 250,
which corresponds to the block length of 2 s. This value
has been selected to optimize the performance of these
methods. All of the proposed methods are initialized by
the relative transfer function (RTF) estimator from [47];
Channel 5 of the data is selected as the target (the spa-
tial image of the speech signal of this channel is being
estimated).

4.4.2 Results
The results shown in Table 5 indicate that all methods are
able to improve the WER compared to the unprocessed
case. The BSE-based methods significantly outperform
BeamformIt. The GEV beamformer endowed with the
pretrained VAD achieves the best results. It should be
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Fig. 6 Histograms of SINR improvement achieved by the variants of CSV-AuxIVE in the experiment of Section 4.3

noted that the rates achieved by the BSE techniques are
comparable to GEV even without a training stage on any
CHiME-4 data.
In general, the block-wise methods achieve lower

WER than their counterparts based on the static mix-
ing model; the WER of BOGIVEw is comparable with
CSV-AuxIVE. A significant advantage of the lattermethod
is the faster convergence and, consequently, much lower
computational burden. The total duration of the 5920
files in the CHiME-4 dataset is 10 h and 5 min. The
results presented for BOGIVEw have been achieved
after 100 iterations on each file, which translates into
10 hours and 30 minutes5 of processing for the whole
dataset. CSV-AuxIVE is able to converge in 7 itera-
tions; the whole enhancement was finished in 1 h and
2 min.
An example of the enhancement yielded by the block-

wise methods on one of the CHiME-4 recordings is shown
in Fig. 7. Within this particular recording, in the inter-
val 1.75–3 s, the target speaker was moved out of its
initial position. The OverIVA algorithm focused on this
initial direction only, resulting in vanishing voice dur-
ing the movement interval. Consequently, the automatic
transcription is erroneous. In contrast, CSV-AuxIVE is
able to focus on both positions of the speaker and recov-
ers the signal of interest correctly. The fact that there
are few such recordings with significant speaker move-
ment in the CHiME-4 datasets explains why the achieved
improvements of WER by the block-wise methods are
small.

5The computations run on a workstation using an Intel i7-2600K@3.4GHz
processor with 16GB RAM.

5 Conclusions
The ability of the CSV-based BSE algorithms to extract
moving acoustic sources has been corroborated by the
experiments presented in this paper. The blind extraction
is based on the estimation of a separating filter that passes
signals from the entire area of the source presence. This
way, the moving source can be extracted efficiently with-
out tracking in an on-line fashion. The experiments show
that these methods are particularly robust with respect to
small source movements and effectively exploit overdeter-
mined settings, that is, when there is a higher number of
microphones than that of the sources.
We have proposed a new BSE algorithm of this kind,

CSV-AuxIVE, which is based on the auxiliary function-
based optimization. The algorithm was shown to be faster
in convergence compared to its gradient-based counter-
part. Furthermore, we have proposed the semi-supervised
variant of CSV-AuxIVE utilizing pilot signals. The exper-
iments confirm that this algorithm yields stable global
convergence to the SOI.

Table 5 WERs [%] achieved in the CHiME-4 challenge

System Development Test

REAL SIMU REAL SIMU

Unprocessed 9.83 8.86 19.90 10.79

BeamformIt 5.77 6.76 11.52 10.91

GEV (VAD) 4.61 4.65 8.10 5.99

OGIVEw 5.59 4.96 9.51 6.34

BOGIVEw 5.49 4.91 9.19 6.44

OverIVA 5.97 5.21 10.43 6.82

CSV-AuxIVE 5.65 4.83 9.88 6.46
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Fig. 7 Comparison of enhanced signals yielded from a recording of a moving speaker by OverIVA and CSV-AuxIVE

For the future, the proposed methods provide us with
alternatives to the conventional approaches that adapt to
the source movements through application of static mix-
ing models on short time-intervals. Their other abilities,
for example, the adaptability to high speed speaker move-
ments and the robustness against a highly reverberant and
noisy environment, pose an interesting topic for future
research [35].
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34. J. Janský, J. Málek, J. Čmejla, T. Kounovský, Z. Koldovský, J. Žd’ánský, in
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Adaptive blind audio source extraction
supervised by dominant speaker identification using x-vectors (IEEE,
Piscataway, 2020), pp. 676–680

35. J. Malek, J. Jansky, T. Kounovsky, Z. Koldovsky, J. Zdansky, in Accepted for
ICASSP2021. Blind extraction of moving audio source in a challenging
environment supported by speaker identification via X-vectors (IEEE,
Piscataway, 2021)

36. J. B. Allen, D. A. Berkley, Image method for efficiently simulating
small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

37. J. S. Garofolo, et al., TIMIT Acoustic-Phonetic Continuous Speech Corpus
LDC93S1. (Linguistic Data Consortium, Philadelphia, 1993)

38. E. Vincent, R. Gribonval, C. Fevotte, Performance measurement in blind
audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4),
1462–1469 (2006)
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