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Abstract

Conventional automatic speech recognition (ASR) and emerging end-to-end (E2E) speech recognition have achieved
promising results after being provided with sufficient resources. However, for low-resource language, the current ASR
is still challenging. The Lhasa dialect is the most widespread Tibetan dialect and has a wealth of speakers and
transcriptions. Hence, it is meaningful to apply the ASR technique to the Lhasa dialect for historical heritage
protection and cultural exchange. Previous work on Tibetan speech recognition focused on selecting phone-level
acoustic modeling units and incorporating tonal information but underestimated the influence of limited data. The
purpose of this paper is to improve the speech recognition performance of the low-resource Lhasa dialect by
adopting multilingual speech recognition technology on the E2E structure based on the transfer learning framework.
Using transfer learning, we first establish a monolingual E2E ASR system for the Lhasa dialect with different source
languages to initialize the ASR model to compare the positive effects of source languages on the Tibetan ASR model.
We further propose a multilingual E2E ASR system by utilizing initialization strategies with different source languages
and multilevel units, which is proposed for the first time. Our experiments show that the performance of the proposed
method-based ASR system exceeds that of the E2E baseline ASR system. Our proposed method effectively models the
low-resource Lhasa dialect and achieves a relative 14.2% performance improvement in character error rate (CER)
compared to DNN-HMM systems. Moreover, from the best monolingual E2E model to the best multilingual E2E
model of the Lhasa dialect, the system’s performance increased by 8.4% in CER.
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1 Introduction
The number of existing languages globally is approx-
imately 7000, and most automatic speech recognition
(ASR) efforts deal with languages for which large cor-
pora are readily available, such as Mandarin, English, and
French. However, many underresourced languages, such
as Tibetan, lack speech data for training ASR systems
due to the small population of speakers. Currently, the
culture of Tibet is going through radical modernization
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transformations. Thus, protecting its cultural diversity
warrants further attention. The Tibetan language, as the
carrier of its culture, should be preserved, and people
have attached more importance to the technical contri-
butions of Tibetans. In the Tibetan language family, the
Lhasa Tibetan, Khams Tibetan, and Amdi Tibetan are
the dominant dialects. The Lhasa dialect spoken in the
most populated region of central Tibet has a large canon
of Tibetan manuscripts over its long history. Hence, it
becomes apparent that applying natural language pro-
cessing and ASR techniques significantly contributes to
preserving the Tibetan language.
Traditional ASR systems require an acoustic model

(AM), a language model (LM), and a pronunciation
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dictionary. In the 1980s, ASR research concentrated on
the statistical modeling framework based on the hidden
Markov model (HMM) [1]. As is well known, a real-
istic speech signal is inherently highly variable (due to
variations in pronunciation and accent). Therefore, the
cardinal form of the HMM is a statistical model that uses a
Markov chain to represent the linguistic structure. Mean-
while, it also uses a set of probability distributions to
account for the variability in the acoustic realization utter-
ances [2].With the emergence of artificial neural networks
(ANNs), the research for ASR has centered on integrating
neural networks with the essential structure of a hidden
Markov model to take advantage of the temporal han-
dling capability of the HMM. In past decades, deep neural
networks (DNNs) have advanced AM remarkably [3–5].
Even thoughDNN-based acousticmodels have obtained

significant improvement on ASR systems [6–8], the lim-
itations resulting from insufficient resources are obvious.
Because of relatively scarce resources and the low num-
ber of speakers, the Lhasa dialect does not yet have a
mature acoustic corpus for public access. Accordingly,
research on Tibetan ASR has previously concentrated on
selecting acoustic modeling units [9], incorporating effec-
tive tonal information [10] and improving Tibetan ASR
systems based on lattice-free maximum mutual informa-
tion (LFMMI) [11], transfer learning [12], and variational
modeling units [10]. Due to the abovementioned resource
limitations, the development of Tibetan ASR systems has
come to a halt, which has created an urgent need for novel
methods.
In recent years, end-to-end (E2E) neural networks have

emerged and been applied to ASR tasks [13–17]. The
E2E ASR network directly recognizes speech represen-
tations into text without a lexicon since it handles AM
and LM in a single network without expert knowledge
of languages. Generally, it is a simple and straightfor-
ward method for directly obtaining excellent recogni-
tion results. The sequence labeling problem between
variable-length speech frame inputs and label outputs
(e.g., phone, character, syllable, word, etc.) has been solved
to achieve promising results on ASR tasks. Furthermore,
the E2E network offers a broader choice ofmodeling units.
Different types of E2E models have been proposed,
i.e., connectionist temporal classification (CTC) [18, 19],
attention-based encoder-decoder E2E [20, 21], E2E
LFMMI [22], and joint CTC and attention E2E models
(CTC/attention) [23–26].
More recently, the E2E transformer model [27] was pro-

posed to address neural machine translation and applied
to ASR tasks [28–31] and achieved superior performance
in certain tasks. Researchers further applied transformer-
basedmodels to deal with low-resource languages [32, 33].
However, their work only focused on multilingual train-
ing without language-specific trainingmethods, especially

for Tibetan. Transfer learning, first proposed in the low-
resource machine translation field [34], has been used
to improve the low-resource ASR performance by ini-
tializing with high-resource languages [35, 36]. Further-
more, the multilingual training method also improved
low-resource ASR tasks, thus allowing the model to learn
the information across languages [37]. However, the out-
of-vocabulary (OOV) problem is caused by the limited
training set, and given that the E2E ASRmodels are always
data-hungry, this remains a challenge for low-resource
ASR tasks.
In our previous work [38], highly compressed mod-

eling units (Tibetan morphemic radicals) were used to
solve the OOV problem, which proved to be effective in
experiments. The present work further investigates the
initialization strategy with different languages and pro-
poses a novel multilingual transformer-based ASR system
for the Lhasa dialect. We provide more detailed back-
ground knowledge and explain the technology descrip-
tions as follows. First, the ASR model is trained with
different source languages closely related to Tibetan to
evaluate the positive effects of different source languages
on the Tibetan ASR model. An effective method for
this is to select a proper well-resourced language as a
source language or joint-training language. Second, a
novel Lhasa dialect ASR system is proposed to be initial-
ized by a well-resourced language. It is then fine-tuned
with multilingual training by four joint-training languages
and multilevel modeling units (characters and radicals in
Tibetan). In the training period, different modeling units
are regarded as separate languages. The low-resource
problem can be solved to a certain extent using this
strategy.
The rest of this paper is organized as follows. The

related studies are reviewed in Section 2. In Section 3, our
unique optimization method, which is proposed for the
first time in this paper, is introduced. In Section 4, the task
data are evaluated, and the baseline systems are trained.
In Section 5, we use the proposed methods to improve the
end-to-end ASR system for the Lhasa dialect. In Section 6,
we conclude.

2 Related works
The models and techniques most related to this paper are
summarized as follows.

2.1 End-to-end transformer model
The architecture of the ASR transformer stacks multi-
head attention (MHA) and positionwise fully connected
layers for both the encoder and the decode. Each trans-
former encoder and decoder is a stack of N blocks. The
lth block in the decoder maps the input sequence X =
{x1..., xn} to the continuous representations Z = {z1..., zn}.
Given Z, the decoder generates the output sequence Y =
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{y1..., yn}. The detailed radical roots for the transformer
are described as follows.
Since the transformer model relies on a self-attention

mechanism with no recurrence, the model cannot handle
the sequential order of the inputs. For this reason, posi-
tional encodings are applied to the input token embed-
dings to provide positional information in the model.

2.1.1 Positional encoding
Since the transformer model relies on a self-attention
mechanism with no recurrence, the model cannot handle
the sequential order of the inputs. For this reason, posi-
tional encodings are applied to the input token embed-
dings to provide positional information in the model.

Xl
i = embt[wi]+embp[ i], (1)

where wi is the ith input token, Xl is the input sequence of
the lth block, and embt and embp denote a learned token
embedding matrix and a learned positional embedding
matrix, respectively.

2.1.2 Multihead self-attention
The attention function can be described as mapping a
query to an output with a set of key-value pairs. The out-
put is a weighted sum of the values. We denote queries,
keys, and values asQ, K, and V, respectively. Following the
original implementation [27], scaled dot-product atten-
tion is employed as the attention function. Hence, the
output can be calculated as

A(Q,K ,V ) = S
(
QKT√
dk

)
V , (2)

where A denotes the attention function, S is the softmax
function, and dk is the dimension of key vectors.
The purpose of multihead attention is to compute mul-

tiple independent attention heads in parallel and then
concatenate the results and project again. The multihead
self-attention in the lth block can be calculated as

MHD(Xl) = Concat(h1.., hr)WO, (3)

hi = A(XlWQ
i ,XlWK

i ,XlWV
i ), (4)

where MHD denotes multihead self-attention, Xl is the
input sequence of the lth block, r is the number of heads,
andWQ

i ,WK
i ,WV

i , andWO are parameter matrices.

2.1.3 Positionwise feedforward layer
The second sublayer in a block is the positionwise feed-
forward layer, which is applied to each position separately
and independently. The output of this layer can be calcu-
lated as

FFN(x) = max(0, x · W1 + b1)W2 + b2, (5)

where FFN denotes the feedforward layer,W1 andW2 are
parameter matrices, and b1 and b2 are parameter biases.
Themax function is used to compare the value of x ·W1 +
b1 with the 0 vector and outputs a larger value.

2.1.4 Residual connection and layer normalization
The residual connection is added around the two sublay-
ers followed by layer normalization. The output of the lth
block can be calculated as

Hl = LN(MHD(Xl) + Xl), (6)

Xl+1 = LN(FFN(Hl) + Hl). (7)
where LN denotes layer normalization,Hl is the output of
layer normalization, andXl+1 is the output of the lth block
and the input of the l + 1th block.

2.2 Transformer-based end-to-end ASR systems
2.2.1 Monolingual ASR tasks
The transformer-based model [27] is a known solution
that improves various ASR tasks [28, 29, 31]. To this end,
speech features are transformed and normalized into an
appropriate dimension for inputting to the model. The
transformer model for the machine translation task can
be applied to speech recognition tasks. A significant dif-
ference from the standard E2E model [20, 21] is that
the transformer-based acoustic model relies on nonre-
currence radicals [27], multihead self-attention (MHA),
positional encoding (PE), and positionwise feedforward
networks (PFFN), as mentioned in Section 2.1.
The ASR-transformer encoder maps an input sequence

to a sequence of intermediate representations as to the
input to the ASR-transformer decoder, which generates
an output sequence of symbols (e.g., phonemes, sylla-
bles, words, subwords, or words). A monolingual model
chooses different modeling units, such as phonemes,
morphemes, words, and subwords [39]. In contrast, the
transformer model is powerful for learning the mappings
between acoustic features and sentences in the training
period and adopting the knowledge to recognize unseen
acoustic features in the decoding process. It has made
significant progress on the public corpus and revealed
the powerful advantages of the multihead self-attention
mechanism.

2.2.2 Multilingual ASR tasks
The multilingual transformer resembles previous mono-
lingual transformer models in that both are a stack
of multilayer encoder-decoder units that use the mul-
tihead self-attention mechanism and position feedfor-
ward network to model the acoustic feature sequences.
The softmax layer in the decoder is the only distinc-
tion between the two models. In the monolingual trans-
former model, the final output node is monolingual, while
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in the multilingual counterpart, the final output node
is multilingual with mixed modeling units (Tibetan and
Chinese characters, for example) of multiple languages.
While the multilingual DNN model has different soft-
max layers for different languages, the multilingual trans-
former model has a single softmax layer without language
identification.
Generally, the transformer can choose multiple mod-

eling units. This idea originates from the general phone
set. It also has no requirement for the consistency of
different languages’ modeling units, which means it has
little dependence on expert knowledge. Taking Chinese
and English as examples, it is feasible to jointly train
Chinese characters and English words when modeling
similar languages. The system is improved for perfor-
mance and robustness by using the subwords as modeling
units.

2.3 Background knowledge of Lhasa Tibetan language
As we introduced in Section 1, the Tibetan language
belongs to the Sino-Tibetan family and includes three
dialects: Lhasa Tibetan, Khams Tibetan, and Amdo
Tibetan. The geographical distribution is as shown in
Fig. 1.
As shown in Fig. 2, a typical Lhasa Tibetan character

has a set of essential radicals root script (Root. ), prescript
(Pre. ), superscript (Super. ), subscript (Sub. ), vowels (Vo.
), and postscript (Post. ) to express a wide range of gram-
matical categories and speech changes (e.g., number, tense
and case), thus resulting in an extensive vocabulary. Thus,

ASR performance can be affected by the phone set defined
by different combinations of these radicals. The number
of actual initials in the Lhasa dialect is 28, while Tibetan
finals depend on the possible combinations of vowels and
character postscripts.

3 Proposedmethod for modeling low-resource
Tibetan dialect

In this section, our novel modeling method is introduced
in detail.

3.1 Tibetan radical modeling unit
The rules for assembling and disassembling Tibetan char-
acters and radicals are shown in Fig. 3. A Tibetan char-
acter is further segmented into a sequence of subcharac-
ter tokens. The vertically stacking radicals (superscript,
ROOT script, subscript, and vowels) in a character are
separated and treated as individual units. A boundary
marker <-> is used between two consecutive charac-
ters. Linguists have confirmed that the original charac-
ters can be recovered quickly with the existing bound-
ary marker <-> and radicals. Thus, the set of sub-
character units called basic-57 consists of 56 Tibetan
radicals and a boundary marker [38]. Of course, some
languages have a similar structure to Tibetan charac-
ters and can be disassembled and combined. There-
fore, the idea of creating a coarse-grained modeling
unit can also be applied to languages with such char-
acteristics, but it is not a standard method in any lan-
guage.

Fig. 1 Three major Tibetan dialects
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Fig. 2 The structure of a character in the Tibetan writing systems

Fig. 3 Segmenting characters to subcharacter units

Fig. 4 A brief summary of language family

3.1.1 Monolingual baseline systems
In this study, Tibetan characters are primarily used as
a coarse-grained modeling unit to build a character-
level baseline system on the E2E transformer architec-
ture. However, due to a lack of resources, modeling
with character-level granularity may result in sparse data.
According to the composition of Tibetan characters, we
further choose Tibetan radicals (basic-57) as modeling
units to build a radical-level baseline system. After sig-
nificantly compressing the word-level modeling units, the
number of modeling units is reduced by two orders of
magnitude to alleviate sparse training data on the small-
scale training set.

3.2 Proposed transfer learning strategies for
low-resource languages

There are many strategies to solve the problem of data
sparsity. To this end, two typical methods were employed
and then combined with selected source languages in this
study.

3.2.1 Initialization strategy
The languages of the world have many differences in
pronunciation, word formation, and grammar, but some
languages have certain similarities. The main criterion for
evaluating the similarity among languages is the classifi-
cation of language families. It is natural to believe that
using languages similar to the Lhasa Tibetan dialect, espe-
cially those in the same language family (e.g., Mandarin
in Fig. 4), would lead to a well-trained ASR model to
efficiently initialize the Lhasa dialect ASR model. There-
fore, we chose several resource-rich languages in the same
language family as the source languages to pretrain the
model for our Tibetan ASR task. After pretraining, the
source language E2E model with optimal performance
was selected as an initialization model.
In addition, three relatively widespread languages

(Bengali, Nepali, and Sinhalese) in Southern Asia were
included from OpenSLR1 as the basis for compara-
tive experiments. Bengali is the official language of
1http://www.openslr.org

http://www.openslr.org
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Bangladesh, West Bengal, and the Tripura states in India,
which comprise approximately 270 million people. Nepali
is spoken in Nepal, Bhutan, and some regions of India. It
is the official language of Nepal, which has a population
of approximately 16 million speakers. Sinhalese is the pri-
mary, official language of Sri-Lanka and has more than
13 million speakers. Although these languages belong to
another language family, they have the same character
structure as Tibetan, and all four languages are deeply
affected by the ancient Sanskrit language.
This optimization strategy is specifically designed for

low-resource speech recognition tasks on the transformer.
It can compensate for the data-hunger problem of end-to-
endmodels by sharing the parameters of the resource-rich
speech recognition model. In this paper, we compare the
contribution of different source languages to the Lhasa
dialect ASR model.

3.2.2 Multilingual training
Our multilingual system is based on two types of mod-
eling units and several highly related and resource-rich
languages to jointly train the initialization model. The
transcriptions on the resources were labeled with dif-
ferent language tags. The two different modeling units
also worked as two different languages, similar to those
operating in the self-fusion system. This system performs
speech recognition and language identification; hence, it
improves the accuracy of Lhasa dialect speech recognition
by incorporating information across languages.
For multilingual training, several ASR models with dif-

ferent source languages as initialization models are built
first and fine-tuned with the Lhasa dialect training set
(Lhasa-TRN) to compare the effectiveness of using differ-
ent source languages. Second, a novel Lhasa dialect ASR
system was initialized by a resource-rich language, and
then fine-tuned for multilingual training by using four
joint-training languages and multilevel modeling units.

4 Task description and baseline systems
In this section, we will describe our dataset and experi-
mental settings for baseline systems.

4.1 Datasets and the DNN-HMMASR system for Lhasa
dialect

The Lhasa speech corpus contains 35.82-hour speech data
corresponding to more than 38,700 sentences collected
from 13 male and 10 female native Lhasa Tibetan speak-
ers. The recording script is mainly composed of declara-
tive sentences covering a wide range of topics. The speech
signal is sampled at 16 kHz with 16-bit quantization.
Table 1 summarizes the training set (Lhasa-TRN), devel-
opment set (Lhasa-DEV), and testing set (Lhasa-TST).
The pronunciation dictionary is provided by the Insti-

tute of Ethnology and Anthropology of the Chinese

Table 1 Speech corpus of Lhasa dialect

Datasets #Speakers #Utterances Hours

Training (Lhasa-TRN) 10M + 7F 36,090 31.9

Development (Lhasa-DEV) 3M + 3F 1,700 1.5

Testing (Lhasa-TST) 3M + 3F 2,664 2.4

Academy of Social Sciences. The dictionary uses the rules
for combinations of initials and vowels containing 29 ini-
tials and 48 finals. The dictionary has 2100 entries and
covers all Tibetan characters appearing in the Tibetan
Lhasa dialect database. This set of pronunciation dic-
tionaries will be used to construct the decoder in the
experiment to build a hybrid speech recognition system.
The E2E framework does not rely on this pronunciation
dictionary.
The training data for the language model used in this

paper contain two parts: Tibetan text data obtained from
Wikipedia and teaching materials from middle schools in
five Tibetan provinces. In total, there are 14,430 Tibetan
sentences. The language model uses a 3-gram model and
the Kneser-Ney smoothing method. This language model
is also not used for transformer modeling in this paper.
We use the same experimental settings as [38] to build our
DNN-HMM ASR system. The ASR performance of their
system was 35.9% of CER%.

4.2 The monolingual end-to-end ASR baseline systems
for Lhasa dialect

In this section, we build twomonolingual E2E transformer
speech recognition systems using the Lhasa dialect only.
Comparedwith the hybrid speech recognition framework,
the dataset of the transformer framework is the same as
that of the hybrid framework.
As mentioned above, the two modeling units are not

related to the pronunciation dictionary used to model
the Lhasa dialect. For the character-level modeling unit, a
total of 2072 Tibetan characters were obtained from the
transcriptions of audio data in the training set. The sub-
character unit set is basic-57, consisting of 56 Tibetan rad-
icals and a boundary marker, as introduced in Section 3.1.
Four additional tags are added to each modeling unit

table, namely, OOV tags (UNK), fill tags (PAD), start
tags (SENT), and end tags (SENT) to accommodate the
transformer model. Since the transformer-based ASR is
a sequence-level task, the former two types of tags are
always used to represent the out-of-vocabulary issue and
used to fill the shorter sentence. In contrast, the latter two
represented the starting and ending of a sentence during
the decoding stage. Therefore, there are 2076 character-
level Lhasa dialect modeling units and 61 radical-level
Lhasa dialect modeling units used to build monolin-
gual transformer-based speech recognition systems based
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Table 2 Major experimental settings

Model structure

Attention-heads 8 Decoder-blocks 6

Hidden-units 512 Residual-drop 0.3

Encoder-blocks 6 Attention-drop 0.0

Training settings

Max-length 5000 GPUs (K40m) 4

Tokens/batch 10000 Warmup-steps 12000

Epochs 30 Steps 300000

Label-smooth 0.1 Optimizer Adam

Testing settings

Ave. chkpoints Last 20 Batch-size 100

Length-penalty 0.6 Beam-size 13

Max-length 50 GPUs (K40m) 4

on random initialization. All experiments are based on
the implementation of transformer-based neural machine
translation (NMT) [27] in tensor2tensor 2. The training
and testing settings are similar to [31] and listed in Table 2.
The experiment uses 40-dimensional Fbank features

to characterize the original audio data, with a window
length of 25 ms and a frameshift of 10 ms. Conventional
operations, such as CMVN, are carried out with first-
order and second-order difference calculations. To adapt
to the transformer model, referring to the feature pro-
cessing method [40], first stitch the current frame and
the 3 adjacent frames on its left side and then down-
sample 3 frames to prevent feature redundancy. There-
fore, the actual acoustic feature dimension is 480. Feature
extraction experiments are also performed using the Kaldi
toolbox.
The Tibetan character- and radical-level modeling units

randomly initialize all model parameter settings with the
31.9-hour Lhasa dialect training set. In the testing period,
the speech sequences from the test set (Lhasa-TST) are
decoded, and the character error rate (CER%) is used to
evaluate our models. When using Tibetan radical model-
ing units, combination postprocessing must restore it to
a Tibetan sequence and calculate the CER. The decoded
sequence is a series of Tibetan radical sequences contain-
ing word boundary markers. The following radical-based
experiments are processed in this way.
In Table 3, Char. with no pretraining is an E2E model

that selects Tibetan characters as modeling units, while
Subchar. with no pretraining selects Tibetan radicals as
modeling units. The performances of the two models
trained with a random initialization were rather poor
(97.94% and 58.63%, respectively), probably because of

2https://github.com/tensorflow/tensor2tensor

Table 3 Performance of Lhasa dialect ASR systems with four
source languages as pretrained models

Pretrainedmodel Char. (%) Subchar. (%) Ave. CER (%)

No pretraining 97.94 58.63 78.29

Aishell-1 train 37.19 34.31 35.75

Aishell-1 train_sp 35.95 33.64 34.80

Sinhala train 35.81 35.37 35.59

Sinhala train_sp 35.66 35.56 35.61

Bengali train 38.16 35.81 36.99

Bengali train_sp 35.87 34.79 35.33

Nepali train 36.40 35.14 35.77

Nepali train_sp 38.02 37.14 37.58

The ASR model initialized with Aishell-1 train_sp significantly (the two-tailed t test at
p value <0.05) outperforms other models

relatively scarce training data. In contrast, the parame-
ters of the transformer-based acoustic model are relatively
large (more than 200 M). In the next sections, the other
proposed methods will be introduced to maximize the use
of our limited data.

5 The improved end-to-end ASR systems for
Lhasa dialect

In this section, our new method is introduced to improve
E2E ASR systems based on the three proposed methods.

5.1 Effective model initialization schemes
Based on our proposed initialization method, a language
similar to Tibetan is selected from the language family
to build a well-trained transformer model as the initial-
ization model and to compensate for the resource-poor
training data. The original softmax layer is replaced with
the language-specific and randomly initialized softmax
layer. In this paper, a well-trained transformer-based ASR
model (8 head-attention, 6 encoder-blocks and 6 decoder-
blocks with 512 nodes) with a CER of 9.0% is regarded as
the initialization model. This model is trained using 178
hours of Mandarin speech data selected from the Aishell
dataset [41]. We also select three relatively resource-
rich languages (Bengali, Nepali, and Sinhalese) similar to
Tibetan to construct the initialization models mentioned
in Section 3.2. A speed perturbation is utilized to augment
the data three times. The specific duration is shown in
Table 4.
The Aishell-1 database was trained on the training set

(train) and the training set (train_sp) with triple speed

Table 4 Comparison of the duration of the four source languages

Duration (hours) Aishell-1 Sinhala Bengali Nepali

train 150.9 214.6 214.5 153.6

train_sp 455.6 648.2 647.7 464.0

https://github.com/tensorflow/tensor2tensor
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perturbation with word error rates of 8.74% and 7.46%,
respectively. The trainings on the Nepali database using
the same sets resulted in 17.80% and 14.49% word error
rates (WERs), respectively; on the Bengali database, they
obtained 19.70% and 16.04% WERs, respectively; and on
the Sinhala database, they obtained 23.76% and 18.60%
WERs, respectively. The parameters of each source lan-
guage model are transferred to the speech recognition of
the Lhasa dialect. The contribution of the selected trans-
former models trained by the four source languages to the
monolingual ASR system is shown in Table 3.
In Table 3, Aishell-1 train_sp significantly outperforms

other models (i.e., the two-tailed t test at p value < 0.05).
The Tibetan subcharacter-based modeling units perform
better than the Tibetan character-level modeling units.
The Tibetan subcharacter-level modeling units obtained
the best performance at 33.64% CER with the Aishell-1
train_sp data, which significantly exceeded the baseline
system performance on the hybrid speech recognition
framework. Hence, using a highly relevant language, espe-
cially in the same language family, as a source language
effectively initializes the target transformer model.

5.2 The self-fusion end-to-end ASR system for the Lhasa
dialect

In this section, the system will be self-fused by train-
ing it using two different levels of modeling units, which
are regarded as two languages. This method was pro-
posed in our previous work [38], but the model was
initialized by 178-h speech data of Aishell-1 in [38]. It is
worth mentioning that train_sp of the Aishell-1 database
is used, as shown in Table 4, to initialize the transformer
model, which is the best initialization method shown in
Section 5.1.
In our experiment, the transformer model was trained

with basic-57 and Char. 2072 together based on the mul-
tilingual training method. To distinguish between the two
modeling units, labels were created for each modeling
unit as tib_char and tib_radical. This self-fusion model
(Multiunit transformer) significantly improved the sys-
tem performance of monolingual ASR baseline systems.
The postprocessing for a decoded radical sequence is used
as introduced in Section 4.2. A comparison of the per-
formance of the different systems is shown in Table 5.
The self-fusion ASR system’s performance with a CER of
32.99% is obviously better than baseline systems, which
have an average CER of 78.29%, and better than the best
monolingual ASR systems based on characters or sub-
characters, which have an average CER of 34.80%, as
shown in Table 5. The self-fusion ASRmodel is also better
than the DNN-HMM-based ASR model.
The experimental results show that the different mod-

eling units are complementary in performance. The E2E
transformer model of the Lhasa dialect can be further

Table 5 Performance of different Lhasa dialect modeling units,
self-fusion systems (pretrained by Aishell-1 train_sp) and
multilingual speech recognition systems with multi-level
modeling units (pretrained by different languages)

Pretrainedmodel Transformer CER or Ave. CER (%)

No pretraining Char. or Subchar. 78.29

Aishell-1 train_sp Char. or Subchar. 34.80

Aishell-1 train_sp Self-fusion 32.99

No pretraining Multilingual 33.18

Aishell-1 train_sp Multilingual 30.79

Sinhala train Multilingual 31.93

Bengali train_sp Multilingual 31.82

Nepali train Multilingual 31.66

The multilingual-ASR model initialized with Aishell-1 train_sp significantly (i.e., the
two-tailed t test at p value <0.05) outperforms other models

improved based on multilingual speech recognition to
fuse two monolingual recognition systems.

5.3 Lhasa dialect multilingual speech recognition system
There are four resource-rich languages and two different
modeling units, which are regarded as two languages, to
jointly train a Lhasa dialect multilingual speech recogni-
tion system based on the five initialization models intro-
duced above. This system can handle language identifi-
cation and speech recognition tasks. The modeling units
of the multilingual system are composed of Mandarin,
Tibetan characters and radicals, and the word-level units
of Bengali, Sinhalese, and Nepali. To develop the ability to
identify languages, we marked the languages with differ-
ent tags. Therefore, there are 6703 modeling units in the
full model.
Similar to the Lhasa dialect’s self-fusion system, all tran-

scriptions must be marked with the corresponding lan-
guage tags at the front. To better connect with the existing
basic experiments, we select several initialization mod-
els with excellent performance in the monolingual speech
recognition task.
In Table 5, from top to bottom, a comparison is made

on the CERs obtained by training transformer mod-
els using different initialization models for multilingual
speech recognition. It is found that a reasonable initializa-
tion model can still obtain a performance gain even when
training with resource-rich languages. The best initializa-
tionmethod has a relative improvement of 7.2% compared
to the case without initialization and significantly (the
two-tailed t test at p value < 0.05) outperforms other
models. Horizontally, on the table, a comparison is shown
for the best Lhasa dialects with monolingual, self-fusion,
and multilingual speech recognition systems. Their CERs
were 33.64%, 32.99%, and 30.79%, respectively, and their
initialization models were consistent.
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According to this set of strictly controlled experiments,
for low-resource speech recognition tasks, it is clear
that joint training with the correlated source languages
improves the performance of low-resource speech recog-
nition. The system’s performance increased by 8.4% in
CER from the best monolingual model of the Lhasa dialect
to the best multilingual model.

6 Conclusion and future work
In this paper, we focused on training transformer-based
E2E ASR systems for the Lhasa dialect. We investigated
a compressed acoustic modeling unit set, effective ini-
tialization strategies, multiunit training, and multilingual
speech recognition for low-resource data to solve the
issue of low-resource data. In the monolingual E2E speech
recognition system, we achieved a relative 6.3% gain in
CER performance compared to hybrid speech recogni-
tion. From the best monolingual model of the Lhasa
dialect to the best multilingual E2E model, the system’s
performance increased by 8.4% in CER. Experiments
show that our proposed methods effectively model the
low-resource Lhasa dialect and outperform the conven-
tional DNN-HMM baselines and E2E baseline systems.
Thus, this study provides a new direction for research on
low-resource languages.
In future work, we will try a larger transformer struc-

ture to investigate the function of the model structure.
The correlation between the source and target languages
is worth discussing to obtain promising performance. Fur-
thermore, we will deeply connect language identification
with speech recognition tasks to probe whethermore low-
resource languages with only language labels can further
improve the performance.
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