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Abstract

Multiple predominant instrument recognition in polyphonic music is addressed using decision level fusion of three
transformer-based architectures on an ensemble of visual representations. The ensemble consists of
Mel-spectrogram, modgdgram, and tempogram. Predominant instrument recognition refers to the problem where
the prominent instrument is identified from a mixture of instruments being played together. We experimented with
two transformer architectures like Vision transformer (Vi-T) and Shifted window transformer (Swin-T) for the proposed
task. The performance of the proposed system is compared with that of the state-of-the-art Han’s model,
convolutional neural networks (CNN), and deep neural networks (DNN). Transformer networks learn the distinctive
local characteristics from the visual representations and classify the instrument to the group where it belongs. The
proposed system is systematically evaluated using the IRMAS dataset with eleven classes. A wave generative
adversarial network (WaveGAN) architecture is also employed to generate audio files for data augmentation. We train
our networks from fixed-length music excerpts with a single-labeled predominant instrument and estimate an
arbitrary number of predominant instruments from the variable-length test audio file without any sliding window
analysis and aggregation strategy as in existing algorithms. The ensemble voting scheme using Swin-T reports a micro
and macro F1 score of 0.66 and 0.62, respectively. These metrics are 3.12% and 12.72% relatively higher than those
obtained by the state-of-the-art Han’s model. The architectural choice of transformers with ensemble voting on
Mel-spectro-/modgd-/tempogram has merit in recognizing the predominant instruments in polyphonic music.

Keywords: Predominant, Modified group delay, Mel-spectrogram, Modgdgram, Tempogram, Shifted window

1 Introduction
Music information retrieval (MIR) is a growing field
of research with lots of real-world applications and is
applied well in categorizing, manipulating, and synthesiz-
ing music. An important MIR task of predominant instru-
ment recognition is addressed in this paper. Predominant
instrument recognition refers to the problem where the
prominent instrument is identified from a mixture of
instruments being played together [1].
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The task of identifying the leading instrument in poly-
phonic music is challenging due to the presence of inter-
fering partials in the orchestral background. The auditory
scene produced by a musical composition can be regarded
as a multi-source environment, where different sound
sources are played at various pitches and loudness, and
even the spatial position of a given sound source may
vary with respect to time [2]. Automatic identification of
lead instruments is important, since the performance of
the source separation can be improved significantly by
knowing the type of the instrument [1]. If the instrument
information is included in the tags, it allows people to
search for music with the specific instrument they want.
Audio enhancement based on instrument-specific equal-
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ization is also in high demand in music processing. It also
helps to enhance fundamental MIR tasks like auto-tagging
[3], and automatic music transcription [4].
An extensive review of approaches for isolated musi-

cal instrument classification can be found in [5]. Non-
negative matrix factorization (NMF) model [6], end-to-
end model [7], fusion model with spectral, temporal,
and modulation features [8] can be referred to as initial
attempts for the proposed task in a polyphonic environ-
ment. More recent works deal with instrument recogni-
tion in polyphonic music, which is a more demanding
and challenging problem. A method for automatic recog-
nition of predominant instruments with support vector
machine (SVM) classifiers trained with features extracted
from real musical audio signals is proposed in [2]. Bosch
et al. improved this algorithm with source separation
in a preprocessing step [9]. Han et al. [1] developed a
deep CNN for instrument recognition based on Mel-
spectrogram inputs and aggregation of multiple outputs
from sliding windows over the audio data. Pons et al. [10]
analyzed the architecture of Han et al. in order to for-
mulate an efficient design strategy to capture the relevant
information about timbre. Both approaches were trained
and validated by the IRMAS dataset of polyphonic music
excerpts. Detecting the activity of music instruments
using a deep neural network (DNN) through a temporal
max-pooling aggregation is addressed in [11]. Dongyan Yu
et al. [12] employed a network with an auxiliary classifi-
cation scheme to learn the instrument categories through
multitask learning. Gomez et al. [13] investigated the role
of two source separation algorithms as pre-processing
steps to improve the performance in the context of pre-
dominant instrument detection tasks. It was found that
both source separation and transfer learning could signif-
icantly improve the recognition performance, especially
for a small dataset composed of highly similar musical
instruments. In [14], the Hilbert-Huang transform (HHT)
is employed to map one-dimensional audio data into two-
dimensional matrix format, followed by CNN to learn
the affluent and effective features for the task. The pro-
posed work in [15] employed an attention mechanism and
multiple-instance learning (MIL) framework to address
the challenge of weakly labeled instrument recognition in
the OpenMIC dataset.
The modified group delay feature (MODGDF) is pro-

posed for pitched musical instrument recognition in
an isolated environment in [16]. While the commonly
applied Mel-frequency cepstral coefficients (MFCC) fea-
ture is capable of modeling the resonances introduced by
the filter of the instrument body, it neglects the spec-
tral characteristics of the vibrating source, which also
play their role in human perception of musical sounds
[17]. Incorporating phase information attempts to pre-
serve this neglected component. It has already been estab-

lished in the literature that the modified group delay
function emphasizes peaks in spectra well [18]. It has
also been shown in [19] that sinusoids in noise can be
estimated well-using group delay function. Furthermore,
it was shown that even for shorter windows, the phase
spectrum could contribute as much as the magnitude
spectrum to speech intelligibility [20]. In our work, we are
introducing phase-basedmodgdgram as a complementary
feature to magnitude-based spectrogram in recognizing
predominant instruments from a polyphonic environ-
ment. The source information is completely suppressed
in the modgdgram compared to the spectrogram, and the
system-specific information is retained, which is a vital
clue in instrument identification.
Tempo-based features are employed in various music

information retrieval tasks. Grosche et al. point out the
potential of integrating the concept of tempo represen-
tation into music structural segmentation [21]. Tempo-
based features have also been used for cross-version nov-
elty detection in [22]. In [23], an ensemble of VGG-like
CNN classifiers were trained on non-augmented, pitch-
synchronized, tempo-synchronized, and genre-similar
excerpts of IRMAS for the proposed task. They employed
tempo-syncing as one of the data augmentation tech-
niques and achieved better results than the baseline
model.
The fusion of multiple modalities can offer significant

performance gains over using a modality alone and is
widely used in recent music processing applications [24–
26]. The performance of the various features depends on
the instrument characteristics and other unknown factors,
and no one feature consistently outperforms all others.
Consequently, researchers have investigated the possibil-
ity of fusing multiple features to take advantage of their
strengths. In our work, we utilize transformer architec-
tures to learn instrument-specific characteristics using
Mel-spectro-/modgd-/tempogram to estimate predomi-
nant instruments from polyphonic music. Transformer-
based systems have outperformed previous approaches
for various natural language processing (NLP) and com-
puter vision tasks [27],[28].

2 Contributions
The major contributions of the proposed experiment can
be summed up as:

1 Introducing modgdgram and tempogram as
complementary features to the conventional
Mel-spectrogram representation for predominant
instrument recognition. The proposed ensemble
voting technique makes use of the potential of three
visual representations in making a final decision on
recognizing predominant instruments in a
polyphonic environment.
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2 We present a high capacity transformer model for
Mel-spectrogram inputs. Our model is derived from
[29] with some significant changes as described in
Section 4, and it outperforms the existing models,
including [1]. The efficacy of transformer models and
attention mechanisms are demonstrated by
comparison with CNN and DNN architectures.

3 We explore the time-domain strategy of synthetic
music audio generation for data augmentation using
WaveGAN. The proposed task is addressed with and
without data augmentation.

4 In the development phase, the performance is
evaluated using various schemes like
Mel-spectrogram, modgdgram, and tempogram
followed by ensemble voting.

The outline of the rest of the paper is as follows.
Section 3 explains the proposed system. The model archi-
tectures are described in Section 4. The performance
evaluation is explained in Section 5 followed by the anal-
ysis of results in Section 6. The paper is concluded in
Section 7.

3 System description
The proposed method of Vision transformer (Vi-T) and
Shifted window transformer (Swin-T) are shown in Figs. 2
and 3 respectively. In the proposed model, transform-
ers are used to learn the distinctive characteristics of
Mel-spectro/modgd/tempo-gram to identify the leading

instrument in a polyphonic context. As a part of data aug-
mentation, additional training files are generated using
WaveGAN (Fig. 1). The probability values reported at the
nodes of the trained model are mapped as the scores
for a test file input. The final decision on the test file is
based on soft voting. Soft voting involves summing the
predicted probabilities for class labels (from three net-
works) followed by thresholding. The candidates above
the particular threshold were considered as predominant
instruments. The performance of the proposed system is
compared with that of the state-of-the-art Han’s model
and a DNNmodel. A detailed description of each phase is
given in the following subsections.

3.1 Feature extraction
3.1.1 Mel-spectrogram
Mel-spectrogram is widely used in speech and music pro-
cessing applications [30],[31]. Mel-spectrogram approxi-
mates how the human auditory system works and can be
seen as the spectrogram smoothed, with high precision
in the low frequencies and low precision in the high fre-
quencies [32]. All audio files in the IRMAS dataset are
in a 16-bit stereo .wav format with a sampling rate of
44,100 Hz. The time-domain waveform is converted to a
time-frequency representation using a short-time Fourier
transform (STFT) with a frame size of 50 ms and hop
size of 10 ms. Then the linear frequency scale obtained
spectrogram is converted to a Mel-scale using 128 for the
number of Mel-frequency bins.

Fig. 1 Visual representation of an audio excerpt with acoustic guitar as leading, Upper pane represents the Mel-spectrogram, modgdgram, and
tempogram of the original audio file and lower pane represents the WaveGAN generated files
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3.1.2 Modified group delay functions andmodgdgram
Group delay features are being employed in numerous
speech and music processing applications [18],[33]. The
group delay function is defined as the negative derivative
of the unwrapped Fourier transform phase with respect to
frequency. Group delay functions, τ(ejω) are mathemati-
cally defined as

τ(ejω) = −d{arg(X(ejω))}
dω

(1)

where X(ejω) is the Fourier transform of the signal x[ n]
and arg(X(ejω)) is the phase function. It can be computed
directly from the signal, x[ n] by [34],

τ(ejω) = XR(ejω)YR(ejω) + YI(ejω)XI(ejω)

|X(ejω)|2 (2)

where the subscripts R and I denote the real and imag-
inary parts and X(ejω) and Y (ejω) are the Fourier trans-
forms of x[ n] and n.x[ n] (signal multiplied with index),
respectively. The spiky nature of the group delay spectrum
due to zeros that are located close to the unit circle can be
suppressed by replacing the term |X(ejω)| in the denom-
inator of Eq. (2) with its cepstrally smoothed version,
S(ejω) thereby resulting in modified group delay functions
(MODGD) [18]. The modified group delay functions are
obtained by,

τm(ejω) =
(

τc(ejω)

|τc(ejω)|
)

(|τc(ejω)|)α , (3)

where,

τc(ejω) = XR(ejω)YR(ejω) + YI(ejω)XI(ejω)

|S(ejω)|2γ . (4)

Two new parameters, α and γ (0 < α ≤ 1 and 0 <

γ ≤ 1) are introduced to control the dynamic range of
MODGD [18]. Modgdgram is the visual representation of
MODGD with time and frequency in the horizontal and
vertical axis, respectively. In a third dimension, the ampli-
tude of the group delay function at a particular time is
represented by the intensity or color of each point in the
image. Modgdgrams are computed with a frame size of 50
ms and a hop size of 10 ms. The parameters α and γ have
been empirically chosen as 0.9 and 0.5, respectively. Mel-
spectrograms and modgdgrams are implemented using
MATLAB.
Typically in spectrograms, we can see pitch compo-

nents and their harmonics as striations along with for-
mant structure. But system-specific information (formant
tracks) is enhanced in modgdgram by suppressing the
source information. In music, the body of the musical
instrument is the counterpart of the vocal tract (system)
in speech. Davis et al. [35] claim that timbres are prop-
erties of musical instruments which rely on the physical
characteristics of the instrument. Thus, timbre makes a
particular musical instrument or the human voice and

produces a different sound from another, even when they
play or sing the same note.

3.1.3 Tempogram
A tempogram is a time-pulse representation of an audio
signal laid out such that it indicates the variation of pulse
strength over time given a specific time lag l or a beats
per minute (BPM) value.[36]. It is a time-tempo repre-
sentation that encodes the local tempo of a music signal
over time. The calculation of the tempogram is based on
the assumption that music exhibits coherent and locally
periodic patterns. These patterns may be characterized by
peaks in the autocorrelation function (ACF) of the onset
detection function [36] at certain time lags. The train-
ing and testing audio files are read and processed using
the Librosa framework. The principle of autocorrelation is
used to estimate the tempo at every segment in the novelty
function [37]. Autocorrelation tempograms are computed
with librosa.feature.tempogram using a 2048 point FFT
window and a hop size of 512.

4 Model architectures
4.1 DNN
A DNN framework on musical texture features (MTF)
is experimented with to examine the performance of
deep learningmethodology on handcrafted features. MTF
includesMFCC (13 dim), spectral centroid, spectral band-
width, root mean square energy, spectral roll-off, and
chroma STFT. The features are computed with a frame
size of 40 ms and a hop size of 10 ms using Librosa frame-
work 1. The DNN consists of seven layers, with increasing
units from 8 to 512. Regarding the activation function,
ReLU has been chosen for hidden layers and softmax for
the output layer. The approach attempted in [38] has been
customized for multi-label classification and has been
experimented with to analyze the role of machine learning
techniques, especially using the MTF-SVM framework.

4.2 CNN
CNN uses a deep architecture with repeated convolu-
tions followed by max-pooling. A total of five layers are
used with the number of filters starting from 32 to 512
for Mel-spectrogram processing. The first two layers used
5× 5 filters, and the remaining layers used 3× 3 filters.
Using filters of different shapes seems an efficient way
of learning spectrogram-based CNNs [10]. To achieve
the best performance, the optimal filter size is usually
chosen empirically by either experimental validation or
visualization for each convolutional layer [39]. The ini-
tial layers help to extract general features and also help in
noise reduction. The last convolutional layers used 3× 3
filters as later layers reveal more specific and complex

1https://librosa.org/doc/latest/tutorial.html

https://librosa.org/doc/latest/tutorial.html


Reghunath and Rajan EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:11 Page 5 of 14

Fig. 2 (a) Block diagram of the proposed method of Vision transformer, (b) Internal architecture of transformer encoder

patterns and final layers activations help to recognize the
predominant instruments from accompaniments. Global
max-pooling is adopted in the final max-pooling layer,
which is then fed to a fully connected layer. For mod-
gdgram processing, we used six convolutional layers with
the number of filters increasing from 8 to 256, followed by
2× 2 max pooling. We used filters of size 3× 3 in all six
layers with a fixed stride size of one. For tempogram pro-
cessing, we used the same model as Mel-spectrogram. A
dropout of 0.5 is introduced after the fully connected layer
to avoid overfitting in all processing. Leaky ReLU with
α = 0.33 in hidden layers has been empirically chosen
for optimum performance in Mel-spectrogram process-
ing. But in modgdgram and tempogram processing, the
best performance is obtained for ReLU. Softmax is used as
the activation function for the output layer.

4.3 Vi-T
Inspired by the success of Transformer [27] in various nat-
ural language processing tasks, Vision Transformers (ViT)
[40] constitute the first pure transformer-based architec-
ture that can achieve good performance on the image
recognition task. Figure 2 shows the architecture of our
proposedmethod. As shown in Fig. 2(a), the input image x
ε RHXWXL, where H, W, and L represent the height, width,
and the number of channels of the image x. The input
image is partitioned into non-overlapping patches, called
tokens. In our work, we choose M = 6× 6, where M is
the size of a patch. Then each patch is linearly projected
to a dimension of 64, along with position embeddings,
and feeds the resulting sequence of vectors to a standard
transformer encoder. The number of patches, P=HW/M2.
The various hyperparameters selected for our proposed

method are shown in Table 1. Position embeddings are
added to the patch embeddings to retain positional infor-
mation. The Transformer encoder is shown in Fig. 2(b)
and consists of alternating layers of multi-headed self-
attention (MSA) with eight attention heads and two multi
layer perceptron (MLP) layers with 2048 and 1024 nodes
with Gaussian error linear unit (GELU) nonlinearity in
between. Layernorm (LN) is applied before every MSA
and MLP layer, and residual connections are placed after
each module. MSA is defined in [27] as

MSA(Q,K ,V ) = Concat(head1,head2, . . . head8) WO

(5)

where,

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(6)

Attention (Q,K ,V ) = softmax
(

QKT√
dk

)
V (7)

Table 1 Various hyperparameters chosen for Vi-T and Swin-T

Hyperparameter Vi-T Swin-T

Image size 72× 72 72× 72

Patch dimension 6× 6 4× 4

Hyper parameter (C) 64 96

Number of heads 8 8

Number of windows NA 4

Number of MLP nodes 2048,1048 256, 256

Mini batch-size 256 32



Reghunath and Rajan EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:11 Page 6 of 14

where Q, K, V represents the query key and value vec-
tor respectively andWQ

i ,WK
i ,WV

i and WO are the weight
matrices of query, key, value, and output vectors, respec-
tively [27], while dk is the dimension of the query vector.
The outputs from all 8 attention heads are concatenated
to form a single output vector before passing it through
the feed-forward network. The model is then trained on
instrument classification in a supervised manner.

4.4 Swin-T
Themain drawback of ViT is that it produces featuremaps
of a single low resolution and has quadratic computation
complexity to input image size due to computation of self-
attention globally. Also, the tokens are of fixed scale and
are thus unsuitable for vision applications. Unlike other
transformers Swin-T [29] has a hierarchical architecture
and has linear computational complexity through the pro-
posed shifted window-based self-attention approach. The
computational complexity of Vi-T is given by [29]

�(MSA) = 4hwC2 + 2(hw)2C (8)

�(W − MSA) = 4hwC2 + 2M2hwC (9)
The computational complexity drops for Swin-T as per
the Eq. (9) above. MSA has quadratic computational
complexity to patch number hw, while W-MSA has lin-
ear computational complexity due to the shifted window
approach [29]. Figure 3 shows the architecture of our
proposed method. The input image is partitioned into
non-overlapping patches, called tokens during patch par-
titioning. In our work, we choose M = 4× 4, where M
is the size of a patch. The second step is linear embed-
ding, in which the eigenvalues in the feature map are
projected to a C dimensional vector. The hyperparame-
ter C has been empirically chosen as 96 for our work.
The various selected hyperparameters for our proposed
method are shown in Table 1. The output of the patch
embedding layer leads to two Swin Transformer networks.
The output of the second Swin-T network is applied to
a patch merging layer. Patch merging works in a similar

way to CNN’s pooling layer by concatenating the features
of each group of neighboring patches and applying a lin-
ear embedding layer to change the output dimension to
2C. Hence the output of patch merging layer is (H8 x W

8 x
2C) and is followed by global average pooling and a dense
layer with 11 nodes and a softmax activation function.
Figure 3(b) shows the internal architecture of the Swin-T
block. Shifted windows approach is used in the encoder
to address the multi-head self-attention (MSA) scheme.
The output of the patch embedding layer is divided into
non-overlapping windows (in our work, we choose N =
4, where N is the number of windows). Here to compute
the self-attention of a given patch within that window,
we ignore the rest of the patches in other windows. As
illustrated in Fig. 3(b), W-MSA is the windowed multi-
head self-attention in which we divide the patched image
into non-overlapping windows and compute attention for
patches within the window. In SW-MSA, the window is
stride forwarded by two patches just like the kernel strid-
ing in CNN and computing attention within that window.
For the empty patches, the process was repeated after
zero padding. W-MSA and SW-MSA are followed by a
2-layer MLP each with 256 nodes and GELU nonlinear-
ity in between. LN is applied before each MSA module
and MLP, and a residual connection is applied after each
module. The modified equation for attention [29] is

Attention (Q,K ,V ) = softmax
(

QKT√
dk + B

)
V (10)

where B is the relative position of window.

5 Performance evaluation
5.1 Dataset
The performance of the proposed system is evaluated
using the IRMAS (Instrument Recognition in Musical
Audio Signals) dataset, developed by the Music Technol-
ogy Group (MTG) of Universitat Pompeu Fabra (UPF). It
consists of more than 6000 musical audio excerpts from
various styles with annotations of the predominant instru-
ments present. All audio files in the IRMAS dataset are

Fig. 3 (a) Block diagram of the proposed method of Swin transformer, (b) Internal architecture of Swin-T block
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in a 16-bit stereo .wav format with a sampling rate of
44,100 Hz. IRMAS dataset [2] contains separate train-
ing and testing set of eleven classes. The classes include
cello (Cel), clarinet (Cla), flute (Flu), acoustic guitar (Gac),
electric guitar (Gel), organ (Org), piano (Pia), saxophone
(Sax), trumpet (Tru), violin (Vio), and human singing
voice (Voice). The training data are single-labeled and
consist of 6705 audio files with excerpts of 3 s from more
than 2000 distinct recordings. On the other hand, the test-
ing data are multi-labeled and consist of 2874 audio files
with lengths between 5 and 20 s and contain multiple
predominant instruments. This dataset has two disadvan-
tages when training models. First, the number of audio
files available for certain instruments like cello, clarinet,
and flute is less than 500, and the models trained with the
data are hardly generalizable. Second, the dataset is not
well balanced in terms of either musical genre or instru-
mentation. However, this may not be a problem if the
datasets were larger and the distribution represented the
real world. Data augmentation offers an excellent solution
to this issue. Data augmentation means training the deep
network with additional diverse data. This increases the
generalization capability of the network and thus reduces
overfitting.

5.2 Data augmentation usingWaveGAN
Generative adversarial networks (GAN) have been suc-
cessfully applied to a variety of problems in image gen-
eration [41] and style transfer [42]. WaveGAN architec-
ture is similar to deep convolutional GAN (DCGAN),
which is used for Mel-spectrogram generation in vari-
ous music processing applications. The DCGAN gener-
ator uses transposed convolution to iteratively upsample
low-resolution feature maps into a high-resolution image.
In WaveGAN architecture, the transposed convolution
operation is modified to widen its receptive field. Specifi-
cally, longer one-dimensional filters of length 25 are used
instead of two-dimensional filters of size 5× 5 and the
intermediate representation is upsampled by a factor of
four instead of two at each layer. The input to the genera-
tor is a random sample taken from a uniform distribution
between −1 and 1 and is projected and reshaped to the
dimension 16× 1024. This is followed by six transpose
convolution layers that upsample the input feature map
to a fine and detailed output. The output of the genera-
tor is 65,536 samples (corresponding to 4.01 s of audio at
16 kHz). It is also capable to produce 1.49 s of audio at
44.1khz by choosing the slice length of 65536 samples. The
output of the generator is directly applied to the input of
the discriminator. The discriminator is an efficient CNN
that discriminates between real and generated samples.
The discriminator is also modified similarly, using length-
25 filters in one dimension and increasing stride from
two to four which results in WaveGAN architecture [43].

The transposed convolution in the generator produces
checkerboard artifacts [43]. To ensure that the discrimi-
nator does not learn these artifacts, we use phase shuffle
operation (with hyperparameter n=2) as suggested in [43].
ReLU is used as the activation for transposed convolution
layers and LReLU with α = 0.2 is chosen for convolution
operation. Finally, the system is trained using the Wasser-
stein GAN with gradient penalty (WGAN-GP) strategy
[44] to tackle the vanishing gradient problem and enhance
training stability. For training, the WaveGAN optimizes
WGAN-GP using Adam for both generator and discrim-
inator. A constant learning rate of 0.0001 is used with
β1 = 0.5 and β2 = 0.9.
WaveGAN is trained for 2000 epochs on the three-sec

audio files of each class to generate similar audio files
based on a similarity metric (s) [45] with an acceptance
criterion of s > 0.1. The values of parameters and hyper-
parameters associated with WaveGAN for our experi-
ments are listed in Table 2. A total of 6585 audio files
with cello (625), clarinet (482), flute (433), acoustic guitar
(594), electric guitar (732), organ (657), piano (698), sax-
ophone (597), trumpet (521), violin (526), and voice (720)
are generated. Training files available in the corpus are
denoted by TrainDB and the generated files are added to
the available training corpus, and the augmented corpus
is denoted by TrainAugDB. Mel-spectrogram, modgdgram,
and tempogram of natural and generated audio files for
acoustic guitar are shown in Fig. 1. The experiment details
and a few audio files can be accessed at https://sites.
google.com/view/audiosamples-2020/home/instrument.
The quality of generated files is evaluated using a per-

ceptual test. It is conducted with ten listeners to assess the
quality of generated files for 275 files covering all classes.
Listeners are asked to grade the quality by choosing one
among the five opinion grades varying from poor to excel-
lent quality (scores, 1 to 5). A mean opinion score (MOS)
of 3.64 is obtained. This value is comparable to the MOS
score obtained in [43] and [46] using WaveGAN.

5.3 Experimental set-up
The experiment is progressed in four phases, namely Mel-
spectrogram-based, modgdgram-based, and tempogram-
Table 2 Various hyperparameters chosen for WaveGAN

Name Value

WavGAN Latent dimension 100

Number of channels 1

WavGAN dimension 32

Training batch size 64

Kernel length 25

Generation length 65,536 samples

Loss WGAN-GP (λ =10)

D updates per G updates 5

https://sites.google.com/view/audiosamples-2020/home/instrument
https://sites.google.com/view/audiosamples-2020/home/instrument
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based, followed by soft voting. Hard or majority voting
is not used in our method since the presence of simulta-
neously occurring partials degrades its performance [1].
Han’s model [1] is implemented with 1 s slice length
for performance comparison. In their approach, sigmoid
outputs obtained by sliding window analysis on Mel-
spectrogram inputs were aggregated followed by thresh-
olding, and the candidates above that particular thresh-
old were considered as predominant instruments. In our
proposed method of soft voting, the predicted proba-
bilities from three networks are summed followed by
thresholding. We choose a threshold value of 0.5 empir-
ically as it helps to recognize most of the predominant
instruments [1].

5.3.1 Training configuration
The DNN network is trained with categorical cross-
entropy loss function using Adam optimizer with a learn-
ing rate of 0.001 and a mini- batch size of 128. For CNN
networks, we choose a batch size of 128 and an Adam
optimizer with a categorical cross-entropy loss function.
For Vi-T, we used categorical cross-entropy loss function
using Adam optimizer, with a learning rate of 0.001 and
weight decay of 0.0001, and the mini-batch size was set to
256. For Swin-T we used categorical cross-entropy using
the Adam optimizer, with a learning rate of 0.001 and gra-
dient clip value of 0.5, and the mini-batch size was set to
32. 20% of training data is used for tuning the hyperpa-
rameters during validation for all the models. The training
was stopped when the validation loss did not decrease for
more than two epochs.

5.3.2 Testing configuration
2874 polyphonic files of variable length with multiple
predominant instruments are used for the testing phase.

Since the number of annotations for each class was not
equal, we computed precision, recall, and F1 measures for
both the micro and the macro averages. For the micro
averages, we calculated the metrics globally, thus giving
more weight to the instrument with a higher number of
appearances. On the other hand, we calculated the met-
rics for each label and found their unweighted average for
the macro averages.

6 Results and analysis
The overall performance of different phases of the Swin-T
experiment with data augmentation TrainAugDB is tabu-
lated in Table 3. Our proposed method of Voting-Swin-
T achieved micro and macro F1 measures of 0.66 and
0.62, respectively, which are 3.12% and 12.72% relatively
higher than those obtained for Mel-spectrogram-based
Han’s model. The performance of the various features
depends on the instrument characteristics and other
unknown factors, and none of the features consistently
outperforms all others. The proposed Mel-spectrogram-
Swin-T framework shows superior performance for seven
instrument classes than Han’s model. Our proposed
Modgdgram-Swin-T framework shows a competing per-
formance with the state-of-the-art Han’s model.While the
Hanmodel reports amacro-F1 score of 0.55, our proposed
Modgdgram-Swin-T gives 0.51. In the case of modgdgram
processing, instruments like the electric guitar, organ,
saxophone, trumpet, and violin show enhanced perfor-
mance over the Mel-spectrogram-Swin-T. They showed
improved performance for four instruments than Han’s
model. It shows the promise of the image processing
aspect of modgdgram for predominant instrument recog-
nition. Also, our proposed Tempogram-Swin-T shows
similar performance as that of the Mel-spectrogram

Table 3 Precision (P), recall (R), and F1 score for the Swin-T experiments and Han’s model with data augmentation

Class Han’s Model Mel-spectrogram Modgdgram Tempogram Voting

P R F1 P R F1 P R F1 P R F1 P R F1

Cel 0.55 0.55 0.55 0.52 0.58 0.55 0.27 0.40 0.32 0.52 0.46 0.49 0.61 0.62 0.61

Cla 0.11 0.65 0.18 0.47 0.76 0.58 0.24 0.50 0.33 0.44 0.79 0.56 0.36 0.77 0.49

Flu 0.33 0.61 0.43 0.81 0.83 0.82 0.52 0.63 0.57 0.81 0.80 0.80 0.57 0.80 0.66

Gac 0.84 0.63 0.72 0.43 0.62 0.51 0.64 0.47 0.54 0.30 0.64 0.41 0.59 0.60 0.59

Gel 0.69 0.69 0.69 0.70 0.52 0.60 0.57 0.55 0.56 0.78 0.42 0.55 0.73 0.59 0.66

Org 0.45 0.46 0.45 0.59 0.53 0.56 0.44 0.55 0.49 0.67 0.53 0.59 0.53 0.58 0.55

Pia 0.76 0.61 0.67 0.61 0.54 0.57 0.71 0.47 0.56 0.51 0.50 0.51 0.81 0.51 0.63

Sax 0.62 0.61 0.61 0.68 0.55 0.61 0.53 0.57 0.55 0.78 0.48 0.59 0.61 0.51 0.56

Tru 0.47 0.42 0.44 0.59 0.68 0.63 0.50 0.72 0.59 0.62 0.66 0.64 0.58 0.74 0.65

Vio 0.41 0.57 0.48 0.53 0.59 0.56 0.40 0.63 0.49 0.56 0.55 0.56 0.59 0.73 0.65

Voice 0.94 0.78 0.85 0.70 0.79 0.75 0.57 0.59 0.58 0.77 0.80 0.78 0.69 0.90 0.78

Macro 0.56 0.60 0.55 0.60 0.63 0.61 0.49 0.55 0.51 0.62 0.60 0.59 0.61 0.67 0.62

Micro 0.64 0.64 0.64 0.62 0.62 0.62 0.54 0.54 0.54 0.58 0.58 0.58 0.66 0.66 0.66
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Fig. 4 Instrument-wise recall for experiments with data augmentation

network and reports a better macro score than Han’s
model. It shows superior performance for five instru-
ment classes than Han’s model and three instruments over
our proposed Mel-spectrogram-Swin-T network. Thus
our proposed voting-Swin-T and Mel-spectrogram-Swin-
T showed improved performance than the state-of-the-art
Han’s model.

6.1 Analysis of instrument-wise identification
performance

The instrument-wise recall for all our voting experiments
with data augmentation is shown in Fig. 4. The proposed
Voting frameworks showed superior performance to the
state-of-the-art Han’s model. In the case of ensemble vot-
ing using CNN, instruments like the clarinet, electric
guitar, piano, and trumpet show improved performance
over Han’s model. In the case of voting using transform-
ers, seven instruments showed improved performance
over Han’s model. For all the voting techniques, the voice
reports a high recall due to its distinct spectral character-
istic [1].

6.2 Effect of data augmentation
For deep learning, the number of training examples is
critical for the performance compared to the case of
using hand-crafted features because it aims to learn a
feature from the low-level input data [1]. The problem
with small datasets is that models trained with them
do not generalize well from the validation and test set
[47]. Han’s model using (TrainDB) reports a low F1 score
of about 0.20 for cello, and they suggest that it is due
to the insufficient number of training samples [1]. The
same experiment when repeated usingTrainAugDB and our
Mel-spectrogram-Swin-T showed an improved F1 score
validates the claim in [1].
The significance of data augmentation in the proposed

model can be analyzed from Table 4. While the proposed
method of Voting-Swin-T, without data augmentation

(TrainDB), reports micro and macro F1 score of 0.59 and
0.60, respectively, the metrics improved to 0.66 and 0.62,
respectively, for the data augmentation scheme. It shows
an improvement of 11.86% and 3.33% relatively higher
than that obtained for experiments with TrainDB. Simi-
lar performance improvement is observed for Han’s model
and MTF-SVM and DNN frameworks.

6.3 Effect of transformer architecture and attention
The instrument-wise F1 scores for all the Mel-
spectrogram experiments are shown in Fig. 5. The model
using CNN alone does not show improved performance
as expected; this is mainly because of the difficulty in
predicting the multiple predominant instruments from
the variable-length testing file while training with single
predominant fixed-length training files. Only the instru-
ments with distinct spectral characteristics and voice
show good performance. On the other hand, experiments
with transformer architecture showed improved perfor-
mance for all the instruments. This is mainly because
the transformer architecture with a multi-head attention
mechanism helps to focus or attend to specific regions of
the visual representation for predominant instruments
recognition. Another important point is that it requires
very few trainable parameters to learn the model, which

Table 4 Effect of data augmentation. The highest values are
highlighted

SL.No Model TrainDB TrainAugDB

Micro F1 Macro F1 Micro F1 Macro F1

1 Han Model[1] 0.60 0.50 0.64 0.55

2 K.Racharla et al.
[38] (MTF-SVM)

0.22 0.19 0.25 0.23

3 MTF-DNN 0.32 0.28 0.38 0.35

4 Proposed
method
-Voting-Swin-T

0.59 0.60 0.66 0.62
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Fig. 5 Instrument-wise F1 scores for Mel-spectrogram experiments with data augmentation

helps to reach convergence faster than the models
employing CNN alone. For polytimbral music instrument
recognition attention model focuses on specific time
segments in the audio relevant to each instrument label.
The ability of the attention model to weigh relevant
and suppress irrelevant predictions for each instrument
leads to better classification accuracy [15]. Compared to
self-attention multi-head attention gives the attention
layer multiple representation subspaces, and as the image
passes through different heads, predictions about the pre-
dominant instruments are more refined than employing
single head self-attention. In the case of ViT, we have to
compute the self-attention for a given patch with all the
other patches in an input image. On the other hand, Swin-
T with shifted window scheme gives the effect of kernel
striding in CNN which along with multi-head attention
helps to recognize multiple predominant instruments
with linear computational complexity.
We also conducted an ablation study of the architecture

in order to gain a better understanding of the network’s
behavior. We investigated the performance by changing
the number of heads, patch size, projection dimension,
and the number of MLP nodes. The results are tabulated
in Table 5. The optimal parameters obtained throughMel-
spectrogram analysis are applied to the modgdgram and

tempogram architectures through a similar ablation study.
To summarize, the results show the potential of Swin-T
architecture and the promise of alternate visual represen-
tations other than the conventional Mel-spectrograms for
predominant instruments recognition tasks.

6.4 Effect of voting and ablation study of ensemble
Several studies [48, 49] have demonstrated that by con-
solidating information from multiple sources, better per-
formance can be achieved compared to uni-modal sys-
tems which motivated us to perform the ensemble voting
method. We also conducted the ablation study of the
ensemble to evaluate the contribution of the individ-
ual parts in the proposed ensemble classification frame-
work for predominant instrument recognition. Since there
are three visual representations, we have experimented
with different fusion schemes as shown in Table 6.
Table 6 reports F1 measures for different fusion strate-
gies trained with TrainAugDB. Spect, Modgd, and Tempo
refer to Mel-spectrogram-Swin-T, Modgdgram-Swin-T,
and Tempogram-Swin-T respectively.
It is important to note that Spect + Modgd and Modgd

+ Tempo show improvement in macro measures com-
pared toMel-spectrogram-basedHan’s model. This shows
the importance of phase information in the proposed

Table 5 Ablation study of the Mel-spectrogram architecture showing the effect of number of heads, patch size, projection dimension,
and number of MLP nodes. Highest values are highlighted

SL.No Architecture Spec. Option Vi-T Swin-T

F1 Micro F1 Macro F1 Micro F1 Macro

1 Number of heads 4 0.58 0.52 0.62 0.53

8 0.59 0.57 0.62 0.61

2 Patch size 4 x 4 0.55 0.50 0.62 0.61

6 x 6 0.59 0.57 0.60 0.53

3 Projection dimension 64 0.59 0.57 0.56 0.51

96 0.58 0.51 0.62 0.61

4 Number of MLP nodes 2048,1024 0.59 0.57 0.62 0.55

256,256 0.57 0.51 0.62 0.61
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Table 6 Ablation study of ensemble with data augmentation.
Spect, Modgd, and Tempo refer to Mel-spectrogram-Swin-T,
Modgdgram-Swin-T, and Tempogram-Swin-T, respectively. +
denotes soft voting

Sl.No Ensemble F1 Micro F1 Macro

1 Spect + Modgd. 0.59 0.60

2 Spect + Tempo. 0.64 0.60

3 Modgd + Tempo. 0.57 0.55

4 Spect + Modgd + Tempo. 0.66 0.62

task. Conventionally, the spectrum-related features used
in instrument recognition take into account merely the
magnitude information. However, there is often addi-
tional information concealed in the phase, which could
be beneficial for recognition as seen in [16]. In the case
of tempogram, Spect + Tempo showed improved per-
formance over Han’s model. The advantage of onsets
in extracting informative cues about musical instrument
recognition is proposed in [50]. Human listeners can easily
identify instrument sounds from onset portions com-
pared to other portions of the sound. Cemgil et al. [51]
define the “tempogram” which induces a probability dis-
tribution over the pairs (pulse period, pulse phase) given
the onsets. In most automated tempo and beat tracking
approaches, the first step is to estimate the positions of
note onsets within the music signal. Results of the exper-
iments described in [52] suggested that the presence of
onsets was beneficial, in particular for instrument sounds.
Since onset detection is the primary step in comput-
ing tempogram, it can provide useful information about
predominant instruments. The experimental results val-
idate the claim in [52]. The advantage of voting is that
it is unlikely that all classifiers will make the same mis-
take, as long as every error is made by a minority of the
classifiers, an optimal classification can be achieved [53].
Since the ensemble soft voting of three representations
results in better performance, we opted for the same as
the final scheme and our proposed ensemble frameworks
outperform the state-of-the-art Han’s model.

6.5 Comparison to existing algorithms
The performance metrics for various algorithms on the
IRMAS corpus are reported in Table 7. The number of
trainable parameters is also indicated.
Bosch et al. [9] modified the Fuhrmann’s algorithm [2]

and used typical hand-made timbral audio features with
their frame-wise mean and variance statistics to train
SVMs with a source separation technique called flexible
audio source separation framework (FASST) in a prepro-
cessing step. It reports a micro and macro F1 score of
0.50 and 0.43 respectively, and it is evident that the pro-
posed ensemble frameworks outperform the hand-crafted

Table 7 Performance comparison on IRMAS dataset. The best
result in the proposed scheme is highlighted in red

Sl.No Model / parameters F1 Micro F1 Macro

1 Bosch et al. [9] 0.50 0.43

2 Han et al. [1] /1446k 0.60 0.50

3 Pons et al. [10] /743k 0.59 0.52

4 Proposedmethod -
Voting-CNN / 2040k

0.63 0.57

5 Proposedmethod -
Voting-Vi-T/ 1079k

0.65 0.60

6 Proposedmethod -
Voting-Swin-T / 350k

0.66 0.62

features. The MTF-SVM approach [38] has not shown
good performance as expected. The state-of-the-art Han’s
model (TrainDB)[1] reports micro and macro F1 score
of 0.60 and 0.50 respectively. Han Model (TrainAugDB)
reports micro and macro F1 score of 0.64 and 0.55 respec-
tively. The proposed voting model using Swin-T reports
micro and macro F1 scores of 0.66 and 0.62 respectively.
These values are 3.12% and 12.72% relatively higher than
the state-of-the-art Han’s model. Han et al. [1] developed
a deep CNN for instrument recognition based on Mel-
spectrogram inputs and aggregation of multiple outputs
from sliding windows over the audio data. Pons et al.
[10] customized the architecture of Han et al. and intro-
duced two models, namely, single-layer and multi-layer
approaches. They used the same aggregation strategy as
that of Han’s model by averaging the softmax predictions
and finding the candidates with a threshold of 0.2. As dif-
ferent from the existing approaches, we estimated the pre-
dominant instrument using the entire Mel-spectrogram
without sliding window and aggregation analysis. Better
micro and macro measures show that it is possible to
predict multiple instruments from the visual represen-
tations without any sliding window analysis. Also, our
proposed Swin-T for Mel-spectrogram requires approxi-
mately four times fewer trainable parameters than Han’s
model [54]. In [15], the usage of an attention layer was
shown to improve classification results in the OpenMIC
dataset when applied to a set of Mel-spectrogram fea-
tures extracted from a pre-trained VGG net. While the
work focuses on Mel-spectrogram, we experimented with
the effect of phase and tempo information along with
magnitude information. Our proposed ensemble voting
technique outperformed existing algorithms and theMTF
DNN and SVM framework on the IRMAS dataset for both
the micro and the macro F1 measure.

7 Conclusion
We presented a transformer-based predominant instru-
ment recognition system using multiple visual repre-
sentations. Transformer models are used to capture
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the instrument-specific characteristics and then do fur-
ther classification. We experimented with Vi-T and the
recent Swin-T architectures with a detailed ablation study
and our proposed experiments using Swin-T outperform
existing algorithms with very less trainable parameters.
We introduced an alternate visual representation to

conventionally used Mel-spectrograms. Our study shows
that visual representation in terms of modgdgram can
be explored in many applications. We believe that opti-
mum parameters may potentially lead to a better visual
representation for modified group delay functions. It is
worth noting that many recent deep learning schemes
in image processing such as transfer learning, atten-
tion mechanism, and transformers are transferable to the
audio processing domain. Modified group delay func-
tions can be computed directly from the music sig-
nal and also from the flattened music spectrum. It is
known as direct-modgdgram (or simply “modgdgram”)
and source-modgdgram, respectively. Direct modgdgram
emphasizes system information and source-modgdgram
provides information about the multiple sources present
in the music signal [55]. Source-modgdgram has been
effectively used formelody extraction [56] andmulti-pitch
estimation [57]. Since we need system information to
track the presence of instruments, we employ the direct-
modgdgram for the task of instrument recognition.
The proposed method is evaluated using the IRMAS

dataset. As observed in many music information retrieval
tasks, the data augmentation strategy has also shown its
promise in the proposed task. The time-domain strat-
egy of synthetic music generation for data augmentation
using WaveGAN is explored. WaveGAN data augmenta-
tion for instrument detection is probably a new attempt
in predominant instrument recognition. As future work,
we would like to focus on synthesizing high-quality audio
files using recent high fidelity audio synthesis approaches
discussed in [58] and to compare the pipeline of tradi-
tional audio augmentations used in many tasks [23] with
adversarial audio synthesis. The ensemble voting frame-
work outperforms the existing state-of-the-art algorithms
and music texture features DNN and SVM frameworks.
The results show the potential of the ensemble vot-
ing technique in predominant instrument recognition in
polyphonic music.
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