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Abstract

Speech emotion recognition is a key branch of affective computing. Nowadays, it is common to detect emotional
diseases through speech emotion recognition. Various detection methods of emotion recognition, such as LTSM,
GCN, and CNN, show excellent performance. However, due to the robustness of the model, the recognition results of
the above models will have a large deviation. So in this article, we use black boxes to combat sample attacks to
explore the robustness of the model. After using three different black-box attacks, the accuracy of the CNN-MAA
model decreased by 69.38% at the best attack scenario, while the word error rate (WER) of voice decreased by only
6.24%, indicating that the robustness of the model does not perform well under our black-box attack method. After
adversarial training, the model accuracy only decreased by 13.48%, which shows the effectiveness of adversarial
training against sample attacks. Our code is available in Github.

Keywords: Convolutional Neural Network, Robustness, Speech emotion recognition, Adversarial attack, Adversarial
training

1 Introduction
Machine recognition of emotional content in speech is
crucial in many human-centric systems, such as behav-
ioral health monitoring and empathetic conversational
systems. Speech emotion recognition [1] is the simulation
of human emotion perception and understanding process
by computer. Its task is to extract the acoustic features
expressing emotion from the collected speech signals, and
find the mapping relationship between these acoustic fea-
tures and human emotion. Therefore, Speech Emotion
Recognition (SER) in general is a challenging task due to
the huge variability in emotion expression and perception
across speakers, languages and culture.
Many SER approaches follow a two-stage framework,

In this framework, a set of Low-Level Descriptors (LLDs)
are first extracted from raw speech. Then the LLDs are
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fed to a deep learning model to generate discrete (or
continuous) emotion labels [2–5]. While the use of hand-
crafted acoustic features is still common in SER, lexical
features [6, 7] and log Mel spectrgrams are also used
as input [8]. Spectrograms are often used with Convolu-
tional Neural Networks (CNNs) that does not explicitly
model the speech dynamics. Explicit modeling of the
temporal dynamics is important in SER as it reflects
the changes in emotion dynamics [9]. The deep learn-
ing model of time series shows excellent performance in
this regard, such as Long-Short Term Memory networks
(CNN-LSTM), Graph Convolution Network (GCN), Con-
volutional Neural Networks with Multiscale Area Atten-
tion (CNN-MAA) [10–12] and various deep learning
techniques, etc. [13–16]. The above models are very out-
standing in capturing the temporal dynamics of emotion,
and their performance effect in SER is the best so far.
Despite their outstanding performance accuracies in

SER, recent research [17–19] has shown that neural net-
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works are easily fooled by malicious attackers who can
force the model to produce wrong result or to even gen-
erate a targeted output value. And the robustness of
SER models against intentional attacks has been largely
neglected. However, understanding the robustness against
intentional attacks is important for the following reasons:
(i) The speech privacy protection method was migrated
to the field of speech emotion recognition for black-box
adversarial attack. (ii) If the speaker itself has emotional
problems and does not want his own voice to be analyzed
and used to explore privacy, such an operation can pro-
tect his own privacy, while the interference to the original
signal content is minimal and imperceptible. The former
is regarded as a defense against speech emotion recogni-
tion attacks, while the latter is regarded as a protection of
speaker emotional privacy to prevent privacy leakage.
To solve these problems, there are gradient-based adver-

sarial attack methods to enhance model robustness, such
as Fast Gradient Sign Method (FGSM)[20] and Project
Gradient Descent (PGD)[21], but such methods require
the attacker to understand the structure and parameters
of the original recognition model. We also need to train
alternative models. However, we found that the method
of spectral envelope distortion, which is common in the
field of speech privacy protection, can play a good adver-
sarial attack effect in speech emotion recognition system.
These methods do not need to understand the original
recognition model and additional corpus, and can be used
for black box attack without training substitutive mod-
els. In this paper, we use McAdams transformation, Vocal
Trace Length Normalization (VTLN) and Modulation
Spectrum Smoothing (MSS) [22] to explore the impact on
the current advanced SER system. To our knowledge, this
is the first work that investigates adversarial examples for
the field of speech emotional recognition.
The contributions of this work are summarized as fol-

lows: (i) We have migrated voice privacy protection meth-
ods for use in the field of voice emotional recognition to
black-box adversarial attack. (ii) We use the above meth-
ods to adversarial attacks against SER and summarize the
results to get the best performing hyperparameters α. (iii)
We are the first to propose black-box adversarial attack
methods to analyze the robustness of the SER models.
Firstly, Section 2 introduces three different SER mod-

els (CNN-LSTM,GCN, CNN-MAA) studied in this paper.
Then Section 3 will show three speech transformations
(McAdams, VTLN, MSS). Section 4 will present the
experimental setup and results, Finally, Section 5 con-
cludes the article.

2 Related work
This section reviews three advanced speech emotion
recognition models, which are used as test models in the
subsequent parts.

2.1 SER based on CNN-LSTM
Speech emotion recognition is a challenging task. The
recognition accuracy largely depends on the acoustic
features of the input and the network conditions used.
Acoustic features mainly rely on contextual information
in the input speech for computation. The combination
of Convolution Neural Networks (CNNs) and Long-Short
Term Memory (LSTM) has gained a huge advantage in
learning contextual information that is crucial for emotion
recognition. CNN can overcome the scalability problem
of traditional neural networks, while LSTM has long-
term memory and solves the problems of vanishing and
exploding gradients during training of long sequences.
In [10], Siddique Latif et al. proposed the use of parallel

convolutional layers to harness multiple temporal reso-
lutions in the feature extraction block, which is jointly
trained with an LSTM-based classification network for
emotion recognition tasks and achieved better perfor-
mance results.

2.2 SER based on GCN
In 2021, by Amir Shirian et al., a light-weight depth map
method is proposed to solve the task of speech emotion
recognition [11]. Following the theory of graph signal pro-
cessing, modeling speech signals as cyclic graphs or line
graphs is a more compact, efficient and scalable form
compared to traditional CNN networks. At the same time,
compared with the traditional graph structure, the author
greatly simplifies the convolution operation on the graph
by reducing the operation of weighted edges on the tradi-
tional graph, so the parameters that can be learned in the
SER task are significantly reduced, and its performance
is better than that of LSTM, standard GCN, and other
state-of-the-art graph models in SER.

2.3 SER based on CNN-MAA
In SER, emotional features are often represented by mul-
tiple energy patterns in the spectrogram. Conventional
attention neural network classifiers for SER are usu-
ally optimized at a fixed attention granularity. While Xu
Mingke et al. [12] applied multiscale area attention in
deep convolutional neural networks to focus on emo-
tional features with different granularities, so the classifier
could benefit from attention sets with different scales.
Meanwhile, channel length perturbation is used for data
augmentation to improve the generalization ability of
the classifier. Compared with other emotion recognition
models, more advanced recognition results are obtained.

3 Adversarial attacks based on speech envelope
distorition

In speech privacy protection, there have beenmanymeth-
ods of spectral envelope distortion to protect the personal
information contained in speech. Our research found that
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Fig. 1 Adversarial attacks against speech emotion models flow chart

the speech after spectral envelope distortion has a very
excellent adversarial attack effect on the speech emotion
recognition system trained by the original speech. Here,
we describe signal processing-based methods that are a
part of our voice modification module, each method has
an individual scalar hyper parameter α∗. By adjusting the
α∗, we explore the adversarial attacks against the SER
model and the robustness of themodel. Figure 1 shows the
flow of black-box attack on SER model. After the attack,
in order to test the robustness of the model, we use the
adversarial training method to add the samples gener-

ated by the attack to the training samples, use the original
label as the correct label for training, and use the trained
model to identify the normal samples and countermeasure
samples.

3.1 Vocal tract length normalization
Vocal Tract Length Normalization (VTLN) [23] was orig-
inally used for speech-to-text recognition tasks to remove
distortions caused by differences in channel lengths by
modifying the magnitude spectrum of the original speech
through a warping function. Let ω0 ∈[ 0, 1] and ω1 ∈[ 0, 1]

Fig. 2 Examples of VTLN: description of the warping function (left) and the change in the spectral curve after application (right)
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Fig. 3 Pipeline using the McAdams transform method: the pole coordinate coefficients with non-zero imaginary parts are subjected to the power
operation of the coefficient αmas , resulting in the distortion of their spectral envelope

the frequency of the original speech and corresponding
warped frequency, respectively. ω0 = 1 is the Nyquist
frequency. ω0 is warped into ω1 as

ω1 = πω0 + 2 tan−1 αvtln sin(πω)

1 − αvtln cos(πω)
(1)

where αvtln ∈[−1, 1] is a hyperparameter of the warp-
ing function and also represents the degree of frequency
warping. Figure 2 shows the warping results for different
hyperparameter choices. When αvtln < 0 and αvtln > 0,
the distorted spectral curves become convex and concave,
respectively, which represent the contraction and expan-
sion amplitudes, respectively. When αvtln = 0, ω0 = ω1,
which means no warping. In this paper, we first obtain

the log amplitude spectrum from the original speech
using the short-time Fourier transform, and then perform
frequency warping with VTLN to obtain the warped log-
amplitude spectrum. And finally, the transformed speech
is obtained by inverse STFT of the modified amplitude
spectrogram and original phase spectrogram.

3.2 McAdams transformation
McAdams transformation [24] achieves the result of
speech transformation by modifying the formant fre-
quency of speech. By performing Linear Predictive Cod-
ing (LPC) [25] on the original speech, we can get the N
poles. Pole pn ∈ c is written as An exp(θn) in the polar
coordinate, where An ∈[ 0, 1] is calculated from the LPC,

Fig. 4 Examples of McAdams transformation: transformed pole shift (left) and spectrogram change after transformation (right)
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Fig. 5 Examples of modulation spectrum smoothing: temporal smoothing of amplitudes (left) and spectral changes before and after smoothing
(right)

which is less than 1, and θn ∈[ 0,π ] is the offset phase.
The pipeline of the McAdams transformation approach is
shown in Fig. 3.
The transformed frequency θ1n ∈[ 0,π ] is obtained by

performing θ1n = θ
αmas
n on the original frequency θn ∈

[ 0,π ], where αmas ∈ R+ is the McAdams coefficient. We
obtain the corrected pole p1n by combining the original for-
mant intensity with the transformed formant frequency,
i.e., p1n = An exp(jθ1n ). The general speech transformation
is to generate the transformed waveform by adding mul-
tiple cosine oscillations to the original oscillation wave:

y(t) =
K∑

K=1
rk(t) cos(2π(kf 0)

αmas t + ϕk) (2)

where K is the harmonic index, rk(t) is amplitude, ϕk is
the phase, t is time. Equation 2 represents the synthesis
of periodic signals that combine harmonic cosine oscil-
lations, each with a certain amplitude and phase offset.
The purpose of the McAdams coefficient is to adjust the

Table 1 Recognition results of the above three speech emotion
recognition models

Model UA (%) WA (%) ACC (%)

CNN-LSTM 63.23 65.36 64.30

GCN 77.54 79.34 78.44

CNN-MAA 77.05 79.11 78.08

frequency of each harmonic, namely θ in, to produce trans-
formed speech by modifying the harmonics in the original
speech. Figure 4 shows an example. The picture on the
left is the case where the pole position is transformed by
McAdams transformation, and the picture on the right is
the influence on the spectral envelope.

3.3 Modulation spectrum smoothing
Modulation spectrum smoothing achieves the purpose of
modifying speech by removing the temporal fluctuation
of speech features [26]. The original speech is obtained
by short-time Fourier transform to obtain the complex
spectrogram X ∈ C(FT) where F and T are the numbers

Table 2 Performance of the three models under the Vocal Tract
Length Normalization attack (UA/WA/ACC)

αvtln CNN-LSTM (%) GCN (%) CNN-MAA (%)

0.20 9.25/10.36/9.80 9.54/9.61/9.58 8.85/9.12/8.99

0.15 11.56/11.84/11.70 10.22/11.50/10.86 10.75/10.94/10.85

0.10 15.62/17.45/16.54 14.12/17.21/15.67 14.55/14.85/14.70

0.05 20.55/24.63/22.59 19.31/20.56/19.94 19.42/19.78/19.60

0.00 62.54/64.27/63.41 75.23/72.32/73.78 76.24/73.32/74.78

− 0.05 24.77/25.61/25.19 25.49/27.38/26.44 20.55/21.64/21.10

− 0.10 16.51/16.35/16.43 14.85/15.64/15.25 17.43/17.87/17.65

− 0.15 12.43/14.62/13.53 11.26/12.43/11.85 12.65/13.44/13.05

− 0.20 10.45/11.24/10.85 10.46/10.65/10.56 10.32/10.55/10.44

Bold fonts indicate the best attack performance under the current modes
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Fig. 6 Description of the three models under the Vocal Tract Length Normalization attack

of frequency bins and frames, respectively. A temporal
sequence of the log amplitude spectrogram at frequency
f, [ log|X(f ,1)|, ..., log|X(f ,1)|], is filtered by a zero-phase low
pass filter, where X(f ,t) is the f , t− th component of X. The
cutoff frequency range of the low-pass filter we used is
αms ∈[ 0, 1], after filtering, the inverse short-time Fourier
transform is used to combine the smoothed amplitude
with the original phase spectrogram to generate the trans-
formed speech. In Fig. 5, the left side shows the smoothing
effect of a certain frequency in the spectrum envelope, and
the right side shows the complete smoothing effect.

4 Experiment
4.1 Dataset
The most widely used data set in the above SER model
is Interactive Emotional Dyadic Motion Capture (IEMO-
CAP)et al. [27]. Therefore, in this paper, in order to
explore the effect of black-box attack on the above model,
we also use the data in this data set for research. It con-
tains 12 h of emotional speech performed by 10 actors
from the Drama Department of University of Southern
California. The performance is divided into two parts,
improvised and scripted, according to whether the actors
perform according to a fixed script. The utterances are
labeled with 9 types of emotion-anger, happiness, excite-
ment, sadness, frustration, fear, surprise, other and neutral
state. For the databases, a single utterance may have mul-
tiple labels owing to different annotators. We consider

only the label that has majority agreement. For the labeled
data in the database, we only consider the case of many
labels due to the difference of vision aids. In previous stud-
ies [28–30], due to the imbalanced data in the dataset
(fewer happy data), researchers usually choose more com-
mon emotions such as neutral state, sadness, anger, and
because of excitement and happiness there is a certain
similarity, so the excitement will be replaced by happi-
ness, or the excitement and happiness will be combined to

Table 3 Performance of the three models under the McAdams
transform attack (UA/WA/ACC)

αmas CNN-LSTM (%) GCN (%) CNN-MAA (%)

1.25 9.54/09.95/9.75 8.66/08.72/8.69 8.02/08.94/8.48

1.20 10.54/11.32/10.93 9.54/10.55/10.05 9.33/10.06/9.70

1.15 12.75/13.44/13.10 11.83/12.31/12.07 11.45/12.02/11.74

1.10 15.56/17.75/16.66 15.66/17.37/16.52 14.03/14.69/14.36

1.05 18.64/20.68/20.68 19.55/19.73/19.64 18.40/19.83/19.12

1.00 61.77/63.64/62.71 77.44/76.27/76.86 75.34/76.73/76.04

0.95 19.94/21.55/20.75 20.33/20.97/20.65 19.21/19.63/19.42

0.90 16.03/16.94/16.49 18.42/18.93/18.68 15.42/15.88/15.65

0.85 14.88/15.32/15.10 13.03/15.64/14.34 14.03/14.86/14.45

0.80 9.57/10.04/9.81 9.93/11.01/10.47 08.32/09.07/8.70

0.75 8.57/09.04/8.81 8.93/09.77/9.35 7.32/7.88/7.60

Bold fonts indicate the best attack performance under the current modes
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Fig. 7 Description of the three models under the McAdams transform attack

increase the amount of data. In this paper, we also use the
four emotions of neutral, excitement, sadness and anger
from the IEMOCAP dataset.

4.2 Evaluation metrics
Evaluating the recognition performance in the above SER
model uses weighted accuracy (WA) and unweighted
accuracy (UA), where WA weighs each class according to
the number of samples in that class and UA calculates
accuracy in terms of the total correct predictions divided
by total samples, which gives equal weight to each class:

UA = TP + TN
P + N

,WA = 1
2

(
TP
P

+ TN
N

)
(3)

where P is the number of correct positive instances, N is
the number of all negative samples, and True Positive(TP)
and True Negative(TN) are the number of positive and
negative samples predicted correctly, respectively. And in
[31], considering thatWA andUAmay not reach the max-
imum value in the same model, their average ACC is used
as the final evaluation standard (the smaller the ACC, the
better the attack effect on the model is). At the same
time, in order to show the actual auditory effect of the
transformed speech, we use automatic speech recogni-
tion (ASR) as the change standard before and after speech
processing. And will calculate the word error rate:

WER = Nsub + Ndel + Nins
Nref

(4)

where Nsub, Ndel, and Nins are the number of substitu-
tion, deletion, and insertion errors, respectively, and Nref
the number of words in the reference [22]. We will calcu-
late WER on the voice before and after the attack as the
standard to judge the voice quality.

4.3 Evaluation setup
In the experiments, we randomly split the dataset into
training set (80%) and test set (20%) for cross-validation.
First of all, after the above three SERmodels are trained on
the training set, they are tested with the test set, and then
the test set is processed with three different black-box
attackmethods, and then the attack effect is identified and
explored. Finally, adversarial training is added to explore
the robustness of the model.

Table 4 Performance of the three models under the Modulation
Spectrum Smoothing attack(UA/WA/ACC)

αms CNN-LSTM (%) GCN (%) CNN-MAA (%)

0.30 13.74/13.49/13.62 11.53/11.95/11.74 11.14/11.59/11.37

0.25 14.94/14.99/14.97 12.46/13.55/13.01 12.22/13.32/12.77

0.20 18.44/19.29/18.87 14.93/16.32/15.63 15.74/17.22/16.48

0.15 20.34/20.77/20.56 17.44/18.30/17.87 19.32/20.43/19.88

0.10 23.21/23.89/23.55 19.92/21.49/20.71 20.11/21.34/20.73

0.05 26.56/28.44/27.50 23.93/24.60/24.27 22.94/24.05/23.50

Bold fonts indicate the best attack performance under the current modes
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Fig. 8 Description of the three models under the modulation spectrum smoothing attack

4.4 Evaluation results
Table 1 shows the results of three different online emotion
recognition for the dataset (IEMOCAP). Firstly, VTLN is
used to attack three different models. Table 2 describes
the performance of the three models under adversarial
attack. With the continuous adjustment of super param-
eters αvtln, the success rate of attack is also increasing.
However, due to excessive and obvious transformation,
the original voice content will change too much, which
is a loss for the value of speech, so the loss of speech
quality also needs to be taken into account as a con-
sideration when considering the best attack case i.e. the
growth of WER. Therefore, in our experiment, we know
that it has the best performance when the hyperparam-
eter αvtln = 0.15, and the WER increases from 11.23 to
21.40% as shown in Table 5, which means that the speech
quality effect decreases by 10.17%. The recognition accu-
racy of the three models is reduced to about 10% in Fig. 6,
indicating that they have good resistance to the emotion
recognition system.
Table 3 shows the recognition results of the three mod-

els under McAdams transformation attack. Due to the
particularity of McAdams coefficient, there are two rel-
atively symmetric transformation modes in forward and
reverse, so the recognition results in the table also show
a symmetry. According to the experimental results in the
Fig. 7, the best attack performance will be obtained when
the αmas = 1.20 (reverse is 0.80), reducing the recognition
accuracy of the three models to 8–10%. Meanwhile,WER
increased by only 6.24% in the Table 5.

Table 4 shows the results of the three models on the
Modulation Spectrum Smoothing attackmethod. Accord-
ing to the analysis of the experimental results, as shown in
Fig. 8, when the αms = 0.25, the best attack effect can be
obtained, and the accuracy of emotion recognition can be
reduced to 12–14%, and WER increased by 8.83% in the
Table 5. After the three attack methods, the recognition
accuracy of the model dropped significantly. At the ini-
tial hyperparameter α∗ (0.05, 0.95, 0.05, respectively), the
model accuracy dropped to 20–25%, indicating that the
three black-box confrontation attacks effectiveness, the
robustness of the model is not excellent.
After we add three kinds of adversarial samples into the

training, as shown in Table 6, three different adversarial
samples are added. As shown in Fig. 9, VTLN train, Mas
train and MSS train respectively add one adversarial sam-
ple to the training with the correct label, and then test
the accuracy of the model. The best performance is the

Table 5 Changes of speech quality before and after the change

Method α∗ WER (%)

Original - 11.23

VTLN 0.15 21.40

− 0.15 23.84

McAdams 1.20 18.69

0.80 17.47

MSS 0.25 20.06
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Table 6 Performance of the three models under the Modulation Spectrum Smoothing attack (UA/WA/ACC)

Model VTLN McAdams MSS ALL

CNN-LSTM 55.57/57.21/56.39 57.84/58.49/58.17 56.04/57.39/56.72 52.74/55.93/54.34

GCN 66.73/67.38/67.06 67.32/69.47/68.40 66.94/67.30/67.12 61.93/62.29/62.11

CNN-MAA 67.32/69.19/68.26 66.04/68.84/67.44 66.73/69.72/68.23 63.83/65.37/64.60

adversarial samples produced by adding McAdams. The
recognition result of GCN model can reach 68.40% after
adversarial training. After adding three kinds of samples
together into the adversarial training (All train in Fig. 9),
the best performancemodel is CNN-MAA, and the recog-
nition accuracy is 64.60%. According to our analysis, the
above two models still have strong robustness after adver-
sarial training because they have better learning effect on
sample dispersion by incorporating graph structure and
area attention mechanism.

5 Conclusion
By transferring the method of voice privacy protection to
the field of SER, a black-box attack is carried out under
the condition of an unknown emotional recognition sys-
tem, and it is found that warp transformation processing
has a strong resistance to emotional recognition. After

simple warp transformation, the voice is well protected in
the trained SER and the usability of voice content is guar-
anteed. In different speech transformation processing, the
final attack effect is not the same. Experiments show that,
among which the McAdams attack method has the best
attack effectWA = 8.32%. Different emotional recognition
models have high mobility and low time cost.
This kind of black-box attack is a kind of no-target

attack. There is no actual direction and prediction for the
result of the attack. Meanwhile, after the adversarial sam-
ples are added to the training, although the accuracy of
the model decreases to a certain extent, the recognition
results still have a certain accuracy, and the model has a
certain robustness to such adversarial samples.
Our work in the future should be to study how to

make a clear and targeted attack through the voice warp
transformation.

Fig. 9 Three models after adversarial training
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