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Abstract 

Music source separation (MSS) is to isolate musical instrument signals from the given music mixture. Stripes widely 
exist in music spectrograms, which potentially indicate high-level music information. For example, a vertical stripe 
indicates a drum time and a horizontal stripe indicates a harmonic component such as a singing voice. These stripe 
features actually affect the performance of MSS systems, which has not been explicitly explored by previous MSS 
studies. In this paper, we propose stripe-Transformer, a deep stripe feature learning method for MSS with a Trans-
former-based architecture. Stripe-wise self-attention mechanism is designed to capture global dependencies along 
the time and frequency axis in music spectrograms. Experimental results on the Musdb18 dataset show that our 
proposed model reaches an average source-to-distortion (SDR) of 6.71dB on four target sources, achieving state-of-
the-art performance with fewer parameters. And the visualization results show the capability of the proposed model 
to extract beat and harmonic structure in music signals.
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1  Introduction
Music source separation (MSS) is an essential technol-
ogy in music information retrieval (MIR), with the aim 
of recovering one or more target musical sources from 
the mixture. The target musical sources usually refer to 
some musical instruments such as bass, drums, and sing-
ing voice. The mixture refers to combinations of source 
signals.

MSS has an extensive range of applications, such as 
music remixing [1] and accompaniment extraction for 
karaoke systems [2]. It can also be used as a preprocess-
ing technique for other MIR tasks [3–5]. When the back-
ground accompaniment is removed, the results of some 

algorithms such as singer identification [6], vocal melody 
extraction [7], music emotion recognition [8], and query-
by-humming [9] show promising improvements. Some 
other MIR studies also use source separation as a joint 
optimization target [10–14] to achieve more effective 
performance.

This task has been challenging for years due to the 
complexity of multi-source modeling and other interfer-
ence factors such as background noise and reverberation. 
Generally, the solution to this problem can be divided 
into two categories according to the processing domain of 
the method: waveform domain [15–18] and spectrogram 
domain [19–31]. Spectrogram-based methods model on 
the spectrograms generated from the short-time Fourier 
transform (STFT) rather than the raw input waveform, 
which will be further discussed in this paper. Spectro-
gram-based MSS mainly includes spectral-decomposi-
tion-based [19, 20], pitch-based [21–23], repeating-based 
[24–26], and deep-neural-network (DNN)-based meth-
ods [27–31].

Recently, with the rapid development of deep learn-
ing, the DNN-based methods achieved more competitive 
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results in MSS, using various of neural networks such as 
CNNs [32–34], RNNs [35, 36], and Transformers [37, 
38]. These networks were trained on multi-track music 
datasets to learn the pattern of separating various kinds 
of instruments and singing voices.

However, most previous DNN-based MSS studies do 
not explicitly explore the stripe features widely existed in 
music spectrograms. Considering the existence of har-
monics for melody-based instruments, there are many 
horizontal stripes parallelly located in integral multiples 
of fundamental frequency f0 [39], which can be found in 
the “vocals” and “bass” spectrograms shown in Fig. 1. For 
example, given f0 is 200Hz, there are corresponding har-
monic components in places around 400Hz, 600Hz, etc. 
On the other hand, vertical stripes also appear in spec-
trograms when rhythmic instruments such as drum kits 
are played [26], as presented in the “drums” spectrogram.

The aim of our study is to appropriately process these 
unique characteristics of musical spectrograms for music 
source separation. Considering the excellent performance 
of deep neural networks in recent MIR developments, we 
choose the DNN-based architecture to process stripe fea-
tures of music spectrograms.

Our contributions in this paper mainly include the 
following four aspects: (1) In the task of MSS, we 
first propose to combine U-Net architecture with the 
Transformer backbone network. (2) In the proposed 
model, high-level spectral feature maps are modeled as 
sequences of horizontal or vertical stripes. We design 
a stripe-wise self-attention (SiSA) module, a novel 

attention mechanism to capture long-term dependencies 
within and between these stripes. (3) Under the optimal 
experimental setting, the proposed method can achieve 
the state-of-the-art (SOTA) results on the Musdb18 
dataset with fewer parameters. (4) We present a visual 
analysis for attention maps of stripe features and recon-
structed spectrograms, which shows that the proposed 
model can better extract stripe features such as beat and 
harmonic structure in the music spectrograms.

2 � Related works
Recently, the SOTA algorithms for music source sepa-
ration are mostly based on deep neural networks. This 
section introduces the existing MSS methods which use 
the relevant neural networks involved in our proposed 
method.

2.1 � CNN‑based methods
Convolutional neural network (CNN) was initially pro-
posed for image classification [32]. The convolution layer 
slides different convolution kernels on the input image 
with certain linear operations. This operation with the 
strategy of sharing parameters significantly reduces the 
model parameters and can better extract local features.

In the audio and music source separation task, CNNs 
also show effective performance. Chandna et  al. pro-
posed a network based on CNN for audio source sepa-
ration [40]. Takahashi et al. proposed a DenseNet-based 
network which introduced connections through multiple 
feature maps through down-sampling and up-sampling 

Fig. 1  Spectrograms of an example music piece and its source signals, in which horizontal and vertical stripes are highlighted
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layers [41], with considerable performance improvement 
using fewer parameters. Stacked Hourglass Network was 
proposed to capture features at both coarse and fine reso-
lution, with CNNs as the backbone network [42]. Kong 
et  al. proposed the deep ResUNet using more stacked 
residual CNN layers with skip connections [29], which 
achieved SOTA performance using the spectrogram-
based method.

2.2 � U‑Net‑based methods
U-Net was initially proposed for medical image segmen-
tation [43], which adopted a U-shaped encoder-decoder 
structure. Skip connections are introduced to connect 
the convolutional layers of the same resolution between 
the encoder and decoder. In this way, shallow features 
and deep semantic features are fused, which significantly 
boosts the performance of image segmentation.

Jansson et al. first applied U-Net to singing voice sepa-
ration [28], which surpassed the SOTA method at that 
time in both subjective and objective indicators. Since 
then, there has been a series of MSS works based on this 
model architecture [12, 29, 44, 45]. Choi et  al. verified 
various types of intermediate blocks that can be used in 
the U-Net architecture [46]. Wave-U-Net was proposed 
as a time domain method for audio source separation 
method adapted from U-Net architecture [15, 47].

2.3 � Transformer‑based methods
Recently, Transformers have been widely applied in the 
area of natural language processing [37, 38], image pro-
cessing [48, 49], and audio processing [50, 51]. Trans-
formers with the self-attention mechanism can capture 
long-term dependencies and highlight essential features 
in a parallel computation pattern. For the music source 
separation task, Li et  al. proposed a sliced attention-
based neural network, which showed the effective per-
formance of the self-attention mechanism [30]. Yu et al. 
proposed a pure spectral-temporal Transformer-based 
encoder that outperformed previous singing voice sepa-
ration methods [52].

3 � Method
This section introduces the overall architecture of the 
proposed model and the details of its main components. 
The stripe-Transformer block and stripe-wise self-atten-
tion mechanism are further explained.

3.1 � Overall architecture
As presented in Fig.  2, we design our proposed model 
according to the SIMO (single-input-multi-output) archi-
tecture [53], in which the single-input refers to the input 
mixture and multi-outputs refer to spectrograms of tar-
get sources. In terms of the model architecture, we use 

the U-Net-like structure, with the consideration of the 
impressive performance of this symmetric structure for 
source separation tasks.

It is difficult to directly learn global information from 
low-level feature maps, and the calculation complexity 
will be unbearable if the Transformer module directly 
models on the input spectrogram with a relatively large 
frequency dimension (1536 frequency bins in our experi-
mental setting). We first down-sample the spectral fea-
ture maps by using the convolution layer with the stride 
of 2 on the frequency dimension. Each down-sampling 
convolutional layer is followed by a residual CNN block. 
The encoded feature maps can be reduced to 192 fre-
quency bins using three down-sampling CNN blocks. 
Then, the stripe feature learning module is placed at the 
bottleneck part of the U-Net structure to process multi-
scale feature representations. The outputs of the stripe 
feature learning module are then passed into the convo-
lutional decoder. Skip connections exist between spec-
tral feature maps of down-sampling and up-sampling 
processes.

3.2 � Residual CNN block
Residual CNN blocks are placed at the encoder and 
decoder, which can focus on local regions to recover high-
resolution details. The structure of a residual CNN block is 
presented in Fig. 2b. It consists of two convolutional layers, 
in which each layer follows a LeakyReLU activation and a 
batch normalization layer. And one more convolution layer 
of 1× 1 kernel connects the input and the output of the 
main branch.

3.3 � Stripe‑Transformer block
Stripe-Transformer block is used to capture dependencies 
of horizontal and vertical stripes in multi-scale feature rep-
resentations. The structure of a stripe-Transformer block is 
presented in Fig. 2c, which mainly consists of a stripe-wise 
self-attention (SiSA) module, a squeeze-and-excitation (SE) 
module, and a mixed-scale convolutional FFN (MixCFN).

The SiSA module is an attention-based dual-path net-
work, which consists of two branches for processing hori-
zontal and vertical stripe features, respectively. Specifically, 
the input of the SiSA module x ∈ R

H×W×C is first divided 
into two groups xH ∈ R

H×W× C
2 and xV ∈ R

H×W× C
2 along 

the channel dimension. The two groups are then processed 
by horizontal and vertical branches separately, in which 
feature maps are treated as a sequence of the horizontal 
stripes and vertical stripes, respectively. The details of SiSA 
are shown in Fig. 3 and will be described in Section 3.4. We 
denote the horizontal and vertical branches of the SiSA 
module as SiSAH and SiSAV  , respectively. The outputs of 
these two branches hH ∈ R

H×W× C
2 and hV ∈ R

H×W× C
2  

can be obtained by
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hH and hV  are then passed into the squeeze-and-excita-
tion (SE) [54] module for feature aggregation along the 
channel dimension. SE module consists of two linear lay-
ers and a sigmoid activation function, which can further 
enhance important feature maps. The output of the SE 
module h ∈ R

H×W×C can be obtained by

We use mixed-scale convolutional FFN (MixCFN) first 
proposed in [55] to further process the feature outputs 
from attention layers. MixCFN is based on the struc-
ture of the common feed-forward-network (FFN), which 
consists of two fully connected (FC) layers and a GELU 
activation function. To further extract multi-scale local 
information, MixCFN adds two depth-wise convolution 
paths between two FC layers. Specifically, the feature 
maps after the first FC layer are split into two parts along 

(1)hH =SiSAH (LayerNorm(xH )),

(2)hV =SiSAV (LayerNorm(xV )).

(3)h = x + SE(hH , hV ).

the channel dimension and then passed into 3× 3 and 
5× 5 depth-wise convolution layers.

Finally, the output of the MixCFN z ∈ R
H×W×C , which 

is also the output of the stripe-Transformer block, can be 
obtained by

The layer normalization is used to speed up network con-
vergence and residual connection is used to avoid vanish-
ing gradient problems.

3.4 � Stripe‑wise self‑attention
The SiSA module contains horizontal and vertical 
branches, as mentioned in the above section. We take 
the vertical branch of the SiSA module as an example for 
further explanation, as shown in Fig.  3. The horizontal 
branch is in a similar pattern to the vertical branch and 
will not be discussed.

Basically, each feature map in the vertical branch can be 
modeled as a sequence of vertical stripes, in which each 
stripe is also a sequence of frequency bins at a certain time 

(4)z = h+MixCFN (LayerNorm(h)).

Fig. 2  The overall architecture of the proposed model and the detail of residual CNN and stripe-Transformer block
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step. And it has been demonstrated in previous works 
[27, 30] that capturing long-term dependencies of fea-
ture sequences is beneficial to the source separation task. 
Therefore, we propose to use two kinds of attention-based 
networks, inter-stripe multi-head self-attention (MHSA) 
and inner-stripe MHSA, to deal with the long-term 
dependency problem of stripe-level feature modeling. The 
former is used to capture dependencies between different 
stripes, and the latter is used to capture dependencies in 
each stripe.

Let I ∈ R
H×W×C be the input feature maps of the verti-

cal SiSA, in which C is half the channel number of the input 
of the stripe-Transformer block. For inter-stripe MHSA, I 
is first processed by a linear transform along the channel 
dimension and reshaped to Q, K, and V ∈ R

n×H×W×c , in 
which n denotes the head numbers and c denotes the num-
ber of channels per head. The strip-pooling [56] strategy 
is used to down-sample feature maps Q and K as stripe 
tokens. It performs global average pooling (GAP) on each 
vertical stripe, which can be denoted as

(5)yj =
1

H
0≤i≤H

xi,j ,

in which yj denotes the down-sampled feature of a sin-
gle stripe. Through this spatial reduction operation, the 
shape of Q and K becomes n×W × c . Then, the atten-
tion maps A ∈ R

n×W×W  can be obtained from the 
inner product of Q and K, in which an attention map 
Ano ∈ R

W×W  of head no can be obtained by

Then, we take the inner product of A and V to obtain the 
hidden result Y ∈ R

n×H×W×c . Finally, we concatenate the 
n heads of Y and use one linear transform layer to obtain 
Ointer ∈ R

H×W×C as the result of inter-stripe MHSA. The 
obtained attention map A reflects the global dependen-
cies of different stripes in the spectrogram, which will be 
further analyzed in Section 4.6.

For the inner-stripe MHSA part, matrices Q′ , K ′ , and 
V

′ are similarly obtained from another linear transform 
layer and reshape operation. While the spatial-reduc-
tion operation is not required, the self-attention opera-
tion is done inside each vertical stripe separately. The 
attention maps A′ ∈ R

n×W×H×H can be obtained from 
the inner product of Q′ and K ′ , in which an attention 
map A′

n
′
o,wo

∈ R
H×H of a specific head n′

o and stripe wo 
can be obtained from

(6)Ano = softmax(
Qno · KT

no√
c

).

Fig. 3  The illustration of the vertical branch of the stripe-wise self-attention module ( SiSAV)



Page 6 of 13Qian et al. EURASIP Journal on Audio, Speech, and Music Processing          (2023) 2023:2 

We use the inner product of A′ and V ′ to obtain the hid-
den result Y ′ ∈ R

n×H×W×c . Then, we obtain the result 
of inner-stripe MHSA Oinner ∈ R

H×W×C using the same 
way as the inter-stripe MHSA mentioned above.

Finally, the output feature maps of the vertical SiSA 
module O ∈ R

H×W×C can be obtained from the summa-
tion of Ointer and Oinner.

4 � Experiments
In this section, we first introduce our experimental set-
tings, including dataset, model configuration, train-
ing, and evaluation strategies. And we explore the 
performance of the proposed model compared with 
other DNN-based networks. We also perform compari-
son experiments concerning the construction of the pro-
posed model and the effect of input audio length. Finally, 
the visualization results and analyses are discussed.

4.1 � Dataset
We use the open dataset Musdb18 [57], a professional 
multi-track dataset that contains four target sources, 
including “vocals,” “bass,” “drums,” and “other,” among 
which the “other” includes musical instruments except 
for the previous three, such as piano and violin. The data-
set contains 150 pieces in total, including 100 songs in 
the training set and 50 songs in the testing set. We then 
divide the songs in the training set into 86 songs for 
model training and 14 songs for model validation. All 
audio materials are in stereo format at 44.1kHz.

4.2 � Experimental settings
During data generation, random segments in training 
songs are selected for each training iteration. Each song 
segment is processed by STFT to obtain the spectrogram, 
with a window length and hop size of 4096 and 1024 
samples, respectively. The size of the obtained spectro-
gram is 2 × 2049 × 256, which represents a roughly 6-s 
song piece. Since the frequency bandwidth of the tracks 
in the Musdb18 dataset is limited to 16kHz, we cut the 
high-frequency part and finally obtain the spectrogram 
with the size of 2× 1536× 256 , which is then fed into 
the neural networks. We also use data augmentation to 
obtain more sufficient data for training, mainly the ran-
dom remixing and random amplitude scaling [58]. The 
random remixing strategy randomly takes 6-s pieces 
from each audio source track and then obtains the mix-
ture by the linear summation of all tracks.

For detail settings of our proposed model, the channel 
numbers of the ResCNN part in the encoder are 32, 48, 

(7)A
′

n
′
o,wo

= softmax







Q
′

n
′
o,wo

· K ′

n
′
o,wo

T

√
c






.

and 64, and the kernel size keeps 3× 3 . In multi-scale 
stripe-Transformer blocks, the channel numbers are 128, 
256, and 512, and the head numbers are 4, 8, and 16. The 
expansion ratio for MixCFN keeps 3.

We use the method that decouples the estimation of 
magnitudes and phases to optimize the model [29], in 
which complex ideal ratio masks (cIRMs) are obtained 
from the final layer of the network. The reconstructed 
source signals are obtained from the product of the 
input complex spectrogram and the output cIRMs in the 
complex domain. The loss we use is the L1 loss between 
reconstructed waveform source signals and ground 
truths. We use the Adam optimizer without regulariza-
tion. The learning rate is set to 0.0001 initially and is mul-
tiplied by a factor of 0.9 after every 10K steps. The batch 
size is set to 16. Stripe-Transformer and other compari-
son models are trained for 200K iterations with four 
V100 32G GPUs.

For the inference of the model, we refer to the practice 
of Sams-Net [30] to cut the original complete audio into 
several continuous segments, and each piece will be fed 
into the stripe-Transformer network. Finally, the results 
of all segments are assembled to obtain recovered songs.

We evaluate the proposed model and comparison mod-
els by using three objective indicators, namely source-to-
distortion ratio (SDR), source-to-interference ratio (SIR), 
and source-to-artifact ratio (SAR). Given an estimate of 
a source si composed of the true source starget , and three 
error terms, interference einterf , noise enoise , and arti-
facts eartif [59], the SDR, SIR, and SAR can be defined as 
follows:

All metrics mentioned above are calculated by the 
Python package museval [60] using the median of frames 
and median of tracks.

4.3 � Ablation study
We design some ablation experiments to verify the effec-
tiveness of stripe-Transformer. Firstly, we verify the per-
formance of the stacked stripe-Transformer blocks as the 
bottleneck part of the network, compared with stacked 
blocks using the other two backbone networks. We 

(8)SDR = 10 log10

(
∥

∥starget
∥

∥

2

�einterf + enoise + eartif�2

)

,

(9)SIR = 10 log10

(
∥

∥starget
∥

∥

2

�einterf�2

)

,

(10)SAR = 10 log10

(
∥

∥starget + einterf + enoise
∥

∥

2

�eartif�2

)

.
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denote our proposed model as “Stripe-T.” The one base-
line model we refer to is the residual CNN block, using 
the structure consistent with the encoder as shown in 
Fig. 2b. We denote this method as “ResCNNs.” The other 
baseline model we refer to is the spatial-reduction Trans-
former (SR-T) block in Pyramid Vision Transformer 
(PVT) [61]. The SR-T block is another Transformer-
based network component widely used in image segmen-
tation, which can also use a self-attention mechanism 
to process high-resolution feature maps. Specifically, 
it adopts depth-wise CNN with a certain stride before 
self-attention operation. This spatial-reduction design 
can avoid high computation costs when capturing global 
dependencies. In our experiments, the down-sampling 
stride of the spatial-reduction convolution kernel is set 
to 8× 8 , 4 × 4 , and 2× 2 in three stages, and the head 
numbers and channel numbers are the same as Stripe-T. 
We denote this method as “SR-T.” We keep the structure 
of the encoder and decoder the same as in Fig. 2 and use 
the same number of stacked three comparison blocks 
as the bottleneck parts. The numbers of parameters of 
ResCNNs, SR-T, and Stripe-T are 20.48M, 23.81M, and 
10.60M, respectively.

The experimental results can be seen in Table  1. We 
compare the SDR, SIR, and SAR performance of the 
mentioned three bottlenecks. According to the SDR 
value, ResCNNs and SR-T have similar performance, 
among which ResCNNs is slightly higher than SR-T 
on “bass” and “other” and slightly lower than SR-T on 
“drums” and “vocals.” Stripe-Transformer outperforms 
the other two methods on all four targets. According to 
the average values of the three indicators, ResCNNs and 

SR-T are both 7.75 dB, while stripe-Transformer reaches 
8.52dB, with about 0.77dB improvement compared with 
the mentioned two methods.

To further explore the construction of the proposed 
stripe-Transformer, we test the performance of the sys-
tem when removing some components of the stripe-
Transformer, as presented in Table 2. We first verify the 
effectiveness of the horizontal and vertical branches of 
the SiSA module. When removing horizontal and vertical 
branches of stripe-Transformer blocks, the mean of met-
rics decreases by 0.43dB and 0.30dB, respectively, indi-
cating that the removal of horizontal SiSA has a slightly 
more significant impact on the performance. We also 
verify the effect of inner-stripe and inter-stripe MHSA 
inside the SiSA module. When removing these two parts 
separately, the mean of metrics decreases by 0.61dB and 
0.63dB. In summary, the removal of any branch of the 
SiSA module will degrade the performance of the pro-
posed system.

4.4 � Context length of stripe‑Transformer
For Transformer-based networks, the length of the input 
sequence will affect the performance of the model [30, 
62]. We test the performance of the model with different 
input segment lengths. The metric we use is the average 
of SDR, SIR, and SAR scores. We set the frame lengths 
of the input audio to be 64, 128, 256, 512, and 1024, in 
which 256-frame stands for around 6s in our experi-
mental settings. The results are shown in Fig. 4. It can be 
found that when the frame length is set to 256, the aver-
age score reaches the highest for “vocals” and “drums” 
separation. The score of “bass” separation achieves the 

Table 1  SDR, SIR, and SAR value of U-Net-based models using different backbone networks, evaluated on the test set of Musdb18

The best metrics are highlighted using bold font

SDR SIR SAR

Bass Drums Other Vocals Bass Drums Other Vocals Bass Drums Other Vocals Mean

ResCNNs 4.99 6.41 5.23 6.74 9.65 13.19 7.77 15.51 5.88 6.22 4.63 6.73 7.75

SR-T 4.81 6.57 5.09 6.85 10.28 12.73 8.09 14.62 5.92 6.47 4.55 6.98 7.75

Stripe-T 5.46 7.56 5.82 7.75 11.00 13.36 9.00 16.37 5.92 7.23 5.18 7.57 8.52

Table 2  Comparison of the experimental configuration of removing different components of the stripe-Transformer

The best metrics are highlighted using bold font

SDR SIR SAR

Bass Drums Other Vocals Bass Drums Other Vocals Bass Drums Other Vocals Mean

Stripe-T 5.46 7.56 5.82 7.75 11.00 13.36 9.00 16.37 5.92 7.23 5.18 7.57 8.52
- Hor. SiSA 4.94 6.98 5.31 7.28 11.10 12.90 8.18 15.80 5.78 6.76 4.80 7.24 8.09

- Ver. SiSA 5.17 6.91 5.38 7.27 11.02 13.66 8.30 16.00 5.68 6.95 4.95 7.31 8.22

- Inner. MHSA 5.09 6.59 5.27 7.09 10.62 12.64 8.06 15.33 5.53 6.66 4.91 7.12 7.91

- Inter. MHSA 4.90 6.97 5.09 7.07 10.55 12.88 7.85 15.49 5.40 6.55 5.00 6.89 7.89
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highest when the number of input frames is 1024. And 
the separation performance of the above three instru-
ments remains poor when the number of frames is 64, 
which contains the least context information.

4.5 � Comparison with other MSS systems
Table  3 shows the comparison results of SDR score 
between our model and existing MSS methods. Wave-
U-Net [15] is an adaption architecture of U-Net on 
time-domain representations. Meta-TasNet [18] is a 
meta-learning-inspired architecture for source sepa-
ration. The above two methods are all time-domain 
methods, and the rest are spectrogram-based methods. 
Open-Unmix [63] is a frequently used benchmark sys-
tem on the Musdb18 dataset, with three bidirectional 
LSTMs as the backbone network. MMDenseLSTM [27] 
uses multi-band multi-scale CNNs [41] and integrates 
long short-term memory (LSTM). Sams-Net [30] intro-
duces the sliced attention mechanism to the spectrogram 
domain. D3Net [31] uses densely multi-dilated convolu-
tion to further improve the performance based on multi-
band configuration. Deep ResUNet [29] uses a 143-layer 

network with a novel cIRM estimation strategy, which 
achieves the SOTA performance in spectrogram-based 
methods.

As shown in Table 3, the proposed stripe-Transformer 
achieves 7.63dB on the “drums” category and 5.89dB on 
the “other” category, which outperforms the above sys-
tems. On the “vocals” category, the stripe-Transformer 
achieves 7.83dB, with a significant improvement com-
pared to other methods other than Deep ResUNet. On 
the “bass” category, stripe-Transformer is comparable 
with most spectrogram-based methods and is relatively 
weaker than Deep ResUNet. For the overall performance, 
stripe-Transformer achieves averagely 6.71dB, which 
is comparable with the 6.73dB of Deep ResUNet while 
using around one-tenth of the number of parameters. We 
compare stripe-Transformer with mentioned methods in 
terms of the overall performance and model parameters, 
as summarized in Fig. 5.

4.6 � Visualization
To further investigate the effect of the stripe-wise self-
attention mechanism of the proposed model, we extract 
the attention maps of stripe-Transformer. The stripe-
attention maps of the vertical branch are taken from the 
first stage of the bottleneck part, and those of the hori-
zontal branch are taken from the third stage. The results 
are shown in Fig. 6. The attention score is an average of 
all query stripes and attention heads, which provides a 
more global interpretation.

The bottom attention bar profiles vertical stripes of 
spectrograms, i.e., time steps. It can be found that the 
most highlighted areas along the time axis are located 
around the drum signals, especially the time steps of the 
kick drums. And the left attention bar profiles horizon-
tal stripes of spectrograms, i.e., frequency bands. It can 
be found that the relatively lower frequency band (<4000 
Hz) achieves the higher attention score in the above two 

Fig. 4  The average score of SDR, SIR, and SAR on “vocals,” “drums,” and “bass” categories with different input audio lengths

Table 3  Comparison of the SDR metric with other models on 
Musdb18

The best metrics are highlighted using bold font

Vocals Drums Bass Other Avg.

Wave-U-Net [15] 3.25 4.22 3.21 2.25 3.23

Meta-TasNet [18] 6.40 5.91 5.58 4.19 5.52

Open-Unmix [63] 6.32 5.73 5.23 4.02 5.33

MMDenseLSTM [27] 6.60 6.41 5.16 4.15 5.58

Sams-Net [30] 6.61 6.63 5.25 4.09 5.65

D3Net [31] 7.24 7.01 5.25 4.53 6.01

Deep ResUNet [29] 8.98 6.62 6.04 5.29 6.73
Stripe-Transformer 7.83 7.63 5.50 5.89 6.71
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cases, since the lower frequency band is considered as the 
most complicated part along the frequency axis, which 
contains more instrumental energies.

We also evaluate the quality of the reconstructed 
spectrograms for each target source, using differ-
ent comparison models mentioned in Section  4.3. As 
shown in Fig.  7, we use red boxes to highlight differ-
ences in target spectrograms estimated by ResCNNs, 
SR-T, and stripe-Transformer. In terms of the recon-
struction outputs of the “drums” category, the vertical 
stripes are broken while using ResCNNs; the boundary 
between the vertical stripes is not clear enough using 

SR-T. In the lower frequency part, the constituents of 
the music are often more complicated, which makes the 
separation of drum activities more likely to make mis-
takes. In comparison, stripe-Transformer can better 
recover these details. Since drum activities are shown 
as vertical stripes in the spectrogram, their locations 
and relationships can be better handled by stripe-level 
feature modeling. For the “bass” category, most of the 
energy in the red box is lost when using ResCNNs 
while it is preserved well when using SR-T and stripe-
Transformer. It demonstrates the importance of captur-
ing global dependencies using some strategies such as 

Fig. 5  Performance vs. model parameters on the Musdb18 dataset. Fewer parameters and higher SDR score are better

Fig. 6  Visualization of deep stripe feature learning results. Two song clips are taken from the Musdb18 test set. Magnitude spectrograms of the 
mixture are presented, in which four different colors represent the four constituent sources. On the left and bottom sides of each spectrogram, 
there are score bars which represent the average attention scores of horizontal and vertical stripes, respectively. The higher the score is, the greater 
attention the network pays to the position
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Fig. 7  Comparison of reconstructed magnitudes using different backbone networks. The four rows from top to bottom are drums, bass, other, and 
vocals target source, which is taken from a roughly 6-s piece of Schoolboy Fascination 
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the self-attention mechanism. For the “other” category, 
ResCNNs and SR-T drop percussive signals in the red 
box, which appear as vertical stripes in the spectro-
gram. For the “vocals” category, stripe-Transformer can 
also better recover the labeled region compared with 
ResCNNs and SR-T, with its better ability to process 
harmonic signals shown as horizontal stripes.

And we use yellow boxes to highlight differences made 
by removing horizontal or vertical SiSAs in stripe-Trans-
former. For the “drums” category, both two models miss 
high-frequency energies at labeled regions. For the “bass” 
category, the stripe-Transformer with only horizontal 
SiSAs almost misses one note. For the “other” category, 
there are no significant percussive signals in the labeled 
spectrogram estimated by the stripe-Transformer with 
only vertical SiSAs. Therefore, it can be demonstrated 
that the removal of the horizontal or vertical branch of 
the SiSA module might degrade the performance.

5 � Conclusion
In this paper, we propose a novel deep neural network 
architecture, stripe-Transformer, for the task of music 
source separation. The stripe feature learning module in 
the proposed model significantly boosts the performance 
of MSS. The experimental results on the Musdb18 data-
set show that the proposed model achieves SOTA per-
formance with fewer parameters in terms of SDR score. 
The quality of reconstructed spectrograms is better when 
using stripe-Transformer compared with ResUNet and 
SR-T. And visualization results of attention maps show 
that our proposed model can better highlight beat and 
harmonic structures in music spectrograms.

In our future work, we will enlarge the proposed net-
work and apply it into more instrumental separation 
tasks. Moreover, Transformer-based networks usually 
need large amount of training data. We will further inves-
tigate data augmentation techniques and some semi-
supervised methods such as noisy self-training [64] to 
further improve the performance of the model.
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