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Abstract 

Recent years have witnessed a great progress in single-channel speech separation by applying self-attention based 
networks. Despite the excellent performance in mining relevant long-sequence contextual information, self-attention 
networks cannot perfectly focus on subtle details in speech signals, such as temporal or spectral continuity, spectral 
structure, and timbre. To tackle this problem, we proposed a time-domain adaptive attention network (TAANet) with 
local and global attention network. Channel and spatial attention are introduced in local attention networks to focus 
on subtle details of the speech signals (frame-level features). In the global attention networks, a self-attention mecha-
nism is used to explore the global associations of the speech contexts (utterance-level features). Moreover, we model 
the speech signal serially using multiple local and global attention blocks. This cascade structure enables our model 
to focus on local and global features adaptively, compared with other speech separation feature extraction methods, 
further boosting the separation performance. Versus other end-to-end speech separation methods, extensive experi-
ments on benchmark datasets demonstrate that our approach obtains a superior result. (20.7 dB of SI-SNRi and 20.9 
dB of SDRi on WSJ0-2mix).
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1 Introduction
Speech separation, originating from the famous “cock-
tail party problem” [1, 2] and aiming to estimate the tar-
get speech from multi-person mixed speech, is widely 
applied in such fields as automatic speech recognition, 
speaker recognition and mobile communications [3, 4]. 
It is a difficult task to construct an automatic system like 
the human auditory system which can easily focus, in 
complex acoustic surroundings, on the target speech and 
automatically filter out irrelevant sounds. In this paper, 
due attention is paid to the single-channel speech separa-
tion, which is a more challenging task than multi-channel 

speech separation owing to the lack of spatial location 
information.

In recent years, important advances achieved in super-
vised speech separation, especially with the development 
of deep learning, have greatly promoted the single-chan-
nel speech separation technology [5–8]. Some research in 
deep-learning based speech separation techniques focus 
on time-frequency (T-F) domain methods [9–15]. These 
approaches first apply a short-time Fourier transform 
(STFT) to obtain a T-F representation of the speech, then 
separate the T-F features of each target. The target wave-
forms are then reconstructed by applying the inverse 
STFT to the separated features. However, the T-F-based 
approach has limited separation performance because it 
ignores clean phase information and uses noisy phases for 
time-domain signal reconstruction [16]. To address such 
an issue, [17] proposed the time-domain speech separa-
tion network (TasNet), which, with no time-frequency 
domain transformation required, directly modeled the 
time-domain speech signals, trained the time-domain 
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loss with PIT [11] and reconstructed the speech wave-
form. Most of the current mainstream speech separa-
tion explorations are conducted based on TasNet, such as 
Conv-TasNet [18], FurcaNeXt [19], DPRNN [20], Wave-
split [21], DPTNet [22], and SepFormer [23], all of which 
have made great progress compared with T-F methods. 
Directly modeling speech signals in the time domain 
avoids the problem of increased computational complex-
ity caused by using STFT and reduces the delay in the 
speech signal processing process. Moreover, the time 
domain method eliminates the frequency decomposition 
step, thereby avoiding phase errors when reconstructing 
the pure speech signal.

More recently, attention-based speech separation 
methods have received much interest. In [22] and [23], 
self-attention based networks [24] are applied in single-
channel speech separation and have achieved SOTA 
results, which demonstrate its powerful capacity for 
long sequence modeling. Worth noting is that the self-
attention network is unique in its obtaining the output 
by calculating entire segments of speech information or 
more attention is paid to the long-term dependence of 
the sequences at different time scales. However, owing 
to some subtle local details (such as temporal or spec-
tral continuity, which refers to the smoothness and con-
sistency features of speech signals in time or frequency 
domain, and spectrogram structure, timbre, etc.) existing 
in speech separation [25, 26], the self-attention network 
may not result in the well extraction of these local infor-
mation, which led to our motivation of using an addi-
tional network to improve the model’s ability to capture 
local details in speech.

Based on this idea, a single-channel speech separation 
structure based on the time-domain adaptive attention 
network (TAANet) is proposed, with N identical local 
and global attention blocks stacked, and each block con-
tains a local attention network and a global attention net-
work. In a local attention network, we used the CBAM 
structure [27]; the channel attention and spatial attention 
mechanism are introduced to achieve more complete 
model description of the details of speech features. The 
channel attention module filters each channel and pays 
more attention to the correlation information between 
different encoders at the same time. The spatial atten-
tion module mainly focuses on the short-term context 
feature information in blocks corresponding to different 
speakers. In a global attention network, the self-attention 
mechanism is adopted to explore the global association of 
speech contexts [22, 24]. Moreover, all the blocks are con-
nected serially, so that the model could adaptively focus 
on the local information and the global information at 
each feature level. With this adaptive attention network, 

the model could effectively extract the local information 
and the global information of the speech features, thus 
further promoting the separation performance. Com-
pared with other end-to-end speech separation methods, 
extensive experiments on benchmark datasets demon-
strate that our approach is able to improve the separation 
performance. In general, the main contributions of this 
paper are as follows:

• A new end-to-end single-channel speech separation 
model is constructed, which uses the local attention 
module and the global attention module to model the 
speech sequence, and combines the local detail infor-
mation and global context feature information in the 
sequence coding, which can effectively improve the 
Performance of the model on the speech separation 
task.

• Considering the channel information and spatial 
information inside the speech sequence feature cod-
ing, a local attention module is added to the network. 
This module introduces the channel attention mech-
anism and the spatial attention mechanism, which 
can make the model pay more attention to the local 
details in the speech block. Make the network more 
sensitive to speaker characteristics.

• For feature information extraction between long 
sequence blocks, a global attention module is built, 
and feed forward is improved, and linear is replaced 
by GRU with better time series processing ability, 
so that the network can more effectively model long 
sequence context.

The rest of this paper is organized as follows: Section 2 
reviews some related work. Section 3 describes the details 
of the proposed method. The experimental settings and 
results of proposed method are given in Sections 4 and 5, 
respectively. Section 6 draws some conclusions.

2  Related work
Single-channel speech separation (SS) is a classical 
task in speech processing, which aims at separating 
each source from mixed speech to improve the quality 
and intelligibility of speech data. Considering that the 
mixed speech has some similarity with the separated 
speech, the speech separation model does not directly 
output the speech waveform of each speaker but indi-
rectly obtains the information of each speaker by 
estimating the mask of each speaker through the sepa-
rator, and then reduces the speech waveform accord-
ing to the speaker mask. The block diagram of speech 
separation is shown in Fig.  1. First of all, the mixed 
speech signal x is processed by the encoder to obtain 
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the feature spectrum X. The feature spectrum X of 
the mixed signal is then fed into the separator model 
to estimate the mask mi, i = 1, 2, ...,C for each speaker. 
Estimated masks can be used as training targets for 
speech separation. The common time-frequency 
masks include ideal binary mask (IBM) [28, 29], target 
binary mask (TBM) [30], and ideal ratio mask (IRM) 
[9, 31], which can significantly improve the intelligibil-
ity and perceptual quality of separated speech. Finally, 
the speaker mask mi is multiplied element by element 
with the feature spectrum X and then processed by the 
decoder to obtain the separated speaker speech wave-
form ŝi.

With the further improvement of deep network 
models, the performance of SS using sequence pre-
diction has improved significantly, and deep learning 
based SS uses a data-driven approach to learn bet-
ter separation models and greatly compensate for 
the shortcomings of traditional methods. Traditional 
speech separation algorithms, in realistic situations, 
have difficulty in meeting the assumptions, and thus 
the separation performance is greatly reduced. At the 
same time, the traditional linear model has difficulty 
in capturing the highly nonlinear characteristics of 
speech signals, and the large computational volume 
and high computational complexity make it difficult to 
meet the requirements of real-time applications. Com-
pared with traditional speech separation methods, 
deep learning-based speech separation methods are 
driven by big data, and current models can be trained 
on large-scale data sets, thus obtaining better results 
under given conditions and being able to model speech 
signals using the high nonlinearity of neural networks. 
In general, single-channel SS in the field of deep learn-
ing can be divided into two categories: time-frequency 
domain SS methods and time-domain SS methods.

2.1  Time‑frequency domain SS methods
Deep clustering (DPCL) [10] constructs the affinity 
matrix with an ideal binary mask (IBM) and makes the 
error function of the target and estimated affinity matrix 
as the target to train a deep neural network, which first 
maps the time-frequency units of mixed speech into an 
embedding space, then executes a clustering algorithm, 
and finally generates a binary mask based on each clus-
tering label to separate the target speech. DPCL++ [32] 
optimizes the overall structure of DPCL; DPCL++ pays 
more attention to temporal contextual information dur-
ing training. The joint enhancement layer in the DPCL++ 
network refined signal estimation through clustering and 
enhancement phases. Finally, end-to-end training was 
used to maximize signal fidelity, thus further improv-
ing the separation performance of speech signals. Based 
on these, the deep attractor network (DANet) solves the 
source permutation problem that previously existed in 
DPCL by creating attractors in the embedding vector to 
aggregate the T-F units of each source [13, 33, 34].

Phase-enhanced speech separation methods are an 
important research direction in the T-F domain. Wil-
liamson et  al. [35] proposed a supervised monophonic 
speech separation method that simultaneously enhances 
the magnitude spectrum and phase spectrum by oper-
ating in the complex frequency domain, using a deep 
neural network to estimate the real and imaginary com-
ponents of the ideal ratio mask defined in the complex 
domain, correcting the reconstructed speech phase to 
improve the speech separation. Tan et al. [36] proposed 
a gated convolutional recurrent network (GCRN) for 
complex spectral mapping to enhance both the ampli-
tude and phase response of noisy speech, and the GCRN 
performed well in objective speech intelligibility and 
quality for complex spectral mapping. Guochen Yu et al. 
[37] developed a dual-branch joint amplitude and phase 

Fig. 1 Block diagram of deep learning based speech separation. Firstly, the encoder converts the speech signal into a feature representation, and 
then the feature separation and mask estimation are performed by the separator. Finally, the separated speech waveforms are reconstructed by the 
decoder
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estimation framework (DBT-Net) for single-channel 
speech enhancement task, aiming to recover coarse and 
fine-grained regions of the entire spectrum in parallel. 
The DBT-Net includes an amplitude estimation branch 
and a spectral purification branch, where the amplitude 
estimation branch aims to filter out the main noise com-
ponents in the amplitude domain. The complex spectral 
purification branch is carefully designed to restore lost 
spectral details and implicitly estimate the phase infor-
mation in the complex-valued spectral domain.

Although the time-frequency domain methods have 
good performance in some evaluation metrics, there 
are still some problems [18]: (1) STFT and iSTFT are a 
fixed transformation, and the obtained T-F features are 
not necessarily the most suitable for the speech separa-
tion task; (2) the phase information of the features in the 
T-F domain is difficult to model, and the time-frequency 
domain methods usually only utilize the assignment 
information in the features for feature extraction and 
separation. Therefore, there is a performance limit for 
time-frequency domain SS methods.

2.2  Time‑domain SS methods
Unlike time-frequency domain SS, the time-domain 
approach processes the speech signal directly in time-
domain through an encoder-decoder network, replac-
ing STFT and ISTFT with encoder-decoder, reducing 
the computational cost of SS and the minimum delay 
required for the output. Based on this, Luo et  al. have 
proposed Conv-TasNet [18] and DPRNN [20], which use 
temporal convolutional networks [38, 39] and dual-path 
RNNs for feature separation, respectively, and effective 
improvements are achieved in single-channel SS tasks 
compared to time-frequency based speech separation 
methods., making such methods attract much attention.

Inspired by transformer networks in NLP, speech sepa-
ration based on a self-attention mechanism has attracted 
widespread interest. In [22], an improved transformer 
structure is applied to a dual-path speech separation net-
work, which enables the separation model to effectively 
process long speech sequences globally and improve 
the separation performance. In [25], the self-attention 
mechanism is used in U-Nets to extract high-level, large-
granularity contexts. In this paper, we also employ the 
self-attention to learn global features in speech signals. 
Consistent with [22] for extracting global feature infor-
mation, the same multi-headed attention mechanism is 
used in this paper because of its superior performance 
in extracting speech contextual features. Notably, our 
approach models the speech signal using two differ-
ent attention networks simultaneously, both local detail 
information and global contextual information of speech 

are considered, thus better extracting useful information 
from the speech signal.

3  Proposed method
There are three parts involved in time-domain adaptive 
attention based single-channel speech separation: encod-
ing and  segmentation, time-domain adaptive attention 
network, and overlap-add and  decoding (as shown in 
Fig. 2a). In detail, the adaptive attention networks com-
posed of N identical local and global attention blocks, 
with each block including a local attention network and a 
global attention network which jointly process the speech 
signals. Meanwhile, the model has the capability to cap-
ture the features of frame-level and utterance-level by 
adaptively adjusting the proportion of local attention and 
that of global attention in multiple attention layers.

3.1  Problem description
The single-channel speech separation can be described as 
estimating the target speech si(t) from the mixed speech. 
The mixed speech x(t) ∈ ℝ

1×T can be expressed as:

where C represents the number of target speakers, and 
si(t) ∈ ℝ

1×T , i = 1, 2, ...C represents the target speech.

3.2  Encoding and segmentation
As mentioned in the previous section, for the super-
vised speech separation approaches, the mixed speech 
x ∈ ℝ

1×T is first converted to a feature spectrum 
X ∈ ℝ

E×L by STFT. As in TasNet [17], we use a 1D con-
volutional layer to replace the traditional STFT:

where ReLU (⋅) denotes the element-wise rectified linear 
unit to ensure non-negative output. E and L respectively 
represent the number of feature vectors in the spectrum 
X and the length of each vector, of which are related to 
the parameter settings of the 1D convolutional layer.

Following [20], the output X of encoder is divided 
into S overlapped segments during the segmenta-
tion, with each segment having a length of R and a 
hop size of R/2. The first and last segments are zero-
padded to ensure the same size of each segment. Then, 
these S segments are concatenated into a 3D tensor 
W = [w1,w2, ...wS] ∈ ℝ

E×S×R , where w1,w2, ...wS ∈ ℝ
E×R 

are the 2D segments.

(1)x(t) =

C∑

i=1

si(t)

(2)X = ReLU (Conv1d(x))
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3.3  Time‑domain adaptive attention network
As shown in Fig.  2b, a time-domain adaptive attention 
network is used as a separator comprising N cascaded 
local and global attention blocks with same structure. The 
convolutional block attention module (CBAM) [27] is 
added into Bi-LSTM as a local attention network. LSTM 
is capable of ignoring irrelevant information and focusing 
on the key information in mixed speech and, in combina-
tion with CBAM, these local information can be further 
highlighted. CBAM enables the model to pay more atten-
tion to the details of feature map through channel atten-
tion and spatial attention and has been widely applied in 
image recognition, speech recognition, speech enhance-
ment, and other fields [40–44]. Through this structure, 
this local attention network can effectively focus on the 
frame-level details in speech. In the global attention net-
work, the transformer (with a structure like that in [22]) 
is used to model the speech at the utterance level. The 
self-attention based transformer have been proved to be 
superior in context modeling in many tasks [45–47].

3.3.1  Local attention network
An additional local attention network is introduced 
so that it could focus on the detailed features of the 
speech signals, which is a different practice from what 
is applied in the current self-attention based speech 

separation [22, 23]. For the convenience of reference, 
the input and output of the local attention network are 
represented by XLA ∈ ℝ

E×S×R and Y LA ∈ ℝ
E×S×R respec-

tively. First, a Bi-LSTM, ReLU and a Linear layer are 
used to fulfill the feature extraction operation, which is 
defined as follows:

where HLA ∈ ℝ
E×S×R represents the output of the linear 

layer. w1 and b1 refers to the weights and bias in the lin-
ear layer, and fbi- lstm(⋅) denotes the processing function 
of the Bi-LSTM layer. Then these features are inputted 
into the CBAM to complete the refining of the feature 
information. Finally, the refined features and the input 
features XLA are added to obtain the output of the local 
attention network:

where HLA�

∈ ℝ
E×S×R represents the refined features 

by CBAM. fcbam(⋅) is an attention weighting operation 
including channel attention and spatial attention, which 
is defined in [27]. And LN (⋅) denotes layer normalization 
used to normalize the input data of each layer.

(3)HLA = w1

(
ReLU

(
fbi- lstm

(
XLA

)))
+ b1

(4)HLA�

= fcbam
(
HLA

)

(5)Y LA = LN
(
XLA +HLA�)

Fig. 2 Overview of the time-domain adaptive attention network for single-channel speech separation. To better extract the local information 
and global information in speech features, two different attention networks are used in this model: (1) the CBAM is introduced in local attention 
networks to focus on subtle details of the speech signals (frame-level features). (2) In the global attention networks, the transformer based on 
self-attention mechanism is used to explore the global associations of the speech contexts (utterance-level features). (3) In the ablation experiment, 
we replaced the local attention module and/or global attention module with the RNN block
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CBAM is able to serially generate attentional feature 
information in both the speech mask channel and spa-
tial dimensions, and then both feature information is 
multiplied with the previous original input features for 
adaptive feature correction to output the final feature 
information. The equation for fcbam(⋅):

In Eq. (6), where X ∈ ℝ
E×S×R is the input speech block, 

AvgPool stands for average pooling, MaxPool stands 
for maximum pooling, � denotes the sigmoid function, 
and Xc ∈ ℝ

C×S×R is the output of the channel attention. 
In Eq. (7), where X � ∈ ℝ

N×S×R is the channel feature map, 
f a×b represents a convolution operation with the filter 
size of a × b, and Xs ∈ ℝ

E×S×R is the output of the spatial 
attention.

3.3.2  Global attention network
Similar to the case in the local attention network, the 
input and output of the global attention network are 
represented by XGA ∈ ℝ

E×S×R and YGA ∈ ℝ
E×S×R respec-

tively. First, we apply multi-head attention followed by a 
residual connection and layer normalization:

where HGA ∈ ℝ
E×S×R is a mid-product that contains 

the global related information. fmha(⋅) is defined in [24], 
which consists of multiple scaled dot-product attention 
modules.

MHA context-aware modeling of long sequences of 
speech signals allows elements in speech sequences to 
interact directly, facilitating information transfer and 
enabling the model to learn sequential information of 
speech sequences without speech location encoding. The 
equation for fmha(⋅) [22]:

(6)
Xc = �(MLP(AvgPool(X)) +MLP(MaxPool(X)))

(7)Xs = �(f a×b([AvgPool(X �);MaxPool(X �)]))

(8)HGA = LN
(
XGA + fmha

(
XGA,XGA,XGA

))

(9)

Headi = Attention(Qi,Ki,Vi) = softmax

�
QiK

T
i√
d

�
Vi

(10)MultiHead = Concat(Head1,… ,Headh)W
O

(11)Mid = LayerNorm(X +MultiHead)

(12)FFW = ReLU (MidW1 + b1)W2 + b2

Here, X ∈ ℝ
l×d is the input with length l and dimen-

sion d, Qi,Ki,Vi ∈ ℝ
l×d∕h are the mapped queries, keys, 

and values, and WO ∈ ℝ
d×d is parameter matrices. FFW 

denotes the output of the position-wise feedforward net-
work, W1 ∈ ℝ

d×dff ,W2 ∈ ℝ
dff ×d , b1 ∈ ℝ

dff , b2 ∈ ℝ
d , and 

dff = 4 × d.
The global attention network finally employs a feed for-

ward network (FFW) to further achieve feature extraction:

where fffw(⋅) represents the processing of FFW, which is 
composed of a GRU, ReLU, and linear layer (as shown in 
Fig. 2b).

3.4  Overlap‑add and decoding
The output of the separator is used to generate a mask 
for each speaker. The speaker mask can be obtained 
through overlap-add [20], and the network output fea-
ture mask are stitched according to the temporal dimen-
sion to obtain a pure speech mask for each speaker and 
multiplied by the encoder output X, thus reconstruct-
ing the speech waveform by a transposed convolutional 
layer:

where sm ∈ ℝ
C×E×L represents the speaker mask and 

Conv1d-Transpose(⋅) stands for the 1D convolution 
operation in decoder, which is the same kernel size and 
step length as those in encoder. sc ∈ ℝ

C×T represents the 
source speech of C speakers.

3.5  Network optimization
The optimization process of our proposed method inte-
grates two major parts, as shown in Algorithm 1. (1) Model 
training: input mixed speech signal x(t) and clean speaker 
speech s1(t) , s2(t) of training set, and train the encoder, 
separator, and decoder models simultaneously. (2) Model 
testing: input mixed speech signal x(t) and clean speaker 
speech s1(t) , s2(t) of test set, use the model for source sepa-
ration to obtain the separated speech ŝ1(t) , ŝ2(t) , and calcu-
late the separation index. A pytorch implementation of our 
TAANet can be found at “http:// www. msp- lab. cn: 1436/ 
msp/ TAANet”.

(13)Output = LayerNorm(Mid + FFW )

(14)YGA = LN
(
HGA + fffw

(
HGA

))

(15)sm = ReLU
(
OverlapAdd

(
YGA

))

(16)sc = Conv1d- Transpose(sm ∗ X)

http://www.msp-lab.cn:1436/msp/TAANet
http://www.msp-lab.cn:1436/msp/TAANet
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Algorithm 1 Time-domain adaptive attention network for single-channel 
speech separation

4  Experiment setup
4.1  Dataset
4.1.1  WSJ0‑2mix
For evaluating the performance of proposed method, we 
used the publicly available WSJ0-2mix corpus [10], a data 
set widely used in exploring speaker speech separation. It 
contains 20,000, 5000, and 3000 two-speaker mixtures in 
its 30 h training, 10 h validation, and 5 h test sets, respec-
tively. All these mixtures are generated from the Wall 
Street Journal (WSJ0), with the sampling frequency of 8 
kHz.

4.1.2  WHAM! and WHAMR!
Although significant progress has been made in single-
channel speech separation techniques, most methods 
have been researched on clean speech datasets that are 
not fully representative of real scenarios. To evaluate the 
speech separation model under more realistic and chal-
lenging conditions, we conduct some experiments using 
the WHAM! [48] and WHAMR! [49] datasets. WHAM! 
is composed of pure WSJ0-2mix speech data mixed with 
noise recorded in natural scenes and with a random SNR 
of −6 to 3 dB. While WHAMR! introduces additional 
reverberation in the same noise conditions. This task is 
more challenging because the model needs to perform 

source separation, denoising, and dereverberation at the 
same time.

4.1.3  Grid‑2mix
To verify the generalization performance of proposed 
method, the GRID-2mix is used in the experiment, which 
is generated from the GRID data set [50]. Worth noting is 
that the GRID data set contains video and audio data, but 
only audio data are used in the experiment. The GRID-
2mix contains 34 different speakers’ speeches, with the 
mixed speech duration of 20 h, of which the proportion 
of training/validation/test is 7/2/1, with the sampling fre-
quency of 8kHz and the random SNR of −5 to 5 dB.

4.2  Parameter settings
4.2.1  Model configuration
In most of the experiments, the encoder contains 256 
convolutional filters, with a kernel size of 4 and stride of 
2. The number of local and global attention blocks and 
the length of segment in segmentation processing are 
6 and 200, respectively. Particularly, we set the number 
of local and global attention blocks to 6 in the ablation 
experiment. In addition, we detail the inputs and outputs 
of the middle layers of the model. For example, when we 
input a speech signal x ∈ ℝ

1×32000 with length of 4s and 
sample rate of 8k into the model, the corresponding mid-
dle layer tensor information is shown in Table 1. Therein, 
b and C denote the batch size and the number of speakers 
in the mixed speech, respectively.

4.2.2  Training details
In the training stage, the TAANet is trained on the data 
set for 100 epochs, with a batch size of 1 and an initial 
learning rate of 4e−4 . Adam [51] is used as an optimizer 
because its hyperparameters are well interpreted and 
suitable for scenarios with large-scale data and param-
eters. A fixed step decay is used for the learning rate 
reduction strategy, that is, the learning rate become 0.98 

Table 1 The tensor size of the middle layer of the model when 
input a speech with length of 4s and sampling rate of 8k 

Module Layers Input size Output size

Encoder Conv1d [b, 1, 32000] [b, 256, 15999]

GroupNorm [b, 256, 15999] [b, 256, 15999]

Conv1d [b, 256, 15999] [b, 64, 15999]

Segmentation [b, 64, 15999] [64, 200, b*162]

Separator LocalAttention [64, 200, b*162] [64, 200, b*162]

GlobalAttention [64, 200, b*162] [64, 200, b*162]

Decoder OverlapAdd [64, 200, b*162] [b*C, 256, 15999]

Conv1d-Transpose [b*C, 256, 15999] [b, C, 32000]
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times of the original after every 2 epochs. When the loss 
of the validation for 10 epochs presents no decrease, the 
training stops early to reduce the overfitting of the model.

4.3  Loss function
The final output of the end-to-end speech separation 
model is the time-domain waveform of the clean sig-
nals, with the scale-invariant source-to-noise ratio (SI-
SNR) [17] usually used as an evaluation index. SI-SNR is 
defined as:

therein, ŝ , the estimated target speech and s, the clean 
target speech are required to be normalized with a mean 
value of 0 to ensure scale invariance. The larger the SI-
SNR value means the better the speech separation per-
formance, but gradient descent is used to train the model 
during the training process, so the actual loss function is 
the inverse of SI-SNR. In addition, utterance-level per-
mutation invariant training (uPIT) [12] is used in the 
model training process.

5  Results
5.1  Results on WSJ0‑2mix
First, we compare the scale-invariant signal-to-noise 
ratio improvement (SI-SNRi) and signal-to-distortion 
ratio improvement (SDRi) [52] performance of proposed 
method and other methods.

The methods compared in the experiments are as 
follows: DPCL++ [32], an improved deep clustering 
speech separation method; uPIT-BLSTM-ST [12], an 
utterance-level permutation invariant training speech 
separation method; tasNet [17], a speech separation 
method based on time-domain mask; Conv-TasNet 
[18], a time-domain speech separation method based 
on convolutional networks; DeepCASA [53], a deep 
computer auditory scene analysis speaker-independent 
speech separation method; FurcaPa [54] for speech 
separation using deep attention gated extended time 
domain convolutional networks; FurcaNeXt [19], an 
end-to-end monophonic speech separation based on 
dynamic gated extended time convolutional networks; 
DPRNN [20], a speech separation task using dual path 
recurrent neural networks; SVOICE [55], a gated recur-
rent neural network for unknown number of speaker 

(17)starget =
< ŝ, s > s

‖s‖2

(18)enoise = ŝ − starget

(19)SI- SNR = 10 log10
‖starget‖2

‖enoise‖2

speech separation; DPTNet [22], which constructs a 
transformer-based two-path speech separation model; 
and SepFormer [23], which learns short- and long-
term dependencies by using transformer’s multi-scale 
approach. The baseline method of TAANet is derived 
from DPTNet, in which the global attention module 
refers to the attention mechanism in DPTNet. Unlike 
DPTNet, TAANet introduces a local attention mod-
ule to pay more attention to the detail features within 
speech segments.

As shown in Table  2, the TAANet achieves the best 
performance on the WSJ0-2mix test set with SI-SNRi 
of 20.7 dB and SDRi of 20.9 dB, respectively. The data 
shown in the table are from their papers. What is more, 
compared with DPRNN and DPTNet, the SI-SNRi of 
our model are improved by 1.9 and 0.5 dB, respectively. 
Thanks to the adaptive attention network, our model 
can focus on both the local features of the speech sig-
nals and the global ones simultaneously, thus further 
promoting the speech separation performance.

As shown in Fig. 3, compared with the baseline meth-
ods, the test results of TAANet on the WSJ0-2mix 
dataset achieve better performance on SDRi, SI-SNRi, 
PESQ, and STOI. From (a), (b), (c), (d), the median of 
TAANet (red line position) is better than the baseline 
methods, and the lower limit of TAANet under the 
four indicators is also better than the baseline meth-
ods. Among SDRi, SI-SNRi, and PESQ, TAANet has 
achieved the best performance. In the performance of 
most test samples, TAANet can achieve better speech 
separation.

To better analyze the model performance, we used 
paired t-test method for a more thorough statistical 
analysis of the experimental results. The paired t-test 
algorithm works as follows:

Table 2 Comparison with other methods on WSJ0-2mix. Best 
values are marked with bold font

Model # Param SI‑SNRi (dB) SDRi (dB) PESQ STOI

DPCL++ [32] 13.6M 10.8 - - -

uPIT-BLSTM-ST [12] 92.7M - 10.0 - -

TasNet [17] - 13.2 13.6 - -

Conv-TasNet [18] 5.1M 15.3 15.6 - -

DeepCASA [53] 12.8M 17.7 18.0 - -

FurcaPa [54] - - 18.2 - -

FurcaNeXt [19] 51.4M - 18.4 - -

DPRNN [20] 2.6M 18.8 19.0 3.63 0.97

SVOICE [55] 7.5M 20.1 20.4 - -

DPTNet [22] 2.7M 20.2 20.6 3.75 0.98
SepFormer [23] 26M 20.4 20.5 - -

TAANet 5.4M 20.7 20.9 3.80 0.98
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Step 1: Given X1 and X2 are the test results from dif-
ferent models on the test set, and calculate the differ-
ence value D between the two sample sets, D = X1 − X2.

Step 2: Calculate the mean D of the difference values 
D, D =

1

n

∑n

i=1
Di , n represents the sample size and Di 

denotes the difference value of the ith sample.
Step 3:  Calculate the standard error SD and  

standard deviation of sample difference values ŜD . 

SD =

�
∑n

i=1
(Di−D)

2

n−1  , ŜD =
SD√
n
.

Step 4: Calculate of t-values: t = D

ŜD
.

The t value is used to find the corresponding prob-
ability (p) from the table of normal distribution, which is 
then compared with �.

Based on the above formula, we first performed sig-
nificance tests (using 95% confidence intervals) for the 
SDRi indicators of DPRNN and TAANet. Assuming 
that there is no significant difference between the two 
sets of data, a null hypothesis test is proposed for the 
difference values of the two samples. The corresponding 
values are calculated: D = 1.84 , SD = 5.37 , ŜD = 0.104 , 
t = 17.52 , p = 4.32 × 10−65 . Similarly, we performed 

Table 3 Paired t-test on SDRi

i Model D
SD ŜD

t p �

1 DPRNN-TAANet 1.94 5.37 0.104 17.52 4.32 × 10−65 0.05

2 DPTNet-TAANet 0.59 2.87 0.056 10.62 8.28 × 10−26 0.05

Table 4 Paired t-test on SI-SNRi

i Model D
SD ŜD

t p �

1 DPRNN-TAANet 1.86 5.50 0.107 17.34 7.58 × 10−64 0.05

2 DPTNet-TAANet 0.61 2.95 0.058 10.52 2.25 × 10−25 0.05

Fig. 3 Box plot of experimental results of DPRNN, DPTNet, and TAANet on WJS0-2mix dataset. Comparison of SDRi (a), SI-SNRi (b), PESQ (c), and 
STOI (d) our method TAANet achieved better performance
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significance tests (using 95% confidence intervals) for 
the SDRi metric for DPTNet and TAANet. The cor-
responding values are calculated: D = 0.59 , SD = 2.87 , 
ŜD = 0.056 , t = 10.62 , p = 8.28 × 10−26.

Second, we performed significance tests (using 
95% confidence intervals) for the SI-SNRi metric for 
DPRNN and TAANet. The calculation results are as 
follows: D = 1.86 , SD = 5.50 , ŜD = 0.107 , t = 17.34 , 
p = 7.58 × 10−64 . Finally, we performed significance 
tests (using 95% confidence intervals) on the SI-SNRi 
metrics for DPTNet and TAANet. The results are as 
follows: D = 0.61 , SD = 2.95 , ŜD = 0.058 , t = 10.52 , 
p = 2.25 × 10−25.

As shown in Tables  3 and 4, all p < 0.05 can be 
obtained, which means that there is a significant dif-
ference between the experimental results of DPTNet 
and TAANet, DPRNN, and TAANet. The significance 
analysis results indicate that TAANet outperforms the 
baseline methods.

Further, the WSJ0-2mix data set is used for the inves-
tigations into the impact of different hyperparameters 
on the performance of the model, and the results are 
shown in Table  5. The Window, Chunk size, and Lay-
ers denote the kernel size of encoder’s convolutional 
layer, the length of segment in segmentation process-
ing, and numbers of local and global attention blocks 
in TAANet respectively. It can be found that the per-
formance is improved by reducing the size of the filters 
in encoder, but the shape of the input is also increased 
at the same time, which leads to more training time 
costs. The number of layers has a great influence on 
the performance of the model, which indicates that the 
cascade of multiple local and global attention blocks is 
crucial in that it helps the model to adaptively focus on 
the local information and global information at differ-
ent layers. Multiple experiments have demonstrated 
that the best results are obtained when Window = 4 , 
Chunk size = 200 , and Layers = 8.

5.2  Ablation study
In this section, we perform some ablation experiments 
on the WSJ0-2mix dataset to demonstrate the effective-
ness of local attention networks and global attention net-
works in TAANet. As can be seen from Table 6, both our 
local and global networks improve the separation perfor-
mance compared to the dual-path RNN base model [20]. 
During the experiment, following DPRNN, we replaced 
the local attention module and/or global attention mod-
ule with RNN block. The RNN block consists of an 
RNN layer, an FC layer, and a layer norm. In particular, 
the improvement of the global attention network is rela-
tively large (from 19.2 dB to 20.3 dB). When the model 
employs both local and global attention networks, the 
speech separation SI-SNRi is improved to 20.6 dB. Abla-
tion study results show that the global network based on 
self-attention mechanism is effective on the speech sepa-
ration task; however, it is better in modeling the global 
of the sequence signal. With the local attention network, 
the model can focus on the detailed information that can 
be easily overlooked. Therefore, with our proposed local 
and global attention network, the model is able to focus 
on both frame-level and utterance-level pieces of infor-
mation in the signal, thus improving the speech separa-
tion performance.

Aiming to better demonstrate the respective contri-
butions of local attention networks and global attention 
networks in TAANet, we have processed some samples 
by using different models and visualized the separation 
results. These samples are a mixture of the voices of 
two male speakers. Separation for speakers of the same 
gender is more challenging and can better demonstrate 
the model’s handling of signal details in the speech sep-
aration process. As shown in Fig.  4, the first and sec-
ond row represent the speech spectrogram of mixed 
speech and clean speech, and the fourth, fifth, sixth, 
and seventh rows represent the speech spectrogram 
of baseline, local, global, and local and global attention 
networks minus the clean speech spectrogram, respec-
tively. Comparing (c) and (e), or (d) and (f ), with the 
red boxes marking the parts, the local attention net-
work has smaller residuals in the speech spectrogram, 
meaning it more concerned with detailed features. And 
comparing (d) with (h) as a whole, (h) has a smaller 
overall residual than (c). This means that it is more 

Table 5 The effect of different configurations on WSJ0-
2mix. Best values are marked with bold font

# Param Window Chunk size Layers SI‑SNRi SDRi

2.7M 8 150 4 19.0 19.2

2.7M 4 200 4 19.6 19.8

2.7M 2 250 4 19.8 20.1

4.0M 8 150 6 19.2 19.4

4.0M 4 200 6 20.6 20.8

5.4M 4 200 8 20.7 20.9

Table 6 Ablation experiment results on WSJ0-2mix

Model SI‑SNRi SDRi

Base model 19.2 19.4

Local only 19.5 19.8

Global only 20.3 20.6

Local and global (TAANet) 20.6 20.8
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concerned with global features and proves that the 
global network can effectively focus on utterance-level 
features. Contrasting the fifth and sixth rows, the global 
attention network performs better overall; however, it 
ignores certain detailed information in the speech sig-
nal (frame-level), such as temporal or spectral conti-
nuity, spectral structure, and timbre. When both local 
and global attention networks are used (refer to (i) and 
(j)), the deviation between separated spectrogram and 
clean spectrogram is minimal. This phenomenon sug-
gests that our model is capable of combining the advan-
tages of both types of attention and focusing on both 
frame-level and utterance-level information, thus fur-
ther demonstrating the effectiveness of the proposed 
TAANet.

To further demonstrate the role of each module, we 
conducted a significance statistical analysis on the abla-
tion experiments. We used the Friedman test to evaluate 
the performance of the ablation models and ranked them. 
The tested models include the base model, local only, 
global only, and TAANet, with a total of 2621 samples in 
the test set. The algorithm process for Friedman test [56] 
is as follows (assuming the comparison of performance 
among k models on N samples):

Step 1: Find rji – the rank of the model j on the i − th 
sample, and compute the average rank R of model j: 
R =

1

N

∑
i r

j

i;
Step 2: The null hypothesis states that all models have 

the same performance, and compute the Friedman sta-
tistic: �2

F
=

12N

k(k+1)
(
∑

j R
2
j
−

k(k+1)2

4
) , it is asymptotically �2 

distributed with k − 1 degrees of freedom;
Step 3:  If �2 exceeds the critical value, then reject the 

null hypothesis, otherwise accept it. When the null 
hypothesis is rejected, a post hoc test is used to deter-
mine the nature of the difference.

Given the result of the Friedman test, we conducted the 
Holm test as a test to compare model TAANet and  
other ablation models. The test statistics for comparing  
the two models used the method is as follows: 
z = (R1 − R2)∕

√
k(k+1)

6N
 . The z value is used to find the 

corresponding probability (p) from the table of normal 
distribution, which is then compared with an appropriate 
�.

Testing on SDRi, Rbasemodel = 1.6475 , Rlocalonly = 2.2232 , 
Rglobalonly = 2.8718 , Rtaanet = 3.2575 , and with � = 0.05 , 
k = 4 , N = 2621 , the standard error is 
SE =

√
4⋅(4+1)

6⋅2621
= 0.03566.

Testing on SI-SNRi, Rbasemodel = 1.6468 , 
Rlocalonly = 2.2163 , Rglobalonly = 2.8764 , Rtaanet = 3.2587 , 
and with � = 0.05 , k = 4 , N = 2621 , the standard error is 
SE =

√
4⋅(4+1)

6⋅2621
= 0.03566.

As shown in Tables 7 and 8, all p are less than signifi-
cance level � = 0.05 . The Holm procedure rejects all 
hypothesis. This shows that TAANet performs signifi-
cantly better than ablation models at the significance 
level � = 0.05.

5.3  Results on WHAM! and WHAMR!
In this part of the experiment, we evaluate the speech 
separation performance of the model in scenes with 
ambient noise and reverberation. The results are reported 
in Table  9, where we compare the performance of sev-
eral methods for SI-SNR and SDR on the WHAM! and 
WHAMR! datasets. The data in Table  9 are from repli-
cations of what has been reproduced for these methods 
in published papers. We found some of the methods in 
Table  2 to be not reproduced in published papers and 
so do not appear in Table  9. Our model has achieved a 
superior result: the SI-SNR and SDR improvement under 
the two data sets are 15.5 dB, 15.8 dB and 12.0 dB, 11.2 
dB, respectively. This result suggests that the proposed 
method also performs well under noise and reverberation 
conditions.

5.4  Results on Grid‑2mix
Relative experiments on the GRID-2mix are conducted 
for the purpose of proving the generalization perfor-
mance of the proposed method. The data in GRID-2mix 
are shorter than those in WSJ0-2mix, which makes sepa-
ration more difficult with GRID-2mix. In this experi-
ment, DPRNN and DPTNet are used as the baseline 
methods to be compared with the proposed method. 
From Table  10, TAANet demonstrates the best perfor-
mance on GRID-2mix (SI-SNRi of 16.0 dB and SDRi of 
16.8 dB), which is the proof that our approach does a 
good job of source separation and shows better generali-
zation performance.

Table 7 Friedman test on the SDRi for ablation experiment

i Model z = (Rtaanet−Ri
)∕SE p �∕(k − 1)

1 Base model (3.2575 − 1.6475)∕0.03566 = 45.150.0000 0.0167

2 Local only (3.2575 − 2.2232)∕0.03566 = 29.010.0000 0.0250

3 Global only (3.2575 − 2.8718)∕0.03566 = 10.816.95 × 10−27 0.0500

Table 8 Friedman test on the SI-SNRi for ablation experiment

i Model z = (Rtaanet − Ri)∕SE p �∕(k − 1)

1 Base model (3.2587 − 1.6468)∕0.03566 = 45.150.0000 0.0167

2 Local only (3.2587 − 2.2163)∕0.03566 = 29.220.0000 0.0250

3 Global only (3.2587 − 2.8764)∕0.03566 = 10.721.85 × 10−26 0.0500
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Fig. 4 Visualization results of the spectrogram of the separated samples. First row: spectrogram of mixed speech. Second row: spectrogram 
of clean speech. The fourth, fifth, sixth, and seventh rows represent the separation results by using baseline, local, global, and local and global 
attention networks, respectively, and then subtracting the spectrogram of clean speech
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6  Conclusion
In this paper, a time-domain adaptive attention network 
(TAANet) is proposed to realize single-channel speech 
separation. The TAANet is different from the existing 
speech separation methods directly using self-attention 
network in that the speech signal modeling is completed 
by using local attention networks and global attention 
networks, so that the model can simultaneously focus on 
frame-level and utterance-level features. With this adap-
tive structure, our model is able to take advantage of both 
local and global attention networks to better accomplish 
speech signal modeling. Extensive experiments have 
proved the excellent performance of this adaptive atten-
tion network. In the future, we would like to try differ-
ent ways to connect the local and global attention blocks, 
and this can effectively reduce the model size. Further-
more, the attempt to use dynamic mixing technology for 
data augmentation will further improve the separation 
performance.
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