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Abstract 

A two‑stage lightweight online dereverberation algorithm for hearing devices is presented in this paper. The 
approach combines a multi‑channel multi‑frame linear filter with a single‑channel single‑frame post‑filter. Both com‑
ponents rely on power spectral density (PSD) estimates provided by deep neural networks (DNNs). By deriving new 
metrics analyzing the dereverberation performance in various time ranges, we confirm that directly optimizing for a 
criterion at the output of the multi‑channel linear filtering stage results in a more efficient dereverberation as com‑
pared to placing the criterion at the output of the DNN to optimize the PSD estimation. More concretely, we show 
that training this stage end‑to‑end helps further remove the reverberation in the range accessible to the filter, thus 
increasing the early-to-moderate reverberation ratio. We argue and demonstrate that it can then be well combined 
with a post‑filtering stage to efficiently suppress the residual late reverberation, thereby increasing the early-to-final 
reverberation ratio. This proposed two‑stage procedure is shown to be both very effective in terms of dereverberation 
performance and computational demands, as compared to, e.g., recent state‑of‑the‑art DNN approaches. Further‑
more, the proposed two‑stage system can be adapted to the needs of different types of hearing‑device users by 
controlling the amount of reduction of early reflections.
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1 Introduction
Communication and hearing devices require modules 
aiming at suppressing undesired parts of the signal to 
improve the speech quality and intelligibility. Reverbera-
tion is one of such distortions caused by room acoustics 
and is characterized by multiple reflections on the room 
enclosures. Late reflections particularly degrade the 
speech signal and may result in a reduced intelligibility 
[1].

Traditional approaches were proposed for dereverbera-
tion such as spectral enhancement [2], beamforming [3], 

a combination of both [4], coherence weighting [5, 6], 
and linear-prediction based approaches such as the well-
known weighted prediction error (WPE) algorithm [7, 
8]. WPE computes an auto-regressive multi-channel fil-
ter in the short-time spectrum and applies it to a delayed 
group of reverberant speech frames. This approach is 
able to partially cancel late reverberation while inherently 
preserving parts of the early reflections, thus improving 
speech intelligibility for normal and hearing-supported 
listeners [9].

WPE and its extensions require the prior estima-
tion of the anechoic speech PSD, which is modeled 
for instance through the speech periodogram [7] or a 
power-compressed periodogram corresponding to sparse 
priors [8], by an autoregressive process [10] or through 
non-negative matrix factorization [11]. A DNN was 
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first introduced in [12] to model the anechoic PSD, thus 
avoiding the use of an iterative refinement.

Instead of providing parameters for linear prediction as 
in, e.g. [12, 13], DNNs were also proposed for mapping-
based dereverberation in the time-frequency magnitude 
domain [14], complex domain [15, 16], or in the time-
domain [17].

As hearing devices operate in real-world scenarios 
in real-time, the proposed techniques for dereverbera-
tion should support low-latency online processing and 
adapt to changing room acoustics. Such online adaptive 
approaches were introduced, based on either Kalman 
filtering [18, 19] or on a recursive least squares (RLS)-
adapted WPE, which is a special case of Kalman filter-
ing [20]. Strategies for handling the case of speakers 
changing positions were introduced in [19, 20]. In the 
RLS-WPE framework, the PSD is either estimated by 
recursive smoothing of the reverberant signal [20] or by 
a DNN [21].

In the previously cited works, the DNN is trained 
towards PSD estimation, although this stage is only a 
front-end followed by RLS-WPE-based dereverberation 
algorithms. So-called end-to-end techniques aim to solve 
this mismatch by using a criterion placed at the output 
of the complete algorithm to train the DNN. End-to-end 
techniques using an automatic speech recognition (ASR) 
criterion were designed to refine the front-end DNN 
handling, e.g., speech separation [22], denoising [23], or 
multiple tasks [24]. An end-to-end procedure using ASR 
as a training criterion was also introduced in [25] to opti-
mize a DNN used for online dereverberation.

This journal paper is an extension of our prior work 
[26], where we proposed instead to use a criterion 
directly on the output signal rather than using ASR. We 
experimentally showed that it improved instrumentally 
predicted speech intelligibility and quality. The pro-
posed criterion also enabled us to use different target 
signals and corresponding WPE parameters to make 
our approach adapt to the needs of different hearing-aid 
users categories: hearing aid (HA) users on the one hand 
benefiting from early reflections like normal listeners [9] 
and cochlear implant (CI) users on the other hand which 
do not benefit from early reflections [27].

We noticed in [26] that although the energy residing in 
the moderate reverberation range corresponding to the 
filter length was particularly suppressed when training the 
approach end-to-end, residual late reverberation could still 
be heard at the output. A further processing stage could 
be dedicated to removing this residual reverberation, as 
increasing the length of the linear filters results in rapidly 
increasing computational complexity. Hybrid approaches 
using such cascaded DNN-assisted stages have been 

proposed for dereverberation [28] or joint dereverberation, 
separation, and denoising [13, 24, 29].

The extension to our work [26] consists in the three fol-
lowing contributions. First, we introduce metrics to meas-
ure the energies in various reverberation ranges in order 
to investigate the differences between the previously cited 
WPE-based approaches and our proposed method. Sec-
ond, we propose to use a second DNN-supported stage 
based on single-frame non-linear magnitude filtering 
and show that it significantly suppresses the residual late 
reverberation at the output of WPE. We show with the 
newly introduced metrics that this latter stage particularly 
benefits from strong dereverberation within the linear fil-
ter range obtained with the previous end-to-end WPE 
approach. Finally, we evaluate our approach and baselines 
on simulated reverberant data inspired by the WHAMR! 
dataset [30].

The rest of this paper is organized as follows. In Sec-
tion  2, the online DNN-WPE dereverberation scheme is 
summarized. Section 3 presents the DNN-supported post-
filter and describes the used end-to-end training proce-
dure. In Section 4, we describe the experimental setup and 
introduce metrics in order to detail the dereverberation 
performance in various ranges. The results are presented 
and discussed in Section 5.

2  Signal model and DNN‑supported WPE 
Dereverberation

2.1  Signal model
We use a subband-filtering approximation in the shorttime 
Fourier transform (STFT) domain as in [7], and all compu-
tations except those involving neural networks are com-
puted for each frequency band independently. Therefore, 
we omit the frequency index f when unnecessary and all 
vectors and matrices have an additional implicit frequency 
dimension of size F. The time frame index in the sequences 
of length T is denoted by t and is also dropped when not 
explicitly needed. We use lowercase normal font notation 
for signals having only time (and frequency) dimensions 
( at ∈ C ), lowercase bold font notation for vectors having 
one extra dimension ( at ∈ C

d1 ) and reserve uppercase bold 
font notation for matrices having two extra dimensions 
( At ∈ C

d1×d2).
The reverberant speech x ∈ C

D×T is obtained at the 
D-microphone array by convolution of the anechoic speech 
s ∈ C

T and the room impulse responses (RIRs) h ∈ C
D×N:

where d denotes the direct path, e the early reflections 
component, r the late reverberation, and u an error term 
comprising modeling errors and background noise. The 

(1)xt =

N−1

τ=0

hτ st−τ + ut = dt + et + rt + ut ,
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early reflections component e was shown to contribute 
to speech quality and intelligibility for normal and HA 
listeners [9] but not for CI users, particularly in highly-
reverberant scenarios [27]. Therefore, we propose that 
the dereverberation objective is to retrieve ν = d + e for 
HA listeners and ν = d for CI listeners.

2.2  WPE dereverberation
In relation to the subband reverberant model in (1), the 
WPE algorithm [7] uses an auto-regressive model to 
approximate the late reverberation r . Based on a zero-
mean time-varying Gaussian model on the STFT ane-
choic speech s with time (and frequency) dependent PSD 
�
(WPE) , a multi-channel filter G ∈ C

DK×D with K taps is 
estimated. This filter aims at representing the inverse of 
the late tail of the RIRs h , such that the target ν can be 
obtained through linear prediction with delay � . The pre-
diction delay � is originally intended to avoid undesired 
short-time speech cancelations in [7]; however, this also 
leads to preserving parts of the early reflections. As such, 
we propose to set � larger for normal hearing and HA 
users who benefit from early reflections [9] but lower for 
CI users who suffer from early reflections [27]. By disre-
garding the error term u in (1) in noiseless scenarios, we 
obtain:

where Xt−� =
[
x
T
t−�, . . . , x

T
t−�−K+1

]T
∈ C

DK .
In order to obtain an adaptive and real-time capable 

approach, RLS-WPE was proposed in [20], where the 
WPE filter G is recursively updated along time. RLS-WPE 
can be seen as a special case of Kalman filtering, in which 
the target covariance matrix is replaced by the scaled 
identity matrix �(WPE)

I , and the weight state error matrix 
is simply updated by dividing by the recursive factor α 
instead of following the usual Markov model [19]:

k ∈ C
DK  is the Kalman gain, R ∈ C

DK×DK  the covariance 
of the delayed reverberant signal buffer Xt−� weighted by 
the PSD estimate �(WPE) , and α the forgetting factor.

In non-idealistic scenarios, the term u is not zero. 
Therefore, a regularization parameter ǫ > 0 is added 
to the denominator of (3) which can be seen as a form 
of spectral flooring as used in traditional spectral 

(2)ν
(WPE)
t = xt − G

H
t Xt−�,

(3)k t =
(1− α)R−1

t−1Xt−�

α�
(WPE)
t + (1− α)XH

t−�R
−1
t−1Xt−�

,

(4)R
−1
t =

1

α
R
−1
t−1 −

1

α
k tX

T
t−�R

−1
t−1,

(5)Gt = Gt−1 + k t(xt − G
H
t−1Xt−�)

H .

enhancement schemes [4, 6, 31]. Although it is not per 
se a denoising solution and we still consider scenarios 
where noise is negligible in comparison to reverberation, 
adding this parameter helps increasing the robustness 
of WPE to noise, numerical instabilities and modeling 
errors. On the other hand, setting ǫ to a high value will 
excessively attenuate the relative variations of the Kalman 
denominator, which mitigates the benefits of variance-
normalization as explained in [32]. A value of ǫ∗ = 0.001 
was picked based on the performance of the WPE algo-
rithm using oracle PSD.

2.3  DNN‑based PSD estimation
The anechoic speech PSD estimate �(WPE) is obtained 
at each time step, either by recursive smoothing of the 
reverberant periodogram [20] or with help of a DNN 
[21]. A block diagram of the DNN-WPE algorithm as 
proposed in [21] is given in Fig. 1, as the first stage up to 
ν(WPE) . In this approach, the input to the neural network 
is the magnitude of the reference channel |x0| , taken here 
to be the first channel. We did not observe changes in 
the results by changing the reference channel or comput-
ing an average of the channels to obtain the DNN input, 
likely because the signal model itself considers a chan-
nel-agnostic PSD. The magnitude frame is then fed to a 
recurrent neural network MaskNetWPE , which outputs a 
real-valued mask M(WPE) . The PSD estimate is obtained 
by time-frequency masking:

where ⊙ represents the Hadamard element product.
In [12, 21], the DNN is optimized with a mean-squared 

error ( MSE ) criterion on the masked output. In contrast, 
we proposed to use the L1 loss:

This loss function indeed led to better results in our 
experiments [26]. This can be explained by the fact that 
the L1 loss puts more weight on low-energy bins than 
high-energy bins in comparison to the MSE loss as it is 
more concave, which is a good fit for dereverberation.

2.4  End‑to‑end training procedure
2.4.1  End‑to‑end criterion and objectives
We argue that the mismatch between the DNN-optimiza-
tion criterion (7) and the dereverberation task may limit 
the overall performance. However, using ASR as an end-to-
end training criterion, as is done in [25], may not necessar-
ily the best choice in order to optimize a dereverberation 
algorithm for hearing-aid users. The first reason is that 

(6)�
(WPE)
t,f = (M

(WPE)
t,f ⊙ |x0,t,f |)

2,

(7)LDNN-WPE =
∑

t,f

∣∣∣M(WPE)
t,f ⊙ |x0,t,f | − |ν0,t,f |

∣∣∣.
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the resulting scheme could not be adapted to specific user 
categories, although these benefit from different speech 
cues. Namely, HA listeners are shown to benefit from early 
reflections [9] where CI listeners do not significantly bene-
fit from those, in particular in highly reverberant scenarios 
where early reflections degrade intelligibility [27]. The sec-
ond reason is that by nature, the dereverberation scheme 
will provide the best representation possible for ASR, 
which may be not the optimal representation in terms of 
quality and intelligibility for a human listener.

We therefore proposed an end-to-end training procedure 
where the optimization criterion is placed in the time-fre-
quency domain at the output of the DNN-WPE algorithm, 
thus including the back-end WPE into DNN optimization:

2.4.2  End‑to‑end training procedure
An important practical aspect of this study focuses 
on handling the initialization period of the RLS-WPE 
algorithm. During this interval, the filter G has not yet 

(8)LE2E-WPE =
∑

t,f

∣∣∣ |ν(WPE)
t,f | − |νt,f |

∣∣∣.

converged to a stable value, reducing dereverberation 
performance. Therefore, rather than relying on a hypo-
thetical shortening of this period through implicit PSD 
optimization [25], we choose to exclude this initializa-
tion period from training. The DNN is thus optimized 
so that the algorithm works best in its stable regime. To 
do so, we first craft long reverberant utterances that we 
cut in segments of Li frames, where Li is the worst case 
initialization time plus some margin. We then design the 
training procedure so that the first segment is used only 
to initialize the WPE statistics G and R−1 and the DNN 
hidden states h(MaskNetWPE) . This enables to train the 
DNN weights on the next segments, during the stable 
regime. The data generation procedure is detailed again 
in subsection 4.

We showed in [26] that the best performance was 
obtained with the E2Ep-WPE approach, where the net-
work MaskNetWPE is first pre-trained with (7) and fine-
tuned with (8). If MaskNetWPE is only pre-trained, the 
algorithm is named DNN-WPE, and corresponds to [21] 
with a different training loss function.

The proposed end-to-end training procedure is sum-
marized in Algorithm 1.

Fig. 1 DNN‑supported two‑stage dereverberation. Blue blocks refer to trainable neural network layers. Yellow blocks represents adaptive statistical 
signal processing
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Algorithm 1 End‑to‑End Training Procedure

3  Residual reverberation suppression
3.1  Signal model
As shown in Section  5, training the DNN-supported 
WPE stage in an end-to-end fashion helps suppressing 
large part of the reverberant signal immediately following 
the target range, that is, up to Lm , which we refer to as the 
moderate reverberation range.

We thus refine the reverberant signal model as (1):

where the undesired reverberant signal in (1) (corre-
sponding to r and e + r in the HA and CI case respec-
tively) is split in the moderate reverberant signal m and 
the final reverberant signal φ , defined as:

The resulting WPE estimate thus contains the target ν , 
a target estimation error ν̃ , a residue m̃ from this moder-
ate reverberation and a residue stemming from the final 

(9)xt = νt +mt + φt + ut ,

(10)mt =

�+Lm−1∑

τ=�

hτ st−τ ,

(11)φt =

N∑

τ=�+Lm

hτ st−τ .

reverberation φ̃ (again disregarding the error term u in 
noiseless scenarios):

The target estimation error ν̃ is the target component 
which was degraded by the algorithm. As described in 
[32] for the original WPE algorithm, parts of the early 
reflections may be destroyed because of the inner short-
time speech correlations. Under some mild assumptions, 
the direct path is however fully preserved if the predic-
tion delay � is sufficiently large (i.e., larger than the inner 
speech correlation time). The target estimation error is 
therefore likely to be larger when using WPE-based algo-
rithms in the HA scenario—containing more early reflec-
tions—than in the CI scenario.

3.2  Postfiltering scheme
We aim at suppressing the two residues m̃ and, more par-
ticularily, φ̃ . Indeed, φ̃ is generally of higher magnitude 
than m̃ , as we will show in the experiments that a large 
amount of moderate reverberation can be canceled by 
efficient WPE-based dereverberation. Additionally, φ̃ is 
the more perceptually disturbing of the two residues for 
the following reasons.

On the one hand, φ̃ can be considered as speech-like 
noise which is very poorly correlated to the target signal 
in comparison to m̃ . On the other hand, as WPE cancels 
most of the so-called moderate reverberation, there is no 
preceding energy anymore to mask the late reverberation. 
The final reverberation residue is then clearly audible.

We thus add a post-filtering enhancement stage after 
the linear WPE filtering stage, which consists of a single-
channel Wiener filter, the phase being left unchanged. 
This Wiener filter uses estimates of the target PSD �(ν,PF) 
and interference PSD �(r̃,PF) , which can be obtained with 
classical techniques as decision-directed signal-to-noise 
ratio (SNR) estimation [33], cepstral smoothing [6, 34], or 
from a neural network [21, 35].

The resulting estimate is then given for each channel d 
separately by the celebrated Wiener filter, using the WPE 
output:

3.3  DNN‑based PSD estimation
We use a DNN-based masking approach to obtain the 
target and residual reverberation PSDs, similar to what is 

(12)
ν
(WPE)
t =xt − G

H
t Xt−�

=νt + ν̃t + m̃t + φ̃t︸ ︷︷ ︸
r̃t

.

(13)ν
(PF)
d,t =

�
(ν,PF)
d,t

�
(ν,PF)
d,t + �

(r̃,PF)
d,t

ν
(WPE)
d,t
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used to estimate the target speech PSD for WPE filtering 
(see (6)). At each time step, a frame of the WPE output’s 
magnitude taken from the reference channel |ν(WPE)

0 | is 
fed to a recurrent neural network MaskNetPF , which out-
puts both a target and interference mask. The PSD esti-
mate �(η) is then obtained for each channel d through 
time-frequency masking for each signal η ∈ {ν, r̃}:

We apply the same reference-channel mask for all 
channels using only one instance of the DNN, which 
saves some computational power and enables us to leave 
the interaural level differences unchanged. Also, the 
interaural phase differences are well estimated by WPE 
linear filtering and are not modified by the post-filtering 
scheme (see (13)). Therefore the target binaural cues are 
well preserved, which is important for hearing devices.

A block diagram of the complete two-stage algorithm is 
provided in Fig. 1.

3.4  Training procedure
We trained the post-filter DNN MaskNetPF with a similar 
mask-based objective as MaskNetWPE:

where r̃0 is the undesired signal defined in (12) taken 
at the reference channel. We report results for two 
approaches. First is DNN-WPE+DNN-PF, where the net-
work MaskNetWPE is pre-trained with (7), then frozen for 
the pre-training of MaskNetPF with (15). Second is E2Ep-
WPE+DNN-PF, where the network MaskNetWPE is pre-
trained with (7) and fine-tuned with (8), then frozen for 
the pre-training of MaskNetPF with (15).

A table making the present algorithms correspond to 
their characteristics and acronyms is given in Table 1.

4  Experimental Setup
4.1  Dataset generation
We use clean speech material from the WS0 dataset 
[36], using the usual split of 101, 10, and 8 speakers for 
training, validation, and testing respectively. For each 
split independently, we concatenate utterances belong-
ing to the same speaker, and construct sequences of 
approximately 20 s. The initialization time of WPE can 
go up to to 2 s in the worst case when using a forgetting 
factor of α = 0.99 . For end-to-end training, we do not 
want to learn during that period (cf Section 2.4). There-
fore, we cut these long sequences in segments of Li = 4 

(14)�
(η)

d,t,f = (M
(η)

t,f ⊙ |ν
(WPE
d,t,f |))2.

(15)

LDNN-PF =
∑

t,f

∣∣∣M(ν)

t,f ⊙ |ν
(WPE)
0,t,f | − |ν0,t,f |

∣∣∣

+
∑

t,f

∣∣∣M(r̃)
t,f ⊙ |ν

(WPE)
0,t,f | − |r̃0,t,f |

∣∣∣,

s and use the first segment only for initialization, thus 
not backpropagating the loss on it (cf Algorithm 1). We 
choose Li to fill both requirements of (i) being larger 
than the worst case initialization time of WPE and (ii) 
providing a sufficient receptive field for training with 
LSTMs. Since the first segment is never used for opti-
mization, permutations of the original utterances are 
used to create several versions of each sequence, so 
that we still use all speech data available for training the 
DNNs.

These sequences are convolved with 2-channel RIRs 
generated with the RAZR engine [37] and randomly 
picked. Each RIR is generated by uniformly sampling 
room acoustics parameters as in [30] and a T60 rever-
beration time between 0.4 and 1.0 s. Head-Related 
Transfer Function based auralization is performed 
in the RAZR engine, using a KEMAR dummy head 
response from the MMHR-HRTF database [38].

As specified earlier, the target data for the HA case 
should represent the direct path and the early reflec-
tions as normal hearing and hearing-aided listeners 
benefit from early reflections [9]. Therefore, we con-
volve the dry utterance with the beginning of the RIR, 
up to a separation time often found in the dereverbera-
tion literature [1, 9, 39]. We empirically set the sepa-
ration time to 40 ms instead of the usual 50 ms, as we 
obtained better instrumental results when comparing 
the resulting target data to WPE estimates using the 
oracle PSD.

In the CI scenario, the target data data should theo-
retically contain the direct path only [27]. However, 
directly estimating the direct path from reverberant 
speech often provides poor instrumental results given 
the low input SNR. Note also that the first WPE stage 
uses a prediction delay � supposed to protect the 
inner speech correlations, whose range is usually esti-
mated to ∼ 10 ms. The minimal � that fills this require-
ment is � = 2 STFT frames with the hyperparameters 
described below, that is, 16 ms. Therefore, we propose 

Table 1 List of acronyms for strategies estimating the PSD used 
in the linear filtering and non‑linear post‑filtering stages

Algorithm �
(WPE)

�
(ν ,PF) , �(r̃ ,PF)

RLS‑WPE [20] Reverberant ✗
O‑PSD‑WPE Oracle ✗
DNN‑PF ✗ LDNN−PF

DNN‑WPE LDNN−WPE ✗
E2Ep‑WPE LDNN−WPE −→ LE2E−WPE ✗
DNN‑WPE+DNN‑PF LDNN−WPE LDNN−PF

E2Ep‑WPE+DNN‑PF LDNN−WPE −→ LE2E−WPE LDNN−PF
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to match the target data with the best possible WPE 
estimate, by convolving the dry utterance with the first 
16  ms of the RIR. This also contributes to decreasing 
the difficulty of the estimation task, which helps obtain 
reasonable estimates with the proposed algorithm. We 
further noticed that with this setting, very few early 
reflections could be heard in the target.

The original mean input direct-to-reverberant ratio 
(DRR) between the dry signal and reverberant mixture 
is −6.0dB and the mean microphone-to-speaker distance 
used was estimated to 4.2m. The resulting mean input 
signal-to-noise ratio (SNR) between the generated target 
and the reverberant mixture is 0.9dB for the HA scenario, 
and −1.4dB for the CI scenario.

Finally, independent and identically distributed Gauss-
ian noise is added to each channel with an input SNR 
uniformly sampled in [15, 25] dB to simulate sensor noise. 
Ultimately, the training, validation and testing sets con-
tain around 55, 16 and 3 h of speech sampled at 16 kHz.

4.2  Hyperparameter settings
The STFT uses a square-rooted Hann window of 32 ms 
and a 75 % overlap. For training, segments of Li = 4 s are 
constructed from each sequence (see Section  4.1). All 
approaches are trained using the Adam optimizer with a 
learning rate of 10−4 and a batch size of 128. Training is 
stopped if a maximum of 500 epochs is reached or if early 
stopping is detected, in case the validation loss has not 
decreased in 20 consecutive epochs.

The WPE filter length is set to K = 10 STFT frames 
(i.e., 80 ms), the number of channels to D = 2 , the WPE 
adaptation factor to α = 0.99 , and the delays to �HA = 5 
frames (i.e., 40 ms) for the HA scenario and �CI = 2 (i.e., 
16  ms) frames for the CI scenario. The delay values are 
picked to match the amount of early reflections con-
tained in the respective target, and they experimentally 
provide optimal evaluation metrics when comparing the 
corresponding target to the output of WPE when using 
the oracle PSD (see Section 4.1).

The DNN used in [21] is composed of a single long-
short term memory (LSTM) layer with 512 units fol-
lowed by two linear layers with rectified linear activations 
(ReLU) and a linear output layer with sigmoid activa-
tion. We remove the two ReLU-activated layers in our 
experiments, which did not significantly degrade the 
dereverberation performance, while reducing the num-
ber of trainable parameters by 75  %, therefore ending 
with 1.6M parameters. We use the same architecture for 
MaskNetWPE and MaskNetPF . We choose to use LSTMs 
rather than recent convolutional network- or trans-
former-based architectures to develop a frugal algorithm 
for hearing devices with limited computing resources. 
Indeed, LSTMs require much fewer operations per 

second than the mentioned alternatives, given that they 
process only one input frame and perform sequence-
modeling using their internal memory state.

4.3  Evaluation metrics
We evaluate all approaches on the described test sets cor-
responding to the HA and CI scenarios.

Following the definition of the early-to-late reverbera-
tion ratio ( ELR ) [10, 40], we introduce two new instru-
mental measures: the early-to-moderate reverberation 
ratio ( EMR ) and early-to-final reverberation ratio ( EFR ). 
Estimated RIR coefficients {Ĥ}d,τ ,f  of order 0 ≤ τ ≤ P − 1 
are computed for each channel d and frequency bin f 
separately, in order to minimize a minimum mean square 
error regression objective in the time-frequency domain 
between a reverberant utterance Y and the correspond-
ing dry utterance S filtered by H [13]:

with δ∗ being the oracle propagation delay obtained by 
looking for the direct path in the true RIR. This delay is 
used so as not to try and estimate RIR coefficients pre-
ceding the propagation delay which are supposed to be 
zero, therefore reducing the estimation error. The estima-
tion error is further reduced by choosing the order P to 
match the T30 of the true RIR rather than the T60 , as the 
estimation error floor was found to be close to −30dB.

The channel-wise RIRs are then stacked and the target, 
moderate and final reverberation components are esti-
mated as:

We set �̃ = 5 (i.e., 40ms) in the hearing-aided case and 
�̃ = 2 (i.e., 16ms) in the cochlear-implanted scenario 
as explained in the target specifications in the section 
above. We set the moderate range length to Lm = K = 10 
(i.e., 80ms).

The ELR , EMR and EFR are then defined as:

(16)

{Ĥd,τ ,f }τ =

arg min
H

T−1∑

t=0

||Yd,t,f −

P−1∑

τ=0

Hd,τ ,f St−τ−δ∗,f ||
2
2,

(17)ν̂t,f =

�̃−1∑

τ=0

Ĥτ ,f St−τ−δ∗,f ,

(18)m̂t,f =

�̃+Lm−1∑

τ=�̃

Ĥτ ,f St−τ−δ∗,f ,

(19)φ̂t,f =

P−1∑

τ=�̃+Lm

Ĥτ ,f St−τ−δ∗,f .



Page 8 of 12Lemercier et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:18 

We complete the evaluation benchmark with Percep-
tual Objective Listening Quality Analysis ( POLQA)1, 
signal-to-distortion ratio (SDR), and signal-to-noise ratio 
[41].

5  Experimental results and discussion
5.1  Compared algorithms
We apply the different strategies mentioned in Sec-
tions 2 and 3 and compare their results in Figs. 2 and 3 
for the HA and CI scenarios of our simulated dataset 
respectively.

Spectrograms are also plotted in Fig. 4. We add to the 
already proposed approaches (mentioned in italics):

(20)ELR =10 log10

(
||ν̂||2 / ||m̂+ φ̂||2

)
,

(21)EMR =10 log10

(
||ν̂||2 / ||m̂||2

)
,

(22)EFR =10 log10

(
||ν̂||2 / ||φ̂||2

)
.

• O-PSD-WPE: RLS-WPE using the oracle target PSD
• DNN-PF: The output of the network MaskNetWPE is 

directly used for single-channel Wiener non-linear 
filtering, eluding the WPE linear filter step

• GaGNet [42]: A recent CNN-based network for 
hybrid magnitude and complex domain enhance-
ment. GaGNet is the successor of [43] which was 
ranked first in the real-time enhancement track of 
the DNS-2021 challenge [44]. We used the open 
source available implementation2  but adapted the 
number of frequency bins to be 257 as in our imple-
mentation

Some listening examples and spectrograms are avail-
able on our dedicated webpage3. We also include there a 
video recording of our proposed E2Ep-WPE+DNN-PF 
(HA) algorithm performing in real time in both static and 
moving speaker scenarios. The algorithm performs with 
a total latency of 40 ms determined by the 32 ms algo-
rithmic latency due to the STFT synthesis window length 
and the 8ms processing time which is contained within a 

Fig. 2 Scores on unprocessed and processed signals for hearing‑aided scenario. All metrics except POLQA are in dB . T60 times indicated in s . [ 
ν = d + e ; � = 5 ]

1 Wideband MOS score, following standard ITU-T P.863. The authors would 
like to thank Rohde & Schwarz SwissQual AG for their support with POLQA.

2 https:// github. com/ Andong- Li- speech/ GaGNet
3 https:// uhh. de/ inf- sp- twost agede rev

https://github.com/Andong-Li-speech/GaGNet
https://uhh.de/inf-sp-twostagederev
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STFT hop. We show that for reasonable speaker move-
ments, the algorithm yields high performance also in the 
dynamic setting.

5.2  Moderate reverberation suppression
We first validate the method used for deriving the ELR, 
EMR and EFR metrics, described in 4.3. We plot the log-
energies of the true RIR, the RIR estimated with (16) and 
the transfer function of the concatenation of the room 
with the O-PSD-WPE algorithm on Fig.  5. We observe 
that in the chosen T30 range, the true and estimated 

RIRs match almost perfectly, showing the validity of this 
MMSE-based estimation for linear transfer function esti-
mation in this range. We also observe a strong derverber-
ation performance of the O-PSD-WPE algorithm in the 
filter range as well as shortly after this range, which is the 
effect of recursive averaging.

The ELR metric in Figs.  2 and 3 indicates a superior 
dereverberation performance of E2Ep-WPE in compari-
son to DNN-WPE, i.e., when the DNN MaskNetWPE is 
fine-tuned end-to-end. The high EMR difference indi-
cates that the moderate reverberation in the range 

Fig. 3 Scores on unprocessed and processed signals for cochlear‑implanted scenario. All metrics except POLQA are in dB . T60 times indicated in s . [ 
ν = d ; � = 2 ]

Fig. 4 Log‑energy spectrograms of clean, reverberant, and processed utterances. T60 = 0.68s . HA scenario [ ν = d + e ; � = �̃ = 5 ] Heavy speech 
distortions can be observed in the DNN‑PF output, as highlighted in the red ellipse
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[�̃, �̃+ Lm − 1] is particularly well suppressed. As 
already mentioned in [26], this stems from the better der-
everberation performance in the range which is available 
to the WPE linear filter, through end-to-end optimization 
of the neural network MaskNetWPE.

5.3  Residual reverberation suppression
As displayed in Figs.  2 and 3, using a DNN-assisted 
post-filtering stage highly improves the dereverbera-
tion performance on the basis of WPE linear filter-
ing, and yields much superior POLQA scores. The high 
EFR improvement indicates that post-filtering mostly 
focuses on removing the final reverberation, i.e., after 
the range accessible to WPE filtering. In particular, the 
E2Ep-WPE+DNN-PF approach which uses a pretrained 
network for post-filtering on top of end-to-end trained 
WPE filtering outperforms all other approaches on all 
metrics. In comparison, using only the post-filter with-
out WPE filtering introduces a lot of speech distortion, 
as shown in Fig.  4. Similarly, the DNN-WPE+DNN-PF 
performance indicates that using the post-filtering stage 
on the output of the DNN-WPE algorithm—without 
fine-tuning MaskNetWPE with our end-to-end proce-
dure—yields poorer results (final POLQA is 0.2 lower 
and SNR is 1dB lower than E2Ep-WPE+DNN-PF). This 
shows that removing the moderate reverberation with 
WPE linear filtering is an essential step before using a 

speech enhancement scheme like our post-filter. Since 
E2Ep-WPE efficiently removes the moderate reverbera-
tion, as measured by EMR, it provides a particularly good 
ground for enhancement-like post-filtering, since only 
the reverberation tail remains and provides the best EFR 
and POLQA performance.

5.4  Reverberation times
For a given scenario, the dereverberation task becomes 
increasingly difficult as the T60 time grows longer. We 
observe for example that using the oracle PSD for WPE 
performs well only for low T60 reverberation times 
because of the limited filter length, and the performance 
gap between this approach and the proposed two-stage 
approach increases with the T60 reverberation time.

Furthermore, we notice an increasing gap in SNR 
and EFR between DNN-WPE+DNN-PF and E2Ep-
WPE+DNN-PF as the T60 grows larger, which seems 
to indicate that our best performing approach E2Ep-
WPE+DNN-PF is more robust to challenging reverbera-
tion conditions.

5.5  Hearing device users categories specialization
Similar trends in performances are observed for the hear-
ing-aided and cochlear-implanted scenarios.

Dereverberation is a more complicated task in the CI 
scenario as compared to the HA scenario, as the input 
ELR and SDR scores are lower. Yet, the POLQA and SDR 
score improvements stay relatively consistent across both 
scenarios, highlighting the robustness of our approach. 
However, the EMR improvements seem larger in the HA 
scenario than in the CI scenario. Indeed, it is more ardu-
ous in the latter scenario to remove the beginning of what 
is considered to be the reverberant tail, as it includes parts 
of the early reflections, which are complicated to attenu-
ate without degrading the direct path. This also accounts 
for the smaller EMR improvement of E2Ep-WPE over 
DNN-WPE, as compared to the HA scenario. Further-
more, the SNR improvements are larger in the CI sce-
nario than in the HA scenario, especially those brought 
by the proposed E2Ep-WPE+DNN-PF approach, which 
shows that the post-filtering stage is in this case able to 
remove a lot of the residual reverberation.

5.6  Computational requirements
We estimate the number of MAC operations per second 
of the models using the python-papi Python package 
which provides CPU counters for single- and double-
point precision operations. We end up with an estimate of 
0.13  GMAC·s−1 for our proposed E2Ep-WPE+DNN-PF 
algorithm running at 16 kHz. With the same estimation 
method, the implemented GaGNet uses 0.81 GMAC·s−1 . 
Also with regard to memory, our method has a lower 

Fig. 5 Comparison of the true RIR (full line) vs. the estimated RIR 
(dashed line). Estimated linearized transfer function of the system 
which applies O‑PSD‑WPE on reverberant speech is shown as a 
dotted line. We observe strong dereverberation in the given filter 
range [ �,�+ K̃ − 1 ] and shortly afterwards because of recursive 
averaging. Only the T30 range is displayed as it is the valid estimation 
range for the estimated RIR. T60 = 0.8s . HA scenario [ ν + d + e ; 
� = �̃ = 5 ]
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budget as GaGNet has 11.8M trainable parameters while 
our approach has 3.2M parameters.

Our method therefore outperforms GaGNet on the 
proposed dataset with a significantly smaller computa-
tional load, without special fine-tuning of the hyperpa-
rameters nor optimization of the architectures used.

6  Conclusions
We have proposed a lightweight two-stage DNN-assisted 
algorithm for frame-online adaptive multi-channel der-
everberation on hearing devices. The first stage consists 
of multi-frame, multi-channel linear filtering with help of 
a DNN estimating the target speech PSD, optimized end-
to-end. This first stage was shown to focus on accurately 
removing moderate reverberation up to the given filter 
range, in our case, 120 ms . The second stage performs 
channel-wise, single-frame non-linear spectral enhance-
ment with help of a DNN estimating the target and 
interference PSDs. This second stage is able to efficiently 
remove residual late reverberation left off by the first stage.

Our model-based approach allows to tailor the two-
stage algorithm toward different classes of hearing-
impaired listeners, namely hearing-impaired listeners 
benefiting from early reflections on the one hand, and 
cochlear-implanted users on the other hand benefiting 
from the direct path only.

Instrumental metrics like the early-to-late reverbera-
tion ratio and its variants confirm the listening-based 
experiments showing the complementary aspect of the 
two proposed stages.

The proposed approach outperforms a state-of-the-
art DNN-based enhancement scheme on the proposed 
dataset, using a significantly smaller time and memory 
footprint.
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