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Abstract 

More and more smart home devices with microphones come into our life in these years; it is highly desirable to con-
nect these microphones as wireless acoustic sensor networks (WASNs) so that these devices can be better controlled 
in an enclosure. For indoor applications, both environmental noise and room reverberation may severely degrade 
speech quality, and thus both of them need to be removed to improve users’ experience. For this goal, this paper pro-
poses a parallel processing framework of distributed beamforming and multichannel linear prediction (DB-BFMCLP), 
which consists of generalized sidelobe canceler and multichannel linear prediction for simultaneous speech derever-
beration and noise reduction in WASNs. By sharing a common desired response vector, the proposed DB-BFMCLP 
can provide a significant reduction in communication bandwidth without sacrificing performance. The convergence 
guarantee of the DB-BFMCLP to its centralized implementation is derived mathematically. Simulation results verify the 
superiority of the proposed method to the existing related methods in noisy and reverberant scenarios.
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1  Introduction
Recent progress in micro-electro-mechanical systems 
(MEMS) and wireless communications enable the devel-
opment and popularization of low-cost and low-power 
wireless sensor networks (WSNs) [1]. A WSN usually 
consists of multiple nodes connected by wireless links, 
which has been applied to various fields including speech 
extraction, acoustic source localization, and acoustic 
event detection [2, 3]. In general, wireless acoustic sensor 

networks (WASNs) that can be applied for smart home 
devices equipped with at lease one microphone in each 
device. Each node also has an individual signal process-
ing unit and a communication module to achieve moni-
toring, processing, and broadcasting, respectively.

Compared with conventional compact microphone 
arrays, a WASN comprises several nodes that are placed 
dispersedly and/or randomly, so that it can cover a much 
larger area. Besides, WASNs can enhance the robustness 
and the extensibility of the system by the decentralized 
operation [4]. The often-studied problems of WASNs 
are synchronization acquisition and transmission. The 
main factor of the synchronization problem is the offset 
of clocks oscillators, and many efforts have been made to 
solve the clock synchronization problem [5]. The other 
factor is the asynchronous or synchronous updating of 
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signals and parameters in each node; it has been proved 
that appropriate updating would more likely lead to opti-
mal estimators [6, 7].

For WASNs, centralized methods need to gather all 
observations in a fusion center. In theory, centralized 
methods can achieve the best performance for complete 
information, but these methods usually require a large 
communication bandwidth and computational power. 
Due to limited transmission bandwidth and energy 
resources in practice, the optimal centralized methods 
are often difficult if not impossible for practical applica-
tions. An alternative solution is to use distributed meth-
ods, which can achieve nearly the same performance as 
centralized methods, while requiring much fewer broad-
cast channels [6, 8–12].

Recently, many speech enhancement methods have 
been proposed for WASNs to reduce environmental 
noise. In [10], a distributed multichannel Wiener filter 
(DB-MWF) method was proposed for binaural hearing 
aids. This method considered the case of a single speech 
source under stationary noise scenarios assumption and 
only one-channel signal was transmitted from each node 
to the other. In [6], the coexistence of multiple speakers 
was considered, a distributed adaptive node-specific sig-
nal estimation (DANSE) method was proposed, which 
aims to obtain different outputs in each node. In [11], a 
linearly constrained distributed adaptive node-specific 
signal estimation (LC-DANSE) method was proposed, 
which uses a node-specific linearly constrained minimum 
variance (LCMV) beamformer. A distributed generalized 
sidelobe canceler (DB-GSC) with multiple constraints 
was presented for speech enhancement in [12], where the 
convergence of the DB-GSC to the centralized general-
ized sidelobe canceler (GSC) was proved. Note that the 
DB-GSC method was based on a specific transformation 
that allows reformulating the centralized beamformer as 
a sum of all local GSC.

Apart from noise, room reverberation may also 
degrade speech quality severely in an enclosure [13, 14]. 
For indoor speech communication applications, such as 
hands-free telephony, speaking to smart home devices, 
and conference call, microphones are often placed at a 
certain distance from the desired speaker. In these cir-
cumstances, microphones can receive not only the direct 
sound but also the reflections because of the surrounding 
objects and walls, where the late reflections are referred 
to as reverberation. It has been shown that these unde-
sired reverberant components degrade both the perfor-
mance of automatic speech recognition (ASR) systems 
and speech perceptual quality. To solve this problem, 
many dereverberation methods have been proposed 
[15–18]. Among these methods, the multi-channel lin-
ear prediction (MCLP) proposed in [19] is widely used 

for its promising performance. The weighted recursive 
least squares (RLS) method was introduced to accelerate 
the convergence rate of the filtering parameters in [19]. 
In addition, [20] demonstrated that the MCLP can sup-
press reverberation without assuming specific acoustic 
conditions, although it was originally proposed for sin-
gle-source dereverberation under noise-free scenarios. 
For WASNs, dereverberation is also very important for 
speech enhancement. In [21, 22], two multi-channel der-
everberation approaches in ad hoc microphone arrays 
were introduced, in which the reverberation was reduced 
by selecting a subset of microphones with a relatively 
lower level of reverberation. Unlike noise reduction 
methods, dereverberation methods for WASNs often 
ignore the constraints, e.g., the limited transmission 
bandwidth and energy resource.

In reverberant and noisy environments, dereverbera-
tion and noise reduction should be integrated in a par-
allel processing framework or in a serial processing 
framework [23, 24]. In [23], a system was proposed that 
employs multiple-output MCLP followed by the mini-
mum variance distortionless response (MVDR) beam-
former. However, the cascade architecture of the system 
has high computational complexity and is difficult to 
extend to the WASNs. In [24], the sidelobe-cancelation 
(SC) filter was combined with the linear prediction (LP) 
filter to a unified framework named integrated sidelobe 
cancelation and linear prediction (ISCLP), where the two 
filters are estimated jointly by a Kalman filter. However, 
the GSC performance is highly dependent on the quality 
of the estimated relative early transfer functions (RETFs). 
To prevent the self-cancelation phenomenon caused 
by inaccurate RETFs, the filter coefficients of the GSC 
update only when the speakers are all inactive. Therefore, 
the filter of the GSC and that of the MCLP cannot update 
their coefficients simultaneously, especially when consid-
ering that the MCLP needs to update its filter coefficients 
when the speakers are active [12, 19, 25]. A joint optimi-
zation of the two filters is still unsolved for WASNs.

To solve the above difficulty, we unify the GSC and 
the MCLP together into a beamforming and multichan-
nel linear prediction (BFMCLP) framework, which can 
achieve the independent update for both filters, to deal 
with reverberant speech in noisy scenarios. Besides, 
by sharing the common response vector and deriving 
the distributed RLS method, we extend the BFMCLP 
to a distributed implementation (DB-BFMCLP) which 
is potential for the WASNs. The DB-BFMCLP method 
needs much fewer signals to be broadcasted in each node 
than centralized methods.

The remainder of this paper is organized as follows. In 
Section 2, the problem formulation is presented. In Sec-
tion 3, the centralized BFMCLP method is described. The 
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DB-BFMCLP is presented in Section  4, and its conver-
gence to the BFMCLP is also included in this section. In 
Section  5, we evaluate the performance by simulations. 
Finally, some conclusions are given in Section 6.

2 � Problem formulation
In this section, we consider that a fully connected WASN 
with M microphones contains J nodes ( M ≥ J  ), and the 
number of speech sources observed by this WASN is N. 
Mj denotes the number of microphones in the jth node, 
and we have 

∑J
j=1Mj = M . This paper focuses on the 

situation that each node is equipped with more than one 
microphone. It should be noted that no communication-
bandwidth reduction can be obtained in the node with 
only one microphone, since at least one-channel signal 
needs to be transmitted if all nodes are used for better 
performance instead of using only partial nodes. In some 
previous studies, more attention is paid to the problems 
about sensor subset selection, source location, or net-
work topology in the area of the WASNs consisted of sev-
eral signal-microphone nodes [8, 26, 27]. These problems 
are out of the scope of this paper.

In the short-time Fourier transform (STFT) domain, 
the reverberant observation of the speech signal from 
the nth speaker captured by the mth microphone can be 
modeled as

where t and k denote the time-frame and frequency-bin 
indices, respectively. anm(k , l) denotes the time-invariant 
acoustic transfer function (ATF) between the nth source 
and the mth microphone, and Lh depends on the rever-
beration time and the length of the STFT window. In this 
paper, we treat all frequency sub-bands independently, 
the frequency-bin index k is hereafter omitted for brevity. 
In WASNs, we use the vector notation:

with (·)T denoting the transpose. By dividing ATFs coef-
ficients, the reverberant speech components from the 
nth speaker xn(t) may be decomposed into the direct 
and early reflected components xn|e and late reverberant 
components xn|l , given by:

In practice, the ATFs are difficult to estimate without 
the knowledge of the acoustic sources. Instead, the RETFs 
are often chosen to characterize the relative relationship 
of the desired source signals received by microphones:

(1)xnm(k , t) =

Lh−1
∑

l=0

anm(k , l)sn(k , t − l),

(2)xn(t) = [xn1(t), xn2(t), ..., xnM(t)]T ,

(3)xn(t) = xn|e(t)+ xn|l(t).

where [·]1 denotes the first item of the vector, hn denotes 
an M × 1 RETF between the nth speaker and M micro-
phones in the WASN. It is obvious that [hn]1 = 1 . Con-
sider all the N speakers and the M × 1 vector v(t) 
represents the environmental noise, the stacked M × 1 
vector of received signals by all microphones is given by:

where xe(t) = H
[[
x1|e(t)

]

1
,
[
x2|e(t)

]

1
, ...,

[
xN |e(t)

]

1

]T , 
and H = [h1,h2, ...,hN ] is the M × N  RETFs matrix for 
all the N speakers.

In the Jth node WASN, the vectors y(t) and hn , and the 
matrix H can be stacked by all nodes:

where (·̄) denotes the local data belonging to one node, 
yji(t) denotes the ith microphone signal of the jth node. 
The vectors ȳj(t) ∈ C

Mj×1 and h̄nj ∈ C
Mj×1 denote the 

signal captured by the jth node and the RETF from the 
nth speaker to the jth node, respectively.

3 � BFMCLP
In this section, we develop the parallel processing of the 
BFMCLP for simultaneous speech dereverberation and 
noise reduction. We introduce the BFMCLP at the begin-
ning, and then investigate its stability.

3.1 � Framework
The parallel processing framework of the BFMCLP is 
shown in Fig.  1. It consists of GSC and MCLP, and the 
microphone signal vector y(t) is used as input to both 
parallel branches. As shown in the block diagram, the 
GSC consists of three components: a fixed beamformer 
(FB) f  steers a beam to a desired speaker and reduces 

(4)xn|e(t) = hn xn|e(t) 1
,

(5)

y(t) =xe(t)+ xl(t)+ v(t)

=

N∑

n=1

xn|e(t)+

N∑

n=1

xn|l(t)+ v(t),

(6)y(t) =
[

ȳT1 (t), ȳ
T
2 (t), ..., ȳ

T
J (t)

]T
,

(7)ȳj(t) =
[

yj1(t), yj2(t), ..., yjMj (t)
]T

,

(8)hn =
[

h̄Tn1, h̄
T
n2, ..., h̄

T
nJ

]T
,

(9)H =








H̄1

H̄2

...

H̄J







=








h̄11 h̄21 · · · h̄N1

h̄12 h̄22 · · · h̄N2

...
...

. . .
...

h̄1J h̄2J · · · h̄NJ







,
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the other competing speakers, a blocking matrix (BM) 
B which is orthogonal to the target signal cancels the 
desired speaker, and a data-dependent adaptive filter w 
filters the output of B . The difference between the signals 
from the FB path and the adaptive filter w filter path is 
the original GSC output [28].

The accuracy of the estimated RETFs matrix has a sig-
nificant impact on the performance of the GSC. If the 
desired speech can be completely canceled in the BM, 
the GSC performs well in suppressing noise, interfer-
ences, and late reverberant components without distort-
ing the desired speech. An estimation of the RETF for 
one speaker can be obtained by performing eigenvector 
decomposition on the corresponding covariance matrix 
and the eigenvector associated with the maximum eigen-
value is then extracted [25, 29]. Beforehand, the desired 
covariance matrix needs to be computed by subtract-
ing the noise covariance matrix from the noisy covari-
ance matrix. We assume that the activity patterns of the 
speakers are non-overlapping, and an ideal voice activity 
detector (VAD) is employed in this paper. In this way, the 
desired covariance matrices can be obtained at the ini-
tialization stage of the WASN.

However, the accuracy of estimated RETFs will decrease 
significantly with the increase of the reverberation time. To 
prevent the speech cancelation problem caused by inaccu-
rate RETFs, the adaptive filter w(t) only updates when the 
desired speaker is inactive, whereas such an update strat-
egy may lead to performance degradation for dereverbera-
tion. To overcome this problem, the MCLP is introduced 
to suppress reverberation by deconvolution in the second 
branch, which consists of a delay module and an estimated 
room regression vector g . Note that Eq. (1) indicates that 
the reverberation effect can be modeled as the output of 
a multi-channel autoregressive (MCAR) system. It is the 
theoretical basis of the adaptive dereverberation method, 
where the microphone array signals can be expressed as 

the model of MCLP [30, 31]. In this section, we propose 
the BFMCLP method, in which the GSC and the MCLP 
are performed in parallel. In this way, we can achieve 
much better performance when the speech degrades by 
both reverberation and noise. The details of the BFMCLP 
method are presented below.

The FB f  can be defined with the following constraints 
set:

where (·)H in the following denote conjugate transpose, 
and p is an N × 1 desired response vector consisting of 
ones and zeros. The desired output d(t) of the BFMCLP 
is the sum of the direct and early reflected components of 
the desired speakers which correspond to 1 in the vector 
p:

A closed-form solution of Eq. (10) is f = H
(
HHH

)−1
p , 

and the output of the FB is:

Let the BM B ∈ C
M×(M−N ) be defined as a basis for 

the orthogonal complement of the space spanned by the 
columns of matrix H , it is designed to cancel the desired 
speakers, given by

and a closed-form solution of Eq. (13) can be written as 
B =

[

I−H
(
HHH

)−1
HH

]

:,1:M−N
 . The output of the BM 

can be given by:

In the MCLP branch, q(t) denotes the delayed signal of 
y(t):

(10)HH f = p,

(11)d(t) =
[
x1|e(t), x2|e(t), ..., xN |e(t)

]
p.

(12)c(t) = fHy(t) = d(t)+ fH (xl(t)+ v(t)).

(13)BHH = 0(M−N )×N ,

(14)u(t) = BHy(t) = BH (x(t)+ v(t)).

Fig. 1  Block-diagram of the BFMCLP
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where Lg depends mainly on Lh , and τ denotes the pre-
diction delay in the MCLP model which can prevent the 
over whitening problem [31]. As shown in Fig. 1, the out-
put of BFMCLP d̂(t) can be given by:

where d̂(t) denotes the estimation of the desired speaker, 
w(t) and g(t) update independently over time. In the 
BFMCLP method, the two branches are designed for 
joint dereverberation and noise reduction.

The filter coefficients w(t) and g(t) update iteratively 
with the normalized least mean squares (NLMS) [32] 
and RLS [33], respectively, and the details are summa-
rized in Table 1.

As shown in Table  1, k(t) is the gain vector, P(t) is 
the inverse correlation matrix of the input signal q(t) , 
0 < α < 1 and 0 < ρ < 1 denote the forgetting factors, 
�(t) denotes the variance of the desired signal, and µ 

(15)q(t) =
[

qT
1 (t), ...,q

T
M(t)

]T
,

(16)
qm(t) =

[
ym(t − τ), ..., ym

(
t − τ −

(
Lg − 1

))]T
,

(17)
d̂(t) =c(t)− cB(t)− cL(t)

=c(t)− wH (t − 1)u(t)− gH (t − 1)q(t),

is the step size. It is to be emphasized that w(t) only 
updates when all the speakers are inactive, while g(t) 
updates continuously. In this way, instead of estimating 
both filters simultaneously, the BFMCLP can prevent 
the self-cancelation problem effectively.

3.2 � Stability of the BFMCLP
Especially note that there is no distortion for the 
desired signals in the output of the BFMCLP. Because 
of the existence of the BM B and the prediction delay τ , 
we have E{u(t)d∗(t)} = 0 and E{q(t)d∗(t)} = 0 in which 
E{·} denotes the expectation, indicating that cb(t) and 
cL(t) are all uncorrelated with the desired signal d(t).

In this subsection, we will further prove that the inde-
pendent update of the two paths will not cause diver-
gence of the system. We assume that the microphone 
signals are composed of speakers and one interference 
radiating from a specific direction:

where vl(t) and ve(t) are the early-reflected components 
and late-reverberant components of the noise, respec-
tively. We assume the RETFs are known. In the follow-
ing, we analyze the system in two situations: the desired 
speaker is active or inactive.

(18)y(t) = xe(t)+ xl(t)+ ve(t)+ vl(t),

Table 1  The details of the BFMCLP method
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3.2.1 � Speaker active
When the speaker is active, the filter coefficients of 
the GSC branch are all fixed. Because the RETFs are 
estimated in advance and w(t) updates when only the 
noise exists, the GSC can suppress the early-reflected 
components of the noise without distorting the desired 
speaker. Thus, the output of the GSC branch is

The input of the MCLP branch q(t) is always corre-
lated to (xl(t)+ vl(t)) , and the MCLP aims to suppress 
the late-reverberation components by making the out-
put d̂(t) = cGSC(t)− cL(t) temporally uncorrelated [20].

3.2.2 � Speaker inactive
When the speaker is inactive, the vector 
y(t) = ve(t)+ vl(t) needs to be canceled completely. In 
other words, the system should minimize the 

E

{∣
∣
∣d̂(t)

∣
∣
∣

2
}

 , where the d̂(t) denotes the residual in this 

subsection. And the filters w(t) and g(t) update inde-
pendently and simultaneously over time.

The filter w(t) , which updates by the NLMS method, 
should minimize the cost function [28]:

where �w is the Lagrange multiplier, and Re{·} extracts 
the real part of a complex variable. Differentiate Jw(t) 
with the respect to w(t):

By setting Eq. (21) to zero, we can obtain the optimal 
filter coefficients:

We set the constraint

and solve for the �w by substituting Eq. (22) into Eq. (23), 
given by

then we obtain:

(19)

cGSC(t) =c(t)− cB(t)

=(f − Bw)Hy(t)

=d(t)+ (f − Bw)H (xl(t)+ vl(t)),

(20)Jw(t) = �w(t)− w(t − 1)�2 + Re{�∗w d̂(t)},

(21)
∂Jw(t)

∂wH (t)
= 2(w(t)− w(t − 1))− �

∗
wu(t).

(22)w(t) = w(t − 1)+
1

2
�
∗
wu(t).

(23)c(t) = wH (t)u(t)+ gH (t − 1)q(t),

(24)c(t) = wH (t − 1)u(t) +
1

2
�w‖u(t)‖

2
+ gH (t − 1)q(t),

where d̂(t) is defined in Eq. (60) in Table 1. Thus, Eq. (63) 
in Table  1 can be obtained by substituting Eq. (25) into 
Eq. (22) and introducing a scaling factor denoted by µ , 
where P(t) is a recursive average of ‖u(t)‖2.

Next, we consider the filter g(t) . In the method of least 
squares, the optimized g(t) in BFMCLP should satisfy the 
principle of orthogonality:

Then we can get [28, 31, 33]:

where �= E{q(t)qH (t)} denotes the correlation matrix of 
the input q(t) , and z= E

[
q(t)c∗GSC(t)

]
 denotes the cross-

correlation vector of q(t) and cGSC(t) = c(t)− cB(t) . In 
the RLS method, the recursive computations of � and z 
are given by:

where �g is the forgetting factor . Then, the matrix inver-
sion lemma can be used to obtain the recursive computa-
tion of g(t) , which is

using P(t) = �
−1
g P(t − 1)− �

−1
g k(t)qH (t)P(t − 1) and 

k(t) = P(t)u(t) [28], g(t) in Eq. (65) in Table  1 can be 
obtained:

In summary, using the output of the BFMCLP d̂(t) as 
the residual for updating the two branches, the whole 
system can converge towards the optimal solution.

4 � DB‑BFMCLP
In this section, we extend the BFMCLP for use in the 
WASNs. A simple estimation is obtained by utiliz-
ing only local signals, and the sub-optimal solution can 
be obtained by doing so, reducing both bandwidth and 
power consumption.

(25)�w =
2d̂(t)

�u(t)�2
,

(26)E{q(t)d̂∗(t)} = 0.

(27)�g=z,

(28)�(t) =�g�(t − 1)+ q(t)qH (t),

(29)z(t) =�gz(t − 1)+ q(t)c∗GSC(t),

(30)
g(t) =�−1(t)z(t)

=P(t)z(t)

=�gP(t)z(t − 1)+ P(t)q(t)c∗GSC(t),

(31)

g(t) =P(t − 1)z(t − 1) + k(t)uH (t)P(t − 1)z(t − 1) + P(t)q(t)c∗
GSC

(t)

=g(t − 1) + k(t)
[

c
∗

GSC
(t) − qH (t)g(t − 1)

]

=g(t − 1) + k(t)d̂∗(t).
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4.1 � Framework
As illustrated in Fig.  2, the input yj(t) ∈ C(Mj+N−Nj)×1 
of the jth node is the stacked vector of local sig-
nals ȳj(t) ∈ C

Mj×1 and the transmitted signals 
ṙj(t) ∈ C(N−Nj)×1 from other nodes:

At the same time, the jth node transmits the shared sig-
nals rj(t) ∈ C

Nj×1 to other nodes. rj(t) is defined in such a 
way as follows. In a typical application scenario of WASNs, 
the M microphones and the N speakers are all placed ran-
domly and dispersedly; therefore, the signal-to-noise ratios 
(SNRs) of microphones for each source are different. When 
the positions of all the speakers are fixed and the activ-
ity patterns of the speakers are non-overlapping, we can 

(32)yj(t) =
[

ȳTj (t) ṙTj (t)
]T

.

estimate the distances between each speaker and the nodes 
in WASN at system initialization stage by using the ideal 
VAD and the magnitude of the signal received by the first 
microphone in each node. We choose the microphone 
with the highest energy for the nth speaker as the reference 
of the nth speaker. We assume that the j1th, j2 th ... jNj th 
microphones ( Nj in total) in the jth node have speakers, 
then rj(t) is written as:

(33)rj(t) =Tj ȳj(t),

(34)Tj =








tjj1
tjj2
...

tjjNj







,

Fig. 2  Block-diagram of the DB-BFMCLP. a Overall block-diagram. b Details at the jth node
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where Tj ∈ N
Nj×Mj and tjji ∈ N

1×Mj . The N × 1 vec-
tor r(t) denotes the stacked vector of all rj and the 
(
N − Nj

)
× 1 vector ṙj denotes the received signal of the 

jth node, which can be written as:

Note that 
∑J

j=1Nj = N  , 0 ≤ Nj ≤ Mj , and a microphone 
being selected as the reference of one speaker cannot be a 
reference for another. Similar to yj(t) , the RETFs belong-
ing to the jth node are:

As illustrated in Fig.  2(b), when the constraints set p is 
consistent across the WASN, the parameters of the jth 
node are given by:

Note that the input of the MCLP branch in the jth node 
is still ȳj rather than yj:

In addition, we provide more details of the implemen-
tation of the DB-BFMCLP in one node as an example 
in Table 2. Note that all the signals in vector r(t) can be 
obtained in each node of the WASN. Without loss of 

(35)tjji =




 0 ... 0
� �� �

ji−1

1 0 ... 0
� �� �

Mj−ji




,

(36)r(t) =
[

rT1 (t), r
T
2 (t), ..., r

T
J (t)

]T
,

(37)ṙj(t) =
[

rT1 (t), ..., r
T
j−1(t), r

T
j+1(t), ..., r

T
J (t)

]T
.

(38)Hj =

[
h̄1j , h̄2j , ..., h̄Nj
ḣ1j , ḣ2j , ..., ḣNj

]

,

(39)hnj =Tjh̄nj ,

(40)ḣnj =
[

hTn1, ...,h
T
n(j−1),h

T
n(j+1), ...h

T
nJ

]T
.

(41)f̄j =
1

J
Hj

(

HH
j Hj

)−1

p,

(42)B̄j =

[

I−Hj

(

HH
j Hj

)−1

Hj

]

:,1:Mj−Nj

,

(43)ūj(t) =B̄H
j yj(t).

(44)q̄j(t) =
[

qT
j1(t), ...,q

T
jMj

(t)
]T

,

(45)qji(t) =
[
yji(t − τ ), ..., yji

(
t − τ −

(
Lg − 1

))]T
.

generality, we choose the first item of r(t) in Eq. (72) in 
Table 2.

4.2 � Convergence proof
In this part, we will show the convergence property of 
the proposed DB-BFMCLP to the BFMCLP. As men-
tioned in Section 3, the filters w(t) and g(t) update their 
coefficients independently in the BFMCLP method. 
Because the full convergence proof of the DB-GSC to 
the centralized GSC has been provided in [12], only the 
convergence of the MCLP branch is presented in this 
paper. We assume d̂(t) = c(t)− cL(t) without consider-
ing the BM of the GSC and the filter w(t) . Some param-
eters are introduced for clarification, for example, 
d̂cen(t) represents the output of the centralized method 
and d̂dis(t) denotes that of the distributed one.

In the RLS method, there are two different estimation 
errors, where one is the a priori estimation error and 
the other is the a posteriori estimation error [28]. The 
a priori estimation error in the BFMCLP is introduced 
when estimating the desired speech signal:

And the a posteriori estimation error is given by [28]:

further, the ratio of the a posteriori estimation error 
ẑcen(t) to the a priori estimation error d̂cen(t) is the con-
version factor γcen(t) , given by:

which is determined by the input signal q(t) and the 
inverse correlation matrix P . Note that the cost function 
in RLS is minimized based on the a posteriori estima-
tion error ẑcen(t) , and it does not depend on the a priori 
estimation error d̂cen(t) [28]. Obviously, α�(t) > 0 and 
qH (t)P(t − 1)q(t) > 0 always hold, which is because P is 
a positive definite matrix. Therefore, γcen(t) is less than 
1 on average, leading to the convergence property of the 
RLS.

Because the common desired response vector p , as 
shown in Eq. (41), is shared in the WASN, it is obvious that:

(46)
d̂cen(t) =c(t)− gH (t − 1)q(t)

=fHy(t)− gH (t − 1)q(t).

(47)

ẑcen(t) =c(t)− gH (t)q(t)

=c(t)−
[

g(t − 1)+ k(t)d̂∗cen(t)
]H

q(t)

=
(
1− kH (t)q(t)

)
d̂cen(t),

(48)

γcen(t) =
ẑcen(t)

d̂cen(t)

=1− kH (t)q(t)

=1−
qH (t)P(t − 1)q(t)

α�(t)+ qH (t)P(t − 1)q(t)
,
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and then

As shown in Table 2, the local output of each node in the 
DB-BFMCLP method can be written as:

(49)
J∑

j=1

HH
j f̄j =

1

J

J∑

j=1

p = p,

(50)
J∑

j=1

f̄Hj yj(t) = fHy(t) = c(t).

(51)

d̂dis(t) =

J∑

j=1

(

c̄j(t)− ḡHj (t − 1)q̄j(t)
)

=

J∑

j=1

f̄Hj yj(t)− gH (t − 1)q(t)

=c(t)− gH (t − 1)q(t).

The desired recursive equation for updating the room 
regression vector ḡHj (n) with j = {1, · · ·, J } is

where k̄j(t) is the gain vector of the jth node denoted by 
Eq. (75) in Table  2. For the sake of analysis, we assume 
that only the room regression vector of the first node 
updates. Then, the a posteriori output of distributed 
method can be denoted as

By substituting Eq. (51) and Eq. (52) into Eq. (53), can 
be further written as

(52)ḡj(t) = ḡj(t − 1)+ k̄j(t)
d̂∗
dis(t)

J
,

(53)

ẑdis(t) =
(

c̄1(t) − ḡH
1
(t)q̄1(t)

)

+

J
∑

j=2

(

c̄j(t) − ḡH
j
(t − 1)q̄j(t)

)

=c(t) −
[

ḡH
1
(t), ḡH

2
(t − 1), ..., ḡH

J
(t − 1)

]

q(t).

Table 2  The details of the DB-BFMCLP method at the jth node
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Fig. 3  Parameters of two simulated rooms. a T60 = 450ms , b T60 = 610ms , 720ms , 830ms , 940ms 
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It is obvious that the conversion factor can be written 
as

Considering Eq. (55), by using the final output d̂dis(t) 
for updating the local prediction filter ḡj(t) of all nodes, 
the relationship between the a posteriori output and 
the a priori output of the distributed method is similar 
to the centralized method, and the conversion factor is 
determined by the delayed signal q̄1(t) and the gain vec-
tor k̄1(t) . In contrast, if the local room regression vector 
updates using local output d̂j(n) , it is difficult to ana-
lyze the relationship. In addition, when all nodes update 
simultaneously, the conversion factor of distributed 
structure can be represented as:

It is obvious that γdis(t) is less than 1 on average. Thus, 
the convergence of the proposed DB-BFMCLP can be 
guaranteed. It will be demonstrated in the following sec-
tion that 

[
ḡT1 , ḡ

T
2 , ..., ḡ

T
J

]T would converge to the opti-
mal solution of the centralized method after enough 
iterations.

5 � Simulations
In this section, to validate the proposed BFMCLP 
method and the convergence of the proposed DB-BFM-
CLP method, the two methods are evaluated in the noisy 
environments with varying degrees of reverberation.

5.1 � Simulation setup
The sizes of two simulated rooms are 5 m × 5 m × 3 m 
and 7 m × 7 m × 3 m, respectively. The reverberation time 
of the small room is set to T60 = 450 ms. For the big 
room, T60 = 610 ms, 720 ms, 830 ms, and 940 ms are 
considered.

Besides, each node in WASNs has 3 microphones with 
the distance of two adjacent microphones 5 cm. The posi-
tions of nodes, speakers, and interferences relative to 
the room are illustrated in Fig. 3. We select 40 speakers 

(54)ẑdis(t) = d̂dis(t)

(

1−
k̄H1 (t)q̄1(t)

J

)

.

(55)γdis(t) =
ẑdis(t)

d̂dis(t)
= 1−

k̄H1 (t)q̄1(t)

J
.

(56)

γdis(t) =
ẑdis(t)

d̂dis(t)

=1−

J∑

j=1

k̄Hj (t)q̄j(t)

J

=1−
1

J

J∑

j=1

q̄H
j (t)P̄j(t − 1)q̄j(t)

α�(t)+ q̄H
j (t)P̄j(t − 1)q̄j(t)

.

(20 males and 20 females) from the TIMIT database as 
the clean speech signals. The performance shown as fol-
low is all averaged over several experiments. Each signal 
of one speaker is set to 30 s, and the simulated signals 
are obtained by convolving simulated room impulse 
responses (RIRs). The RIRs are simulated with an effi-
cient implementation of the image source model [34]. A 

Fig. 4  Convergence of the evaluated methods along time in the 
term of PESQ improvement. (a) T60 = 450ms, (b) T60 = 830ms

Table 3  The number of channels transmitted of each method 
per TF-bin at the jth node

Methods MCLP/GSC/
LCMV/BFMCLP

LC-DANSE DB-GSC DB-BFMCLP

Number of 
channels 
broadcast

Mj N Nj Nj

Number of 
channels 
received

M−Mj (J − 1)N N − Nj N − Nj
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stationary noise is also located in each simulated room. 
To focus on measuring the performance of the proposed 
methods, we assume that the clocks of the sensors are 
synchronized. We further test whether the distributed 
methods can converge to the optimal solution or not 

by comparing the results with the centralized methods. 
Accordingly, we uniformly update the signals and param-
eters simultaneously.

The sampling rate is 16 kHz. The STFT uses a square-
root Hanning window, and the frame length is set to 

Table 4  Computational complexity of the three methods per TF-bin at the jth node

Computational complexity(FLOPs)

GSC
N3+3MN2 + NM2 + 5MN −

1

2
M2 −

3

2
N2 +

13

2
M−

11

2
N − 1

BFMCLP
N3+3MN2 + NM2 + 5MN −

1

2
M2 −

3

2
N2 +

13

2
M−

11

2
N+2M3Lg

3+
11

2
M2Lg

2 +
11

2
MLg

DB-BFMCLP
N3+3QjN

2 + NQj
2 + 5QjN −

1

2
Qj

2 −
3

2
N2 +

13

2
Qj −

11

2
N + 2Mj

3Lg
3+

11

2
Mj

2Lg
2 +

11

2
MjLg + J+1

Fig. 5  Performance comparison of the evaluated methods with varying degrees of reverberation (SNR = 13 dB). a PESQ improvement, b STOI 
improvement, c SNR improvement, d SRMR improvement
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1024 with the frame shift 512 to balance the perfor-
mance and the real time of the methods in reverberant 
and noisy scenarios. The performance is evaluated by 
four often-used objective measurements including the 
perceptual evaluation of speech quality (PESQ) [35], the 
short-time objective intelligibility (STOI) [36], the SNR, 
and the speech-to-reverberation modulation energy ratio 
(SRMR) [37].

5.2 � Evaluation of the distributed MCLP
We first test the convergence of the distributed MCLP 
in the DB-BFMCLP in reverberant scenarios, where the 
first setup (a) with T60 = 450 ms and the second setup 
(b) with T60 = 830 ms are considered. Without the GSC 
branch, the DB-BFMCLP and BFMCLP become the 

distributed MCLP (DB-MCLP) and MCLP, respectively. 
In the circumstances, we choose the first microphone as 
the reference of the single speaker, and h = [1, 0, ..., 0]T . 
The speech signals are located in the position of the 
desired speaker, and Lg = 8 and τ = 1 are set in this 
evaluation. The PESQ improvements of the outputs 
of the single node MCLP (SN-MCLP), the centralized 
MCLP (Cen-MCLP), and the DB-MCLP versus time are 
depicted in Fig. 4. One can see that the performance of 
the Cen-MCLP and that of the DB-MCLP is closed when 
they are both in a convergent state and both outperform 
the SN-MCLP, and the convergence speed of the distrib-
uted approach is faster [38]. This is because the room 
regression vector g is separated into lower-dimension 
ones in the DB-MCLP.

Fig. 6  Performance comparison of the evaluated methods with varying degrees of noise ( T60 = 610 ms). a PESQ improvement, b STOI 
improvement, c SNR improvement, d SRMR improvement
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5.3 � Evaluation of the BFMCLP and the DB‑BFMCLP
We investigate the performance of the BFMCLP and 
the DB-BFMCLP in noisy and reverberant scenarios by 
twenty runs. We compare the proposed two methods 
with five existing related ones. In sum, we use the follow-
ing seven methods in total for complete comparison: the 
MCLP, the GSC, the DB-GSC (the distributed structure 
of the GSC), the LCMV method, the LC-DANSE method 
(the distributed structure of the LCMV), the BFMCLP 
method, and the DB-BFMCLP method. In addition, 
Lg = 4 and τ = 1 are chosen in this evaluation.

The signal-to-interference ratio (SIR), which measures 
the power ratio between the received desired speaker and 
the competing speaker, is set to 0 dB. The SNR, which 
defines the power ratio between the speakers and the 
noise, is set to 13 dB in the cases when studying the influ-
ence of the reverberation time. The SNR is set to 5 dB, 
10 dB, 15 dB, and 20 dB to evaluate the influence of the 
noise.

The channel numbers of each method per TF-bin are 
presented in Table  3. One can see that all of the three 
distributed methods need fewer channels than their 
centralized structures. The DB-GSC and DB-BFMCLP 
require that the number of speakers should not be more 
than the total number of microphones in the WASN; 
the two methods are more robust to the number of 
speakers because N < Mj needs to be satisfied in the 
LC-DANSE [11].

We also show the computational complexity of the 
BFMCLP and the DB-BFMCLP in Table  4, where both 
a scalar complex addition and a scalar complex mul-
tiplication are counted as one floating point opera-
tion (FLOP) [39]. For simplicity of expression, we set 
Qj =

(
Mj + N − Nj

)
 . As a comparison, we also pre-

sent the computational complexity of the existing GSC 
method. It can be observed from Table 4 that, because of 
the smaller number of filter dimensions, the complexity 
of the DB-BFMCLP is reduced significantly.

The improvements of the above mentioned meth-
ods with the four objective measures are presented 
in Figs. 5 and 6. It is clear that the performance of the 
DB-BFMCLP and the BFMCLP are closed in most 
cases, which further verifies the convergence of the 
DB-BFMCLP to the BFMCLP. An observation in Fig. 5 
is that the impact of reverberation on speech quality 
gradually exceeds that of noise when the reverberation 
time increases, which causes the performance degrada-
tion to the existing related beamformers. Instead, the 
MCLP can maintain a stable performance. It demon-
strates that reverberation can limit the performance of 
the related beamformers. However, the BFMCLP and 
the DB-BFMCLP have obvious advantages in all meas-
urements under reverberant and noisy environments, 

demonstrating the superiority of the parallel structure 
proposed in this paper.

Furthermore, we perform ten random experiments to 
verify the stability of the system, where in each experi-
ment the room size S ∈ [25, 72] m2 , SIR ∈ [−2, 2] dB , SNR 
∈ [10, 20] dB , and reverberation time T60 ∈ [400, 900] ms 
are chosen randomly. Two speakers, one interference 
and a four-node WASN, are randomly and dispersedly 
arranged in the room, and the microphone constella-
tion in each node remains fixed as in Section  5.1. The 
improvements depicted in Fig. 7 indicate the robustness 
of the DB-BFMCLP and the BFMCLP.

5.4 � Evaluation of the influence of VAD errors
An ideal VAD has been used in the previous studies, and 
the filters and parameters are updated when speakers 
inactive in speech enhancement methods. In this part, we 

Fig. 7  Performance comparison in more general experiments. 
a PESQ improvement, b SNR improvement
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further study the influence of VAD errors on the perfor-
mance of the GSC, BFMCLP, and their distributed struc-
tures for completeness. Here, φs indicates the percentage 
of the speech-and-noise frames that are error detected as 
noise-only frames.

The influence of φs on the performance of the four 
methods is studied in two scenarios using the simulated 
room depicted in Fig. 3b, with T60 = 610 ms and SNR = 
13 dB. In the first scenario, we assume that the accurate 
H still has been known to all nodes; the inaccurate noise 
frames are only used to update the filter w ; the PESQ 
improvements in this scenario are depicted in Fig.  8a. 
In the second scenario, the inaccurate noise frames are 
simultaneously used to estimate the RETF H and the 
filter w , and the results are shown in Fig.  8b. The four 
methods are obviously more sensitive to the estima-
tion error of the RETFs, and the superiority of the two 
parallel structures to the two GSC-methods can be con-
cluded from the Fig. 8 in either of the two scenarios.

6 � Conclusion
In this paper, for speech enhancement in reverberant 
and noisy environments, the parallel implementation of 
BFMCLP method has been proposed and extended for 
WASNs. The proposed methods suppress reverberation 
and noise by exploiting the property that the delayed sig-
nal in the MCLP and the blocked signal in GSC are all 

uncorrelated with the desired signal. The parallel archi-
tecture has two advantages: one is that the two filters can 
be updated independently to prevent the self-cancelation 
problem effectively due to the estimation error of the 
RETFs, which can improve the stability of the system, 
and the other is that the parallel architecture can be easily 
extended to distributed systems. We provide the details 
of the two parallel methods and prove the convergence 
of the DB-BFMCLP method. Finally, we test the BFM-
CLP and the DB-BFMCLP in reverberant and noisy sce-
narios; simulation results indicate that the two proposed 
methods outperform the existing methods, and the DB-
BFMCLP provides a performance comparable to the cen-
tralized BFMCLP, while it significantly reduces both the 
computational and the transmission cost.
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