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Abstract 

The goal of sound event detection and localization (SELD) is to identify each individual sound event class and its activ-
ity time from a piece of audio, while estimating its spatial location at the time of activity. Conformer combines the 
advantages of convolutional layers and Transformer, which is effective in tasks such as speech recognition. However, 
it achieves high performance relying on complex network structure and a large number of computations. In the SELD 
task of this paper, we propose to use an encoder with a simpler network structure, called the dual-branch atten-
tion module (DBAM). The module is improved based on the conformer using two parallel branches of attention and 
convolution, which can model both global and local contextual information. We also blend low-level and high-level 
features of the localization task. In addition, we add soft parameter sharing to the joint SELD network, which can 
efficiently exploit the potential relationship between the two subtasks, SED and DOA. The proposed method can 
effectively detect two sound events with overlapping occurrence in the same time period. We experimented with 
the open dataset DCASE 2020 task 3 proving that the proposed method achieves better SELD performance than the 
baseline model. Furthermore, we conducted ablation experiments for verifying the effectiveness of the dual-branch 
attention module and soft parameter sharing.

Keywords Sound event detection and localization, Conformer, Attention mechanism, Multi-task learning, Soft 
parameter sharing

1 Introduction
Sound event detection (SED) is an important research 
direction in non-speech signal recognition. In our daily 
life, we often hear dogs barking, birds chirping, car sirens, 
sirens, footsteps, broken glass, etc. All these signals can 
be called sound events. The sound source localization 
(SSL) technique involves the measurement of sound sig-
nals using multiple microphones at different location 
points in the environment. Since the sound signals arrive 
at each microphone with different degrees of delay, the 

algorithm is used to process the measured sound signals 
and thus obtain the direction of arrival (including azi-
muth and elevation angle) and the distance relative to the 
microphone of the sound source point, etc. In this paper, 
we consider only the relative position of the active sound 
event, i.e., the direction of arrival (DOA) estimate, with-
out considering its relative distance. Sound event detec-
tion and localization (SELD) is the process of identifying 
the sound event associated with a label from the audio, 
detecting the activity time (start and offset time of the 
event), and estimate its spatial location.

The application of audio signals as auxiliary signals is 
more efficient to work with, compared to some situa-
tions where it is not convenient to capture video. Effec-
tive SELD methods can describe the temporal and spatial 
representation of sound events, which have a wide range 
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of applications in many fields. In the field of autono-
mous driving, it enables smart cars to detect the sound 
of horns, sirens, etc., in the environment and respond to 
them correctly [1]. In industry, it can be used as an aid 
for fault checking of large machinery and equipment 
[2]. In smart cities and smart homes, it can be used for 
machine listening and audio monitoring [3, 4]. In addi-
tion, it can identify, track, and suppress ambient noise to 
enhance speech quality for video conferencing or auto-
matic speech recognition (ASR) [5, 6].

SED focuses on the type of sound and its correspond-
ing temporal activity, while DOA estimation focuses on 
the spatial location information of the sound source. The 
SELD task serves as a joint task of the SED and DOA 
estimates. With the rapid development and great break-
throughs in machine learning, SELD have gained more 
performance improvements. The neural network-based 
approach is applied to SED, which effectively improves 
the accuracy of detection. It also overcomes the short-
comings of the traditional parameter-based DOA 
method, with robustness in reverberation and low signal-
to-noise scenarios.

The processing of each frame by CNN [7] is based on 
a finite temporal frequency range around which the 
neighborhood information can be captured. RNN [8] 
can effectively exploit the temporal dependence in pairs 
of audio sequences, but it is difficult to learn in parallel 
and capture the interactions of long-range sequences. For 
the SELD task, the authors used CNNs to jointly predict 
audio content classes and spatial locations [9]. Adavanne 
et  al. trained the features of SED and DOA together in 
a CRNN network, consisting of the convolutional mod-
ule and the BiGRU module [10]. The two-stage strategy 
for SELD proposed by Cao et  al. achieved a significant 
improvement [11]. This method detects sound event 
types at first, uses a representation of migration learning 
in order to extract DOA estimation features, and finally 
trains the SED mask to predict the direction of arrival 
of the sound events. These methods still in essence view 
detection and localization as two separate tasks and do 
not make good use of the connection between them. 
Moreover, when two sound events of the same type are in 
different DOA directions, they will not be detected.

Transformer [12] was first proposed in the field of 
natural language processing. It has also been introduced 
to computer vision in recent years and has shown revo-
lutionary performance improvements. The detection 
accuracy of sound events can be improved by using 
context-sensitive information [13]. In [14], Transformer 
model was introduced to the field of speech recogni-
tion and Speech-transformer was proposed, which is 
a repetition-free seq-seq model relying entirely on the 
attention mechanism to learn positional dependencies. 

Self-attention mechanisms are very effective for long-
range global context modeling. However, local feature 
information of audio sequences has an indispensable role 
in sound event detection. Conformer [15] is a variant of 
Transformer that combines this global and local contex-
tual information into a unified single-branch structural 
model by incorporating a convolution module. How-
ever, the structure of conformer is very complex and a 
large number of network parameters need to be used for 
training.

Inspired by the branching architectures of Lite Trans-
former [16] and Branchformer [17], we propose a dual-
branch model combining self-attentive and convolutional 
modules in the SELD task. The proposed module has a 
simple structure and can also take full advantage of the 
two branches, combining global and local contextual 
information of the audio sequences. In this work, our 
contributions are as follows.

• First, the dual-branch attention module is proposed 
in this paper as an attention mechanism for track 
separation in the joint SELD task. Moreover, by 
reducing the overall computation and model size 
through a parallel dual-branch architecture, bet-
ter SELD performance can be achieved with fewer 
parameters.

• Second, improved localization performance is 
achieved by blending the low-level and high-level 
features in the localization sub-network.

• Third, the parameters of the SED and DOA sub-net-
works are shared through the cross-stitch module to 
obtain the best optimization of the joint task.

In Sect.2, the components of the joint SELD net-
work and the detailed structure of proposed DBAM are 
described in detail. Section 2.2.4 gives the experimental 
setup, including the dataset, settings, and evaluation met-
rics. Section  2.5 shows the comparison and analysis of 
the results of the comparative and ablation experiments. 
The conclusions and future work are given in Sect. 4.

2  The proposed method
In this section, the joint SELD network, which performs 
both SED and DOA subtasks, is described in detail. The 
joint SELD network we proposed consists of two sub-
networks, as shown in Fig. 1. One subnetwork learns the 
features of the SED task, the other subnetwork learns the 
features of the DOA task. These two subnetworks have 
independent parts and intersecting parts. The independ-
ent parts are the respective conv blocks, the dual-branch 
attention module, and the fully connected layers. The 
intersecting parts are the cross-stitch modules in the 
soft parameter sharing. First, the original audio data 
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features are extracted and the respective features are 
input accordingly to the respective convolutional opera-
tions in the conv blocks of the SED and DOA tasks. Next, 
the global and local contextual correlations in the audio 
sequences are modeled by the dual-branch attention 
module. The stacked DBAMs are used to separate the 
tracks of the two overlapping sound events. In addition, 
the shared features of two independent subnetworks are 
linearly modeled using the parameter sharing module 
after each conv block and DBAM. Finally, separate SED 
and DOA subtasks are executed through two fully con-
nected layers in parallel to output sound event categories 
and relative position information. The detailed descrip-
tion of each module in Fig.  1 is given in the following 
subsections.

2.1  Conv blocks
The audio signal features can be efficiently extracted 
by convolutional layers and the perceptual field can 
be expanded by stacked convolutional modules. Each 
subnetwork uses four conv blocks. The detailed net-
work structure of the proposed conv blocks is shown 
in Fig.  2. Each conv block has two 2D convolutional 
layers with a kernel size of 3 × 3. All convolutional lay-
ers are followed by adding batch normalization and 
ReLU activation layers. Pooling operations are used 
after the conv blocks. We use maximum pooling for 

the first three pooling in each subnetwork. The pur-
pose of this is to use maximum pooling to efficiently 
obtain the most obvious features and remove invalid 
information. The dilation parameter of the maximum 
pooling is set to 1, i.e., the element step in the window 
is 1. The last conv block uses average pooling because 
it is needed to combine the information of the high-
level features deep in the network, which can help the 
classifier to classify.

Fig. 1 Overall structure of the proposed joint SELD network. The red rectangle indicates the task of SED, the blue indicates the task of DOA, and the 
yellow indicates the cross-stitch module for soft parameter sharing

Fig. 2 The structure of the conv block (1–4)
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2.2  Dual‑branch attention module
Transformer and conformer models have successively 
achieved excellent performance in speech separation 
and speech recognition tasks. In sound event detec-
tion, feature extraction is important to improve audio 
classification and localization performance. Although 
Transformer is capable of context-aware modeling of 
audio sequences, it eschews RNNs and CNNs, which 
also makes its ability to integrate local features limited. 
Conformer uses deep separable convolution to enhance 
the performance of Transformer, but its model struc-
ture is complex. We improve on the conformer model by 
using N stacked dual-branch attention module (DBAM) 
to model the global and local contextual information of 
the feature sequence and to separate the tracks of two 
overlapping sound events. It is described in detail in this 
section.

Inspired by the paper [16, 17], we use the attention 
module with two branches, consisting of the attention 
branch, the gated convolution branch and a residual con-
nection. The detailed structure is shown in Fig.  3a. The 
convolutional branch can effectively extract local detail 
features, while the attentional branch is good at cap-
turing long-range global contexts. Therefore, our pro-
posed model can well distinguish the spectral features of 

different sound events and thus improve the performance 
of the network. These two branches share the features 
of the input, but they respectively focus on global and 
local information and are combined in the fusion unit. 
The original input of the DBAM is also added to the final 
output as a residual connection. The residual connec-
tion solves the problem of gradient explosion and gradi-
ent disappearance that may arise during training in deep 
networks. Only the encoder part is used in our proposed 
method, since our task does not require the recovery of 
the audio sequence. In addition, we do not use the posi-
tion encoding part of the encoder because it is not suit-
able for acoustic sequences.

2.2.1  Attention branch
The structure of the attention branch is shown in the left 
branch of Fig. 3a. First, we use layer normalization of the 
input features, then the multi-headed self-attention mod-
ule [12] can capture global information of the sequence, 
followed by a dropout operation. The multi-headed 
attention module MHSA in the conformer is attempt to 
model both global and local contexts. The MHSA in the 
proposed model focuses only on the global context in the 
attention branch, leaving the capture of local information 
to the convolution branch.

Fig. 3 The overall architecture of the DBAM and the detail of multi-head self-attention and convolution block therein. a Dual-branch attention 
module. b Multi-head self-attention. c Convolution block
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Some sound events can be easily confused. For exam-
ple, the cat’s purr is very similar to baby’s cry. It is difficult 
to distinguish them manually or using spectral informa-
tion in the frequency domain. The attention mechanism 
can further distinguish confusable sounds by learning 
the importance of each element in a sequence and then 
assigning a series of attention coefficients. Multi-headed 
self-attention is essentially multiple independent atten-
tion computations and connects the features they extract 
as an integrated effect, as shown in Fig. 3b.

In the MHSA block, the input matrix (X) is mapped 
into queries (Q), keys (K), and values (V) by linear trans-
formation h times, as described in Eq. (1). Then, the dot 
product between each query and key is calculated and 
divided by a constant. Normalization is performed using 
the Softmax function to obtain the weights of the val-
ues. As shown in Eq. (2), the attention of each head is a 
weighted combination of values. Finally, the attentions of 
all heads are concatenated and linear projection is per-
formed to obtain the final output.

where the input X ∈ RL×d is a sequence of length L, fea-
ture dimension d. I ∈ Rd×d is the linear transformation 
matrix (i = 1, 2, … h), and h is the number of attention 
heads. Qi,Ki,Vi ∈ RL×d/h are the queries, keys, and val-
ues of the mapping, respectively. WQ

i WK
i WV

i ∈ Rd×d/h 
denote the ith linear transformation matrices of the Q, 
K, and V, respectively. In addition, f denotes the Softmax 
function, C denotes the concatenation operation, and d is 
the number of columns of the Q, K matrix, i.e., the vec-
tor dimension. H represents the output of single-headed 
attention, and M is the output of multi-headed attention.

2.2.2  Convolutional branch
The convolutional branch structure in the proposed 
model is shown in the left branch of Fig.  3a to model 
local contextual information. This branch is firstly layer-
normalized as the attention branch. Referring to the 
Macaron structure used in the conformer model, we use 
two linear layers before and after the convolution block. 
A linear layer and the Gaussian error linear unit (GeLU) 
[18] activation function are used to act as the feedfor-
ward part. Then comes a convolutional block with gating 
and another linear layer. Finally, the dropout operation is 
used as the last layer of the convolutional branch, which 

(1)Qi = XW
Q
i ,Ki = XWK

i ,Vi = XWV
i

(2)Hi = f (
QiK

T
i√
d

)Vi

(3)M(Q,K ,V ) = C(H1, ...,Hh)W
O

helps to regularize the network. Suppose X represents 
the input to the convolutional branch, the output Y of 
this branch can be calculated by the intermediate Z , Z , 
and Z′ as

where GeLU represents the layer normalization process, 
the GeLU activation, and the convolution block, respec-
tively. In addition, P ∈ Rd×dhidden , Q ∈ R(dhidden/2)×d indi-
cates the linear transformation of the linear layer, and 
dhidden indicates the hidden layer dimension.

As shown in Fig.  3c, the convolution block in DBAM 
consists of a linear gating containing layer normalization, 
a depthwise convolutional layer, and a pointwise convo-
lutional layer. Such a convolution block with linear gating 
is more simply structured if compared to the convolution 
module in conformer, and no nonlinear activation func-
tion is used. Referring to depthwise separable convolu-
tion, we use the combination of depthwise convolution 
and pointwise convolution, which has a lower number of 
parameters and computational cost compared to tradi-
tional convolutional layers. Suppose the number of input 
channels is Cin, the number of output channels is Cout, and 
the size of feature map is M × N  . Then, the computation 
of ordinary convolution is k2 × Cin ×M × N × Cout , 
and the computation of depth-separable convolu-
tion is Cin ×M × N × (k2 + Cout) . It can be seen 
that the depth-separable convolution can reduce the 
computation.

The split operation is a mean splitting of the input 
sequence along the feature dimension. The Z1 sequence 
resulting from the split is layer normalized and convolved 
with the layer, and then multiplied with the elements of 
the Z2 sequence.

where MDWConv denotes the process of deep convolution, 
MPWConv denotes the process of pointwise convolution, 
and ⊗ denotes the multiplication of elements.

(4)Ẑ = Mlayernorm(X)

(5)Z = GeLU(ẐP)

(6)Z′ = Mconv(Z)

(7)Y = Z′Q

(8)Z1 = MDWConv(MLayernorm(Z1))

(9)Z̃1 = MPWConv(Z1)

(10)Z′ = Z̃1 ⊗ Z2
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2.2.3  Fusion unit
We use weighted averaging in the fusion unit to combine 
the attention branch and the convolution branch. The 
weighted averaging method is more efficient and easier to 
train for the combination of the two branches than the 
normally used direct tandem connection. The weights of 
the two branches can indicate how the global and local 
contextual information is used in training. The output 
sequences of the attention and convolution branches 
are respectively multiplied by the dynamically generated 
weights of the model, then added together. The output Y 
of the fusion module is a weighted average expressed by 
the Eq. (11).

where Yatt,Yconv ∈ Rl×d are the output sequences of 
attentional and convolutional branches, respectively. 
Y captures the global and local dependencies. And 
ωatt,ωconv ∈ R1×d represent the branch weights obtained 
by normalization using Softmax.

2.2.4  Computational complexity analysis
We analyze the computational complexity of each com-
ponent in DBAM in this section. Assume that the input 
sequence length is L and the feature dimension is d. 
The parallel computation of the two branches reduces 
the complexity of the proposed DBAM. The number of 
model parameters is compared in Sect. 4.2.

In the attention branch, the complexity of the linear 
mapping of Q, K and V is O  (Ld2). In the scaled dot-
product part, the computation of QKT in Eq. (2) obtains 
an L × L matrix, which determines the complexity of the 
self-attentive module is O(L2d). Since the attention of 
multiple heads is computed in parallel, the complexity 
can be equivalent to that of self-attention.

In the convolution branch, the split operation reduces 
the dimension of the sequence Z1, Z2 by half to dhidden/2 . 
dhidden is the dimension of the hidden layer, which is usu-
ally larger than d (e.g., in our experiments d = 512 and 
dhidden = 2048). This approach reduces the computational 
cost of the convolutional branch. The complexity of the 
first linear layer is O(L× d × dhidden) , and the second 
linear layer is O(L× d × dhidden/2) . In addition, the com-
plexity of the convolution block is O(L× k2 × d2hidden/2) , 
where k is the size of the convolution kernel.

2.2.5  The connection of DBAM stacked in DOA subnetwork
In conventional neural networks, most networks send 
only the features output from the last layer to the pooling 
layer. This approach ended up utilizing only high-level 
features but lacked a description of the low-level texture 

(11)Y = ωattYatt + ωconvYconv

(12)ωatt ,ωconv = softmax(WattYatt ,WconvYconv)

features of the audio signal. It has been shown in a num-
ber of studies that high-level semantic features are cru-
cial for classification, but for localization, texture features 
extracted by low-level networks are essential (Fig. 4).

2.3  Soft parameter sharing
Multi-task learning (MTL) is a joint machine learn-
ing method that learns by multiple tasks in parallel so 
that the results affect each other. MTL can alleviate the 
overfitting of the model to some extent and enhance the 
generalization ability of the model, which leads to bet-
ter results. SELD has two parallel sub-tasks SED and 
DOA, while the performance of both is influenced by 
each other, so it can be considered as an MTL problem. 
Hard parameter sharing and soft parameter sharing are 
two methods to implement MTL. Hard parameter shar-
ing can be applied to all hidden layers of all tasks, while 
retaining the output layers associated with the task. Due 
to its sharing for most parameters, it reduces the risk 
of model overfitting. Soft parameter sharing, in which 
each subtask consists of its own model and parameters 
and there are links between different feature layers, is the 
method favored by modern research priorities.

SELDnet [10] is a hard parameter sharing model as 
a baseline method for SELD. The features of SED and 
DOA are trained together using the CRNN network as 
an advanced feature representation module. Then, two 
fully connected parallel branches are used to predict the 
sound event type and spatial location respectively. Differ-
ent from previous challenges DCASE 2020 uses a joint 
metric of SED and DOA [20], i.e., location-dependent 
detection and class-dependent localization. Soft parame-
ter sharing can take advantage of the association between 
SED and DOA to learn better models. Better SELD 
performance will be achieved if the advantages of soft 
parameter sharing and Transformer structure are fully 
utilized.

Fig. 4 The connection method of DBAM stacked in DOA subnetwork
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There are some effective multi-task learning mecha-
nisms in DNNs, such as fully adaptive feature sharing 
[21], cross-stitch networks [22], a joint many-task model 
[23], weighting losses with uncertainty [24], and sluice 
networks [25].

In [22], two independent networks are connected with 
a soft parameter sharing like the cross-stitch network. 
The cross-stitch module uses linear combinations of 
shared features for the purpose of coming to learn the 
best linear combinations for multiple tasks. We train two 
separate sub-networks for SED and DOA respectively 
and connect them by cross-stitch module. This way the 
tasks can supervise each other and decide how much to 
share. The cross-stitch module exchanges shared features 
of useful information to learn the optimal linear com-
bination of multiple tasks. The performance loss of two 
subtasks can be avoided. In this paper, soft parameter 
sharing is used after pooling for convolutional layers and 
after linear normalization for DBAM (Fig. 5).

The equation for the cross-stitch module of SED and 
DOA is described as

where α is a 2 × 2 matrix and αij denotes the learnable 
parameters.

The parameters of cross-stitch are set between [0,1] in 
order to ensure the stability of learning and that the val-
ues of the inputs and outputs are on the same order of 
magnitude.

2.4  Track output format
The output format of SELDnet is to predict the probabil-
ity of all sound events and the corresponding locations 
at frame t. Only one position per event can be predicted 
and the same event with multiple positions cannot be 
detected.

The track output format [26] is at t frames and detects 
only one event and the corresponding position per 

(13)
[
x̂SED

x̂DOA

]
= α

[
xSED

xDOA

]
=

[
α00 α01
α10 α11

][
xSED

xDOA

]

track and reduces the model capacity. In the absence 
of overlapping sound events, only one track is used. 
However, the track output format becomes very useful 
in case of overlap. Multiple tracks can output the same 
overlapping event in separate locations without being 
affected by the sound event type. Therefore, it can solve 
the problem of isomorphic overlap.

Affected by the above factors, we use track prediction 
to solve overlapping event scenarios. In this paper, the 
number of tracks is set to 2 because we use the data-
set containing at most two cases of overlapping sound 
events. In addition, the track output format estimates 
only M positions, not the positions of all K events 
(whether they are active or not). M ≪ K, reducing the 
need for network parameters and required data size.

The track output format gives rise to track align-
ment problem, which can be solved by using permu-
tation-invariant training (PIT) [27]. In the SELD task, 
the frame-level PIT is used to assign the possible event 
trajectories in each frame during training. The lowest 
PIT loss is then selected for backpropagation. Optimal 
matching of sound event type labels to tracks improves 
SED and DOA frame-by-frame prediction performance.

2.5  Loss function
We need to detect and classify multiple sound event 
classes in audio, and therefore the SED task is consid-
ered as a multi-label classification problem. A cross-
entropy (CE) loss is used as the loss function for SED. 
The calculation equation is as follows.

where ynt and ŷnt are the probability reference and pre-
diction of the nth sound event being active in the tth 
frame, respectively.

(14)lossSED = − 1

N

N∑

n=1

T∑

t=1

ynt · log(p(ŷnt))

Fig. 5 The detailed structure of a cross-stitch module applied between the two sub-networks
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DOA estimation is usually considered as a multiple 
output regression task with mean square error (MSE) 
loss. The equation is described as

where dnt and d̂nt are the DOA reference and prediction 
of the nth sound event at frame t, respectively.

The joint SELD network in this paper uses a joint loss 
function, which is a combination of SED loss and DOA 
loss. The joint optimization is performed during training 
using weights to obtain more accurate classification and 
localization performance. The joint loss function can be 
described by Eq. (16).

where ω is an adjustable parameter and was set to 0.5 in 
this experiment.

3  Experimental setup
3.1  Datasets
The proposed method is experimented on the TAU-
NIGENS Spatial Sound Event 2020 [28]. The dataset 
contains two different spatial sound formats, first-order 
Ambisonics (FOA) and tetrahedral microphone array 
(MIC), both of which are four channels. We performed 
separate feature extraction for the FOA and MIC data-
sets. For the MIC dataset, log Mel features and gener-
alized cross-correlation (GCC-PATH) features were 
extracted. For the FOA dataset, log Mel features and 
3-channel acoustic intensity vector (IV) features were 
extracted.

The sound signal in the microphone array arrives at dif-
ferent microphones at different times, and a time delay is 
generated. The target signals received by each microphone 
of the microphone array come from the same sound source, 
and there is a strong correlation between the signals of each 
channel. By calculating the generalized mutual correlation 
function between two channels, the time delay estimation 
difference between two microphones is obtained, and thus 
the arrival direction of the sound signal is estimated. There-
fore, the generalized cross-correlation feature is applicable 
to the audio in microphone array format. The first-order 
Ambisonic (FOA) format is a multi-channel surround 
sound that accurately records information about the loca-
tion of sound in space. FOA format audio has four channels 
representing four different directions: center, left and right, 
front and back, and top and bottom in a three-dimensional 
360-degree range. The same Ambisonic channels have the 
same spatial characteristics, independent of the recording 
settings. For FOA format audio cannot be located using 

(15)lossDOA =
N∑

n=1

T∑

t=1

∥∥∥d̂nt − dnt

∥∥∥
2

(16)lossSELD = ωlossSED + (1− ω)lossDOA

the time delay estimation method. The GCC feature is not 
applicable in the audio in FOA format. We choose sound 
intensity vectors which contain spatial phase information 
of the sound in FOA format.

Each dataset contains 600 60-s multichannel audio 
divided into six folds and sampled at 24 kHz. The spatial-
ized sound event categories are 14 in total, e.g., alarm, cry-
ing baby, running engine, female scream, footsteps, and 
ringing phone. The azimuthal angle φ ∈ [− 180, 180) and 
the elevation angle θ ∈ [− 45, 45], both in degrees. There 
may be at most two overlapping sound events in time and 
space. In addition, the audio contains both static and mov-
ing sound events. Moving sound events have three possi-
ble angular velocities: slow (10 degrees/sec), medium (20 
degrees/sec), or fast (40 degrees/sec). The signal-to-noise 
ratio (SNR) of ambient noise varies from noiseless (30 dB) 
to noisy (6 dB).

3.2  Training setup
First, FFT was performed using a 1024-point Hann window 
with a 600-point frame shift. For both the training and test 
sets, the audio is split into segments of 4 s in length, with-
out overlapping parts. The Adam optimizer was used. The 
initial learning rate is set to 0.0005, and the learning rate 
is adjusted at 80 epoch intervals by a gamma factor of 0.1. 
The batch size is set to 32 for training and 64 for predic-
tion. The threshold of SED was set to 0.5 for binarization of 

Table 1 The SELD performance of the proposed method and 
comparison models for FOA dataset

The “↓” after the evaluation metric in the table indicates that the lower the 
metric is better, and “↑” indicates that the higher the metric is better

Models ER20°↓ F20°↑ LECD↓ LRCD↑ SELD↓

DCASE2020task3 0.580 51.3% 18.3° 69.9% 0.367

SELDnet 0.720 37.4% 22.8° 60.7% 0.466

Two-stage network 0.399 67.5% 14.8° 73.8% 0.267

Cao_Surrey 0.363 71.2% 13.3° 81.1% 0.229

Nguyen_NTU 0.360 71.9% 12.1° 82.7% 0.220

Proposed method 0.347 74.0% 9.30° 80.2% 0.214

Table 2 The SELD performance of the proposed method and 
comparison models for MIC dataset

Models ER20°↓ F20°↑ LECD↓ LRCD↑ SELD↓

DCASE2020task3 0.690 41.3% 23.1° 62.4% 0.445

SELDnet 0.780 31.4% 27.3° 59.0% 0.503

Two-stage network 0.518 59.5% 14.2° 69.6% 0.371

Cao_Surrey 0.471 61.5% 16.7° 75.4% 0.298

Nguyen_NTU 0.360 71.4% 12.1° 82.0% 0.223
Proposed method 0.364 71.9% 11.5° 80.3% 0.226
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the predictions. There were at most two overlapping events 
in the audio, so the number of tracks M was set to 2. The 
experiments in Sect. 2.5 are trained on the dev dataset and 
tested on the eval dataset.

3.3  Evaluation metrics
The evaluation metrics we used were those of the DCASE 
2020 SELD Challenge [20]. This differs from the previous 
evaluation metrics by adding a correlation between the two 
tasks. Four evaluation metrics are used: the SED-related 
error rate  (ER20°), the F1 score of the SED (F20°), the SED-
dependent location error  (LECD), and the frame recall of 
the location  (LRCD). The effective SELD network should 
have lower  ER20° and  LECD, higher F20° score and  LRCD.

F1 score and error rate are classical SED metrics, but 
they were added with a condition related to location. If the 
sound event is considered correctly detected, it means that 
its category is correctly predicted and the deviation of the 
predicted DOA from the reference value is less than T°. In 
the evaluation, this threshold was set to T = 20°. Thus, these 
two evaluation metrics are denoted as F20° and  ER20°.

(17)F20◦ =
2PR

P + R
= 2TP

2TP + FP + FN

where

The true positive (TP) is when both reference and pre-
diction events are active. The false positive (FP or insert 
I) is when the reference is inactive and the prediction is 
active. The false negative (FN or delete D) is when the ref-
erence is active but the prediction is inactive. A TP and a 
TN occurring at the same time are counted as a substitu-
tion error (S), and N is the total number of sound events 
in the ground truth.

(18)ER20◦ =
D + I + S

N

(19)S = min(FN , FP)

(20)D = max(0, FN − FP)

(21)I = max(0, FP − FN )

Table 3 Test with overlapping sound events

ER20°↓ F20°↑ LECD↓ LRCD↑ SELD↓

overlap = 1 0.273 79.4% 7.097° 81.7% 0.175

overlap = 2 0.515 62.5% 12.362° 70.6% 0.313

overlap = 1&2 0.347 74.0% 9.304° 80.2% 0.214

Fig. 6 The reference and prediction of azimuth in audio Mix146 for eval dataset
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The other two metrics focus on the localization com-
ponent and are dependent on the classification, which 
means they are calculated only in each class and not in 
all outputs. The localization error  (LECD) represents 
the average angular distance between prediction and 
reference for the same class. The locality recall metric 
 (LRCD) indicates represents the number of true positives 
detected for location estimates in a class as a percentage 
of the total class instances. No threshold is used for above 
two localization metrics.

where uref and upre denote the position vectors of the ref-
erence and predicted sound event, respectively. The sub-
scripts are the classification correlations.

In addition,  SELDscore were calculated to aggregate all 
four metrics, which were calculated as

SELDscore is the overall performance metric of the 
SELD task. The model with the smallest  SELDscore in the 
evaluation is selected as the best model.

(22)LECD = arccos(uref · upre)

(23)SELDscore =
ER20

◦ + (1 − F20◦ ) + LECD∕π + (1 − LRCD)

4

4  Experimental results and analysis
4.1  Comparison with other methods
To effectively validate the joint SLED network we used, 
we compared the proposed network model with the 
approaches of SELDnet, two-stage networks, the offi-
cial baseline model in DCASE2020task3, Cao_Surrey, 
and Nguyen_NTU based on datasets in both FOA and 
MIC formats. For the proposed method, we used one 
DBAM module and two DBAM modules, respectively. In 
addition, the number of headers in the multi-head self-
attention module is set to 8. All models were trained and 
tested under the same conditions.

In Table  1, “DCASE2020task3” represents the official 
baseline model under challenge. Cao_Surrey [29] and 
Nguyen_NTU [30] are the two methods that rank higher 
in the challenge. As can be seen in Table 1, the proposed 
method on the FOA format dataset has better results 
than the official baseline model of DCASE2020task3, the 
SELDnet model, the two-stage network, and Cao_Surrey 
in all metrics. The method of Nguyen_NTU divides the 
orientation estimation into azimuth and elevation angles 
before using a sequence matching network. The Nguyen_
NTU method has a higher localization recall and more 
false positives. However, for the sound event localiza-
tion task, we mainly focus on improving the localization 

Fig. 7 The reference and prediction of elevation angle in audio Mix146 for eval dataset
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Fig. 8 The reference and prediction of azimuth in audio Mix80 for eval dataset

Fig. 9 The reference and prediction of elevation angle in audio Mix80 for eval dataset
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accuracy rate and reducing false positives. Therefore, 
although our proposed method is slightly lower than 
Nguyen_NTU in terms of  LRCD metrics, the overall per-
formance is the best.

Table 2 shows the results of the experiments performed 
on the MIC format dataset using the above method. As 
can be seen in Table  2, the model decreases in all met-
rics on the MIC dataset compared to the FOA format 
dataset, but the proposed method is still optimal. Simi-
larly, the proposed method is worse on  LRCD metrics 
compared to Nguyen_NTU. In addition, the SELD score 
of our proposed method is 0.226, which is close to that 
of the Nguyen_NTU method. Furthermore, the F-score 
stays above 70%, the localization recall stays above 80%, 
and the localization error stays around 10 degrees on the 
FOA and MIC datasets, proving the effectiveness of our 
proposed method.

We respectively tested sound events with no overlap 
(i.e., the number of overlapping sounds is 1), sound events 
with two overlaps, and sound events with both the num-
ber of overlapping sounds 1 and 2 included. The data in 
Table 3 enable to prove that the proposed method is effec-
tive for the detection of two overlapping sound events.

We randomly select two audio segments, mix146 and 
mix80, from the FOA eval dataset as examples. The 
sound event categories and azimuth angles in the audio 
are drawn so that the SELD performance of the proposed 
method can be visually verified. Figures 6 and 7 show the 
reference and predicted of azimuth and elevation angles 
in audio mix 146, respectively. The horizontal coordinate 
in the figures is the frame, which corresponds to a tem-
poral resolution of 100 ms. The vertical coordinate is the 
azimuth or elevation angle in degrees.

There are overlapping sound events in mix146. Except 
for the existence of a few points with large errors, the 
categories of sound events are accurately predicted. The 
azimuth and elevation angles are generally consistent 
with the reference. This example also demonstrates that 
the proposed method can distinguish between two sound 
events that overlap in time.

Mix80 contains multiple segments of moving audio. As 
can be seen in the Fig. 8 and Fig. 9, the proposed method 
predicts the moving spatial trajectories of the events in 
general agreement with the reference. The error is the 
prediction of one more sound type of footsteps, which 
is not present in the ground truth. This is also allowed 
within the error range.

4.2  Ablation experiments
The results in the previous subsection show that the pro-
posed joint SELD method enhances the performance 
of sound event detection and localization compared to 
other methods. Two parts of ablation experiments were 

performed to further verify the effectiveness of the sub-
module of the proposed method. First, we validated the 
necessity of DBAM. Second, we verified the superiority 
of soft parameter sharing relative to not using parameter 
sharing networks. The experiments in Sect. 3.1 were eval-
uated on FOA eval dataset.

4.2.1  The necessity of DBAM
In this paper, we improved the conformer module to 
obtain the DBAM, which combines both local and global 
information. To verify the effectiveness of the DBAM, 
we designed experiments for comparison to determine 
whether the presence of the DBAM in the network is 
necessary. The model without DBAM, using the multi-
headed attention module of the encoding part of the 
transformer, is shown in Fig. 10. The first part of the con-
nection structure performs a normalized layer of residual 
connections after the multi-headed self-attention. The 
other part is a feed-forward FC layer followed by a nor-
malized layer and a residual connection.

In addition, two layers of multi-headed attention modules 
are used to connect. In addition, experiments were con-
ducted using the number of DBAM modules as 1, 2, and 4, 
respectively. The experimental results are shown in Table 4.

Fig. 10 Structure of the coding part without DBAM
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The experimental results are shown in Fig.  11, where 
the angular value of the positioning error LE is divided by 
10 so that it is expressed using the same vertical axis as 
the other indicators.

It can be seen from Fig. 11 and Table 4 that the proposed 
DBAM is better than the method without DBAM in all 
metrics. This is a good indication of the effectiveness of the 
improved DBAM in terms of detection and localization. 
It can be seen from both  LECD and  LRCD metrics that the 
DBAM makes the proposed model improve in terms of 
localization. However, the DBAM with more than 2 layers 
makes the SED metrics a little worse. Therefore, we finally 
use the DBAM with the best result of 2 layers.

In addition, we compared the number of parameters 
of the models in Table 5. To facilitate the comparison, all 
models are set to two layers.

As can be seen in Table 5, the network parameters of 
our proposed DBAM are much reduced than those of the 
conformer model. Therefore, it is possible to achieve a 
reduction in model size.

4.2.2  The effectiveness of soft parameter sharing
The method proposed in this paper uses soft parameter 
sharing to connect two subtask networks, SED and DOA, 
and optimizes parameter sharing through cross-stitch 
modules to achieve better results. To verify whether soft 
parameter sharing is advantageous, this paper uses the 
network without parameter sharing to learn SED and 
DOA respectively and compares the results of the two 
models. In Fig. 12, no PS indicates that no soft parameter 
sharing is performed in the two sub-networks.

5  Conclusion
In this paper, we propose a dual-branch attention mod-
ule-based network for the SELD task. The module uses 
two parallel attention branches and convolution to fully 
integrate global and local information about the envi-
ronment. In addition, we blend the low-level and high-
level features of the localization sub-network to improve 
the localization performance. The DBAM is used as the 
attention mechanism for track separation in the joint 
SELD network. The parameters of SED and DOA are 
shared between the two sub-networks by the cross-
stitch module. The effectiveness of the proposed method 
was proved by experiments on the DCASE 2020 task 3 

Table 4 The SELD performance of the proposed method and 
without DBAM method

Models ER20°↓ F20°↑ LECD↓ LRCD↑ SELD↓

Without DBAM 0.416 68.7% 12.492° 74.7% 0.263

DBAM 1 0.367 71.0% 11.248° 79.6% 0.230

DBAM 2 0.347 74.0% 10.818° 80.2% 0.216

DBAM 4 0.376 71.5% 9.304° 80.6% 0.227

Table 5 The numbers of model parameters

Model Conformer DBAM Without DBAM

Parameters 55,986,402 34,687,714 26,217,186

Fig. 11 The SELD performance of the proposed method and without DBAM method
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dataset. The results show that the proposed method has 
better detection and localization performance compared 
to the baseline model. Furthermore, the ablation experi-
ments validate the need for DBAM and soft parameter 
sharing.

Compared to CNN or Transformer-based approaches, 
the proposed DBAM can efficiently model global and 
local contextual information, which is important for 
audio sequence processing tasks. The two-branch struc-
ture of DBAM makes the structure of the method sim-
pler and also reduces the model parameters compared to 
the conformer. We hope that in future work we can try 
to replace the original attention module with the variant 
of self-attention. In addition, we will try other multi-task 
learning methods to obtain more accurate sound event 
detection and localization performance.
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