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Abstract 

In multichannel signal processing with distributed sensors, choosing the optimal subset of observed sensor signals 
to be exploited is crucial in order to maximize algorithmic performance and reduce computational load, ideally 
both at the same time. In the acoustic domain, signal cross-correlation is a natural choice to quantify the useful-
ness of microphone signals, i.e., microphone utility, for coherent array processing, but its estimation requires 
that the uncoded signals are synchronized and transmitted between nodes. In resource-constrained environments 
like acoustic sensor networks, low data transmission rates often make transmission of all observed signals to the cen-
tralized location infeasible, thus discouraging direct estimation of signal cross-correlation. Instead, we employ char-
acteristic features of the recorded signals to estimate the usefulness of individual microphone signals using the Mag-
nitude-Squared Coherence (MSC) between the source and respective microphone signal as ground-truth metric. In 
this contribution, we provide a comprehensive analysis of model-based microphone utility estimation approaches 
that use signal features and, as an alternative, also propose machine learning-based estimation methods that identify 
optimal sensor signal utility features. The performance of both approaches is validated experimentally using both sim-
ulated and recorded acoustic data, comprising a variety of realistic and practically relevant acoustic scenarios includ-
ing moving and static sources.

Keywords Channel selection, Graph partitioning, Microphone utility, Acoustic sensor network

1 Introduction
An acoustic sensor network (ASN) comprises multiple 
spatially distributed microphones, including multiple dis-
tributed compact microphone arrays, that typically com-
municate wirelessly. Capturing different perspectives of 
the acoustic scene, the signals recorded by these distrib-
uted microphones encode spatial information exploit-
able by multichannel signal processing algorithms. These 

algorithms accomplish crucial tasks [1] like acoustic 
source localization [2–4] and tracking [5, 6], extraction 
and enhancement of an acoustic Source of Interest (SOI) 
[7–9], hands-free communication [10], acoustic monitor-
ing [11, 12], and scene classification and acoustic event 
detection [13]. As the microphones in ASNs often have 
no common sampling clock, their signals must be syn-
chronized before joint processing.

The performance of these signal processing algorithms 
is affected by many factors including the proximity of the 
microphones to desired and undesired acoustic sources, 
reverberation, additive noise, orientation and occlusion 
of microphones, among others. As a result, the signals 
obtained from different microphones are generally not 
equally useful for the abovementioned tasks, poten-
tially even detrimental in extreme cases if inappropriate 
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importance is assigned to them. To ensure optimal algo-
rithmic performance at minimum transmission cost and 
computational cost, a diligent selection which of the 
observed microphone signals to process and which to 
discard is crucial in order to avoid unnecessary signal 
transmission or synchronization efforts. Unsurprisingly, 
this task has received considerable attention in the litera-
ture: the selection of a single best channel for Automatic 
Speech Recognition (ASR) based on signal features has 
been explored in [14]. A utility measure specifically for 
Minimum Mean Square Error (MMSE) signal extraction 
has been proposed in [15, 16], followed by a distributed 
version in [17]. MMSE signal extraction under rate con-
straints tailored specifically for application in for hearing 
aids was treated in [18–20]. Furthermore, joint micro-
phone subset selection and speech enhancement using 
deep learning were proposed in [21]. Microphone subset 
selection to minimize communication cost with upper-
bounded output noise power has been investigated 
for both Minimum Variance Distortionless Response 
(MVDR) [22] and Linearly Constrained Minimum Vari-
ance (LCMV) [23] beamforming. However, these meth-
ods either neglect the limitations of the underlying ASN 
regarding communication cost or are tailored to a specific 
application or cost function. In the following, we present 
a different approach that overcomes both drawbacks, i.e., 
requires little transmission data rate and is applicable to a 
broad class of signal processing applications that rely on 
coherent input signals.

Many multichannel algorithms, e.g., for signal 
enhancement or localization using compact arrays [7, 
24], assume coherent, i.e., linearly related, input signals 
and exploit the spatial information captured by the inter-
channel phase differences. While this obviously applies 
to the signal components evoked by an SOI, it also holds 
for noise reference signals because they must admit a 
prediction, often linear, of residual noise components in 
order to suppress them. Thus, the cross-correlation of 
microphone signal pairs and measures derived from it, in 
particular the spatial coherence and the MSC, are intui-
tive measures for quantifying the usefulness of observed 
microphone signals and have been used in literature 
for that purpose, e.g., in [25]. For synchronized micro-
phones with sufficient transmission data rate, e.g., for 
wired compact microphone arrays, direct estimation of 
the inter-channel coherence from the observed uncoded 
microphone signals to rate their utility is straightforward. 
However, in ASNs, this approach is often precluded by 
a limited transmission data rate, e.g., of current wireless 
networks [26], especially when the number of micro-
phones is large. This issue is further compounded if the 
available data rate must be shared with other, possibly 
non-audio, applications, like video streaming in smart 

home environments. Furthermore, the microphone sig-
nals in ASNs generally do not share a common sampling 
clock [27]. While sampling time offsets are readily han-
dled by suitable signal processing techniques [28], clock 
skew will often still pose a problem. Even when the accu-
mulated sampling time offset within one processing block 
only amounts to fractions of a sampling period, imper-
fect cancelation can have a catastrophic effect on differ-
ential signal processing applications [29]. Furthermore, 
although the sampling rate variation across multiple 
copies of a single devices can be very low [30], this may 
not necessarily be true for ASNs comprised of heteroge-
neous, cheap consumer devices. Therefore, clock skew 
in ASNs should not be generally neglected. Thus, poten-
tially costly synchronization of the signal waveforms is 
generally required prior to estimation of the coherence, 
which disqualifies direct estimation of the signal cross-
correlation. To identify promising candidate microphone 
signals for synchronization and subsequent joint process-
ing in ASNs without prior signal synchronization, other 
techniques are required.

To address these unique challenges of ASNs, we 
employ a compressed signal representation in the form 
of single-channel signal feature sequences, which are 
extracted from temporal blocks of the microphone sig-
nals, to reduce the amount of data to be transmitted by 
roughly two to three orders of magnitude. To accurately 
assess the communication cost, many additional factors 
should be considered including, but not limited to, the 
radio-frequency environment and radio Signal-to-Noise 
Ratio (SNR) at the wireless transceivers, modulation and 
coding schemes, medium access control and arbitration 
(potentially via distributed algorithms), protocols and the 
associated overhead, and the temporal duration of trans-
mission frames, which is unfortunately beyond the scope 
of this contribution. While acknowledging the implied 
simplification, we use the data amount as a proxy due to 
its conceptual simplicity and monotonous relation with 
actual communication cost, i.e., reducing data amount 
never increases cost when the environment is constant. 
The employed features must be characteristic for the 
microphone signals, i.e., to allow for (at least approxi-
mate) reconstruction of the inter-channel MSC.

In this contribution, we consider acoustic scenarios 
often encountered in smart home applications compris-
ing a single SOI captured by multiple distributed micro-
phones in an acoustic enclosure, as depicted in Fig.  1. 
After estimating the usefulness of the recorded micro-
phone signals, a subset thereof is selected and transmitted 
to the central wireless Access Point (AP) for subsequent 
coherent multichannel signal processing. Although Fig. 1 
shows an exemplary scenario with a wireless network 
with a central AP, this is not constraining the scope of the 
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paper. For the considerations in this paper, the AP may 
be replaced by a network node acting as a local center 
implementing the multichannel signal processing algo-
rithm. While the case of wired networks is also covered, 
their typically large transmission capacity may allow raw 
signal transmission and thereby limit the importance of 
the developed feature-based utility estimation. Instead 
of a specific signal processing algorithm, we consider a 
broad class of algorithms that rely on coherent input sig-
nals and do not require signals unrelated to the SOI, e.g., 
as noise references. In addition, we do not consider appli-
cation-specific cost functions or performance metrics, 
e.g., Signal-to-Distortion Ratio (SDR) and Echo Return 
Loss Enhancement (ERLE), such that the proposed util-
ity estimation scheme is appropriate for many subse-
quent multichannel signal processing applications. We 
instead generate utility estimates to match the ground-
truth coherence between the SOI signal and the observed 
microphone signals. To this end, the proposed generic 
system comprises two subsystems depicted as in Fig. 2: a 

feature extraction system, a copy of which runs for each 
microphone signal on the associated network node, and 
a utility estimation system running on the AP. In the fea-
ture extraction stage, characteristic signal features are 
extracted from the observed microphone signals inde-
pendently from each other. No cross-channel features 
are employed in order to not exclude single-microphone 
network nodes. The feature sequences obtained from 
each microphone are then transmitted to the central AP, 
which estimates the individual microphones’ utility val-
ues by correlating the feature sequences. A set of Kalman 
Filters (KFs) with time-varying temporal smoothing 
provides a robust estimation framework for the feature 
covariance. Utility estimates are obtained by extract-
ing structural information from the resulting covariance 
matrices via the corresponding Fiedler vector [31] that 
reflects a notion of average connectivity. A joint approach 
simultaneously considering single-channel features and 
network transmission cost was proposed in [32]. The 
efficacy of the proposed utility estimates for two specific 
important signal processing tasks, robust source localiza-
tion and spatial filtering, was demonstrated in [33] and 
[34], respectively. Therein, sensor selection by optimizing 
the proposed utility measure has shown close-to-optimal 
performance, such that we focus only on the generic util-
ity measure in this contribution.

In the remainder of this article, we review and provide 
more detailed descriptions of the model-based realiza-
tions of the two subsystems proposed in [32, 35] in Sec-
tions 3.1 and 3.2 by explicitly stating and discussing the 
model assumptions of the KF. Formulating microphone 
selection as a graph bi-partitioning problem, the Fiedler 
vector yields an optimum soft assignment of each indi-
vidual microphone to one of the two groups of most 
and least useful microphones, which further justifies its 
use as a utility measure. In Section 3.3, we provide new 
results on the suitability of established signal features 

Fig. 1 Scenario for an ASN with a single SOI captured by spatially 
distributed microphones

Fig. 2 System overview: In the feature extraction stage, characteristic signal feature sequences are computed for each microphone signal 
independently. Afterwards, the features sequences from all microphones are collected at the AP and used to estimate each microphone’s utility
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for recovering inter-channel MSC. To this end, the fea-
ture selection task is formulated as a Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
problem which is then solved numerically to obtain an 
optimal set of signal features. In Section  4, we propose 
novel Machine Learning (ML)-based realizations for 
both subsystems whose combination can be learned in 
an end-to-end fashion, which constitutes a major contri-
bution of this work. In Section 5, the efficacy of the pro-
posed scheme and its individual components is validated. 
Different algorithmic variants, i.e., purely model-based, 
purely ML-based, and hybrid realizations of the pro-
posed system, are investigated. To this end, comprehen-
sive experiments for both synthesized and recorded data 
from realistic scenarios are conducted, including differ-
ent reverberation times, additive noise and obstruction 
of sensors, different microphone arrangements, as well as 
static and moving SOIs.

2  Notation and signal model
In this article, scalar quantities are denoted by slanted 
non-bold symbols x, while vectors and matrices are 
denoted by bold-face lowercase x and uppercase sym-
bols X , respectively. Furthermore, [x]m denotes the m-th 
element of vector x , and [X]mm′ denotes the (m,m′)-th 
element of matrix X . The M-dimensional all-zeros and 
all-ones vectors are denoted by 0M and 1M , respectively, 
the M ×M identity matrix is denoted by IM , and the 
operator Diag(·) embeds the elements of its argument on 
the main diagonal of a square matrix. The Pearson cor-
relation coefficient (PCC) of two M-element vectors x , y 
is defined as

with means x = 1
M

∑M
m=1[x]m and y = 1

M

∑M
m=1[y]m . It 

will be used as a normalized similarity measure for fea-
tures in Section 3.2 and as performance measure for the 
experiments in Section 5.

In the following, let t denote the discrete-time sam-
ple index and let f ∈ {1, . . . , F} denote the feature index 
where F is the number of extracted features per chan-
nel. Recalling Fig.  1, we consider an acoustic scenario 
comprising a single coherent SOI recorded by J micro-
phones, each of which represents a separate node in the 
ASN. The signal captured by the microphone indexed by 
j ∈ P = {1, . . . , J } is

where s[t] is the dry SOI signal, hj[t] is the acoustic 
impulse response from the SOI to the j-th microphone, 

(1)

R(x, y) =

∑M
m=1([x]m − x)([y]m − y)√∑M

m=1([x]m − x)2
√∑M

m=1([y]m − y)2

(2)xj[t] = s[t] ∗ hj[t] + nj[t],

and ∗ denotes linear convolution. Note that the SOI is 
not necessarily static, i.e., the acoustic impulse responses 
hj[t] in (2) are considered time-invariant only for short 
observation intervals, but may change from one inter-
val to the next as the SOI moves. The fully coherent 
spatial images of the SOI s[t] ∗ hj[t] are superimposed 
by a spatially diffuse or incoherent noise field, such that 
the mutual coherence between the noise components 
nj[t], ∀j ∈ P is negligibly small. Thus, observed correla-
tion between two microphone signals xj[t] , xj′ [t] is pre-
dominantly caused by the common SOI signal. Although 
competing point-like sources are not explicitly mod-
eled in (2), the proposed method is still applicable given 
sufficient temporal sparsity, i.e., time intervals where 
only one of the sources is active, provided that the iden-
tity of the active source changes slowly enough to be 
tracked by the KF. Furthermore, consider an ASN span-
ning two rooms each with its own SOI connected by, e.g., 
open doors. With the microphones in each room pre-
dominantly capturing their respective SOI, the realiza-
tions of the proposed system in Sections 3 and 4 can still 
facilitate a distinction of microphones w. r. t. the domi-
nant SOI. In this case, the scenario essentially decouples 
into two separate problems, but it is generally not known 
in advance which of the two possible solutions is found. 
To ensure a deterministic selection, additional source 
selection mechanisms exploiting preference informa-
tion are needed, which is beyond the scope of this paper. 
In any case, the signal model (2) should be viewed as a 
first step towards developing methods for more general 
acoustic scenarios.

As the proposed utility estimation relies only on the cor-
relation of feature sequences computed from signal frames, 
only a coarse synchronization of the signal frames between 
different sensors has to be assured, such that the proposed 
scheme is practically relevant. However, we assume that 
the sensor signals are synchronous to compute the oracle 
MSC between each microphone and the source. The same 
holds for the microphone pair-wise complex coherence 
function, and thus MSC, which are the foundation of the 
baselines baseline-CDR and baseline-MSC, respec-
tively, in Section 5.

To this end, the signals are partitioned into blocks 
indexed by k ∈ {1, . . . ,K } with a length of Lb samples and 
a shift of Ls between successive blocks, e.g., for the j-th 
microphone signal xj[t],

With the discrete frequency bin index n ∈ {1, . . . , Lb} , 
let �̂s,xj [k , n] , �̂s,s[k , n] and �̂xj ,xj [k , n] denote short-time 
estimates of the respective cross-Power Spectral Density 
(PSD) and auto-PSDs of s[t] and xj[k] , e.g.,

(3)
xj[k] = xj[kLs], . . . , xj[kLs + Lb − 1]

T
∈ R

Lb .
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where DFTLb denotes the Lb-point Discrete Fourier 
Transform (DFT). As a broadband ground-truth utility 
measure for the j-th microphone, the frequency-averaged 
narrowband MSC

between the (latent) source signal s[t] and the j-th micro-
phone signal xj[t] is used. Note that we drop the super-
script ·̂ from γj[k] in (5) for notational simplicity in the 
following. Under the assumption that the SOI signal s[t] 
and noise signals nj[t] are mutually uncorrelated, and that 
the acoustic impulse responses in (2) are much shorter 
than the DFT length, the approximations

hold. In practice, MSC estimates derived from (6) and 
(7) are subject to detrimental effects stemming from the 
combination of limited temporal observation intervals 
and the characteristics of the acoustic impulse responses 
between SOI and the microphones as captured by, e.g., 
relative time delay and Direct-to-Reverberation Ratio 
(DRR). Nevertheless, since coherent multichannel pro-
cessing algorithms also degrade with the same impair-
ments, the degradation in estimation accuracy of the 
coherence can be assumed to be correlated with the 
performance of signal processing algorithms and, hence, 
utility of the involved sensors.

Then, the summands in (5) simplify to

with the channel-wise SNR

Clearly, the MSC is a function of the SNR, with extremal 
values γj[k , n] = 0 for ŜNRj[k , n] = 0 , and γj[k , n] → 1 
for ŜNRj[k , n] → ∞ . The frequency-averaged source-
microphone MSC values of all J microphones are col-
lected in the vector

(4)
�̂s,xj [k , n] = Ê

([
DFTLb(s[k])

]
n
·
[
DFTLb

(
xj[k]

)]
n

)
,

(5)γj[k] =
1

Lb

Lb∑

n=1

∣∣∣∣∣∣
�̂s,xj [k , n]√

�̂s,s[k , n] · �̂xj ,xj [k , n]

∣∣∣∣∣∣

2

(6)�̂s,xj [k , n] ≈H∗
j [k , n] �̂s,s[k , n],

(7)�̂xj ,xj [k , n] ≈
∣∣Hj[k , n]

∣∣2 �̂s,s[k , n] + �̂nj ,nj [k , n]

(8)

∣∣∣∣∣∣
�̂s,xj [k , n]√

�̂s,s[k , n] · �̂xj ,xj [k , n]

∣∣∣∣∣∣

2

=
ŜNRj[k , n]

1+ ŜNRj[k , n]
,

(9)ŜNRj[k , n] =

∣∣Hj[k , n]
∣∣2 �̂s,s[k , n]

�̂nj ,nj [k , n]
.

3  Model‑based utility estimation using Spectral 
Graph Partitioning

We first review the model-based realizations of [32, 35] 
in Sections  3.1 and 3.2. Although there is no strictly 
analytical relation between the extracted feature val-
ues and the utility values, the approach is based on the 
notion that the PCCs of the different extracted feature 
sequences all reflect the same pair-wise similarity of 
the underlying microphone signals. Due to this model 
assumption, and to differentiate it from the ML-based 
approach in Section  4, which requires training data 
to determine the model parameters, this approach is 
termed model-based. Advancing the previous heuristic 
feature selection [36], we formulate the feature selection 
task as a LASSO regression problem with a sparsity-
promoting regularizer in Section  3.3 to optimize the 
trade-off between accuracy and number of features to be 
transmitted. Solving this optimization problem yields an 
optimal selection of features for a set of representative 
acoustic scenarios.

3.1  Node‑wise feature extraction
There is a wide variety of potential signal features [37, 
38] to describe acoustic signals. Since acoustic scenarios 
are typically not static in practice due to, e.g., moving 
acoustic sources or obstructions, the usefulness of micro-
phones is equally time-variant. Hence, within the com-
prehensive feature taxonomy in [37], we focus on features 
extracted from short observation intervals to character-
ize single-channel signals. The features may be computed 
in the time domain based on the digital signal waveform, 
or in the frequency domain based on the magnitude 
spectrum of the signals. As a result, we consider the fol-
lowing block-wise features:

• Envelope of waveform
• Zero-crossing rate
• Statistical moments (centroid, standard deviation, 

skewness, kurtosis) of the signal waveform
• Entropy of waveform
• Statistical moments (centroid, standard deviation, 

skewness, kurtosis) of the magnitude spectrum
• Spectral shape features (slope, power flatness, ampli-

tude flatness, roll-off)
• Temporal variation of magnitude spectra (spectral 

flux, spectral flux of normalized magnitude spectra, 
spectral variation)

(10)γ [k] =
[
γ1[k], . . . , γJ [k]

]T
∈ [0, 1]J .
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In [36], it was experimentally shown that three features 
(temporal skewness, temporal kurtosis, spectral flux) 
are suitable to recover the structure of the spatial MSC 
matrix of a set of microphone signals. However, the fea-
tures were selected heuristically based on the visual simi-
larity of the corresponding feature covariance matrices 
and the ground-truth MSC matrix. Therefore, a more 
rigorous discussion of the importance of specific signal 
features is provided in Section 3.3.

Generally, a single feature sequence, i.e., a sequence of 
feature values over several time frames, is insufficient to 
characterize the signals, since the extraction of each sig-
nal feature can at best maintain information about the 
original signal [39], but typically incurs a loss of infor-
mation. When multiple sufficiently different features 
are used, they capture different parts of the information 
contained in the signals, such that they complement each 
other in describing the original signals. Thus, jointly pro-
cessing such different features allows for a more accu-
rate characterization of the signals compared to a single 
feature.

To this end, given a signal block xj[k] , let a(f )j [k] denote 
the observed value of the signal feature f ∈ {1, . . . , F} for 
said signal block. Collecting the feature values of differ-
ent channels for time frame k yields the instantaneous 
feature vector

Unlike the signal waveforms, which require precise syn-
chronization of the sampling clocks for joint processing, 
the feature values of different microphones are much less 
susceptible to asynchronous sampling. With only a single 
feature value every Ls signal samples, sampling rate off-
sets on the order of tens of parts per million (PPM) barely 
affect the extracted feature sequences. Hence, periodical 
coarse synchronization of the signal block boundaries is 

(11)a(f )[k] =
[
a
(f )
1 [k], . . . , a

(f )
J [k]

]T
∈ R

J .

sufficient to avoid excessive drift of the observation win-
dows in different network nodes, allowing synchroniza-
tion to occur less frequently and with lower accuracy 
requirements.

3.2  Utility estimation
In this section, we review the utility estimation scheme 
based on correlation of feature sequences originally pro-
posed in [32, 35, 36] and show its relation to established 
Graph Bisection techniques. The model-based utility esti-
mation comprises three steps, which are outlined in the fol-
lowing subsections: 

1 Robustly estimate the cross-channel PCCs of the fea-
ture sequences separately for each feature via a set of 
KF

2 Fuse information contained in the PCCs from differ-
ent features

3 Estimate each microphone’s utility from the fused 
information by means of Spectral Graph Partitioning

For clarity, a visual guide of these steps and the involved 
matrices and vectors is provided in Fig. 3.

Step 1) Feature correlation coefficients: For computing 
the PCCs, first the cross-channel covariance matrices

are estimated for each feature f ∈ {1, . . . , F} separately. 
Therein, Ê denotes an approximate statistical expectation 
operator whose practical realization we discuss below. 
Furthermore, the matrix

(12)B
(f )[k] =




b
(f )
1,1[k] · · · b

(f )
1,J [k]

...
...

b
(f )
J ,1 [k] · · · b

(f )
J ,J [k]


 = Ê

�
A
(f )[k]

�

(13)
A(f )[k] =

(
a(f )[k] − a(f )[k]

)(
a(f )[k] − a(f )[k]

)T

Fig. 3 Overview of model-based utility estimation. For clarity, only two features are illustrated in Step 1
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is the outer product of the instantaneous observed fea-
ture vector a(f )[k] after subtracting its recursive temporal 
average

controlled by the recursive averaging factor � ∈ [0, 1] 
with initial value a(f )[0] = 0J.

Note that the estimated B(f )[k] is generally time-
variant to account for the aforementioned SOI move-
ment, and thus online estimation is preferred over 
batch estimation. In order to track this temporal vari-
ability, we use a separate KF [40] for each feature f. Let 
the latent state vector at time frame k be denoted by 
z(f )[k] . Its mean vector µ(f )[k] captures the covariance 
matrix B(f )[k] to be estimated and the instantaneous 
observation vector ξ (f )[k] captures the matrix A(f )[k] . 
Since both B(f )[k] and A(f )[k] are symmetric, it is suf-
ficient to only consider their non-redundant elements. 
We choose their diagonal elements and lower triangu-
lar elements, such that the dimensionality of the state 
vector z(f )[k] , the mean vector µ(f )[k] , and the observa-
tion vector ξ (f )[k] can be chosen to be only Q = J (J−1)

2  
instead of J2 while still precisely modeling the full 
matrices. This can be expressed compactly using the 
half-vectorization operator vech [41] collecting all rel-
evant matrix elements in vectors, i.e.,

The state-transition and model equations of the KF are

where t(f )[k] and o(f )[k] denote the state-transition and 
observation noise vectors, respectively. In other words, 
the most probable state transition is that the utility, and 
hence the feature covariance, stays the same. However, 
if the state does change, it has no predictable preference 
direction. Similarly simple motion models are effectively 
used in acoustic echo cancellation [42] and dereverbera-
tion [43]. With (17) and (18), the KF simplifies to tem-
poral smoothing, albeit with a time-variant smoothing 
constant. Compared to fixed averaging constants, this 
allows placing higher confidence in observations with 
high signal energy, i.e., likely SOI activity.

Assuming a normally distributed latent state vector 
z(f )[k] like in [35] for simplicity and mathematical tracta-
bility leads to the prior distribution

(14)a(f )[k + 1] = �a(f )[k] + (1− �)a(f )[k + 1],

(15)µ(f )[k] =vech
(
B(f)[k]

)
∈ R

Q,

(16)ξ (f )[k] =vech
(
A(f)[k]

)
∈ R

Q.

(17)z(f )[k + 1] =z(f )[k] + t(f )[k],

(18)ξ (f )[k] =z(f )[k] + o(f )[k],

with the aforementioned mean vector µ(f )[k] and covari-
ance matrix �(f )

s [k] ∈ R
Q×Q . Since the trend of z(k)[k] 

is neither known nor easily modeled, we assume a zero-
mean Gaussian random walk with transition distribution

as it is the least informative model but, due to the Central 
Limit Theorem (CLT) [44], fits well for natural processes 
where changes in the latent state are often the result of 
many independent influences. In order to remain agnos-
tic to the source-microphone arrangement in different 
scenarios, the time-invariant and feature-independent 
process noise covariance matrix is chosen as a scaled 
identity matrix

where α1 ∈ R
+ is a positive tunable parameter. Intui-

tively, two closely spaced microphones produce similar 
feature sequences and thus the way their estimated PCCs 
w. r. t. a third microphone change over time will be cor-
related. While these scenario-specific correlations could 
in principle be exploited for more accurate estimation 
by tailoring �t to the scenario, doing so would harm the 
generalization of the transition model to other scenarios 
and furthermore requires the acquisition of sufficient 
data to estimate an optimal �t . Therefore, to avoid bias-
ing the random walk process, we choose not to model 
these correlations, i.e., keep �t diagonal.

Choosing the least informative emission model for the 
observations ξ (f )[k] for simplicity as well yields the multi-
variate Gaussian emission distribution

with the observation noise covariance matrix

Therein, α2 ∈ R
+ is a positive tunable parameter and the 

matrix E[k] ∈ R
J×J contains the geometric means of sig-

nal frame energies ej[k] = �xj[k]�
2
2 (see (3)) reflecting the 

signal variances for each microphone pair

The small positive constant ǫ ensures invertibility of �o[k] 
in (23) during speech absence periods. This choice is 

(19)p
(
z(f )[k]

)
= N

(
z(f )[k] | µ(f )[k],�

(f )
s [k]

)

(20)
p
(
z(f )[k + 1] | z(f )[k]

)
= . . .

N
(
z(f )[k + 1] | z(f )[k],�t

)

(21)�t = α1IQ ∈ R
Q×Q,

(22)
p
(
ξ (f )[k] | z(f )[k]

)
= N

(
ξ (f )[k] | z(f )[k],�o[k]

)

(23)�o[k] = α2
(
Diag(vech(E[k]))

)−1
∈ R

Q×Q.

(24)[E[k]]jj′ =
√
ej[k] · ej′ [k] + ǫ, ∀j, j′ ∈ P .
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motivated by the notion that the observed feature values are 
better at characterizing the microphone signals during time 
frames with high signal energy ej[k] , i.e., the observation 
noise of the KF is inversely related to the signal energy ej[k].

With all components of the KF in place, the update 
equations for mean vector and state covariance are [45]

with the Kalman gain matrix

and initial values

Note that the updates in (25) to (27) can be computed 
very efficiently since all involved matrices are diagonal.

For each time frame, after updating the KFs for all 
features f ∈ {1, . . . , F} , the elements of the covariance 
matrix B(f )[k] are recovered from the KF mean vector 
µ(f )[k] by reversing the half-vectorization, i.e.,

Finally, the elements of the per-feature PCC matrices 
B̃(f )[k] ∀f  are obtained from the estimated covariances 
by normalization according to

Step 2) Feature combination: As outlined earlier, 
the PCC matrices of different features B̃(f )[k] cap-
ture different aspects of the underlying inter-channel 
coherence. To recover an estimate of the inter-channel 
coherence from the multiple feature correlation coeffi-
cient matrices, we consider channel-wise matrices

where each Cj[k] contains the inter-channel PCCs of all F 
feature sequences of all J microphone channels w. r. t. the 
corresponding feature sequence of a reference channel j.

Note that each column of Cj[k] , corresponding to one 
particular signal feature, models the same underlying 

(25)
µ(f )[k + 1] =µ(f )[k] + K(f )[k]

(
ξ (f )[k] − µ(f )[k]

)
,

(26)�
(f )
s [k + 1] =

(
�

(f )
s [k] +�t

)(
IQ − K(f )[k]

)
,

(27)
K(f )[k] =

(
�

(f )
s [k] +�t

)(
�

(f )
s [k] +�t + �o[k]

)−1

(28)µ(f )[0] = 0Q, �
(f )
s [0] = IQ.

(29)b
(f )
j,j′ [k] =

[
B(f )[k]

]
jj′
=

[
vech−1

(
µ(f)[k]

)]
jj′
.

(30)b̃
(f )
j,j′ [k] =

[
B̃(f )[k]

]
jj′
=

b
(f )
j,j′ [k]√

b
(f )
j,j [k] ·

√
b
(f )
j′,j′ [k]

.

(31)Cj[k] =




b̃
(1)
j,1 [k] . . . b̃

(F)
j,1 [k]

...
...

b̃
(1)
j,J [k] . . . b̃

(F)
j,J [k]


 ∈ R

J×F ,

inter-channel coherence. The PCCs of different features are 
then combined for each channel j by extracting the domi-
nant column structure of Cj[k] , i.e., finding its best rank-1 
approximation in the Least Squares (LS) sense [46]

Since Cj[k] is generally non-square, the solution of (32) 
is obtained by the Singular Value Decomposition (SVD), 
where σj[k] ∈ R

+ is the largest singular value of Cj[k] , 
and rj[k] ∈ R

J and tj[k] ∈ R
F are the principal left and 

right singular vectors, respectively. The principal left sin-
gular vector rj[k] captures the contribution of each chan-
nel to the dominant structure of Cj[k] , while the principle 
right singular vector tj[k] captures the contribution of 
each feature to the dominant structure.

To facilitate tracking of rj[k] in time-variant scenarios 
and avoid recomputation of the full SVD in each time 
step, the principal left singular vector is instead iteratively 
refined over time. To this end, recall that the left singu-
lar vectors of Cj[k] are identical to the eigenvectors of the 
Gram matrix Cj[k]C

T
j [k] [46]. Thus, given an estimate 

from the previous time step, the principal singular vector 
can be estimated using power methods [46] as

Initial experiments comparing the power method and full 
SVD have shown that the spectrum of Cj[k] varies slowly 
over time such that a single iteration of (33) and (34) is 
sufficient to accurately track the principal singular vector 
for the proposed utility estimation scheme.

In order to restore the intuitive notion of a similarity 
measure, the estimated principal singular vectors from (34) 
are re-normalized such that the similarity of each channel 
to itself is equal to one, and then concatenated to form the 
overall channel similarity matrix

Step 3) Spectral Graph Partitioning: Microphone selec-
tion is equivalent to partitioning the set of available micro-
phones P into two, potentially time-variant, disjoint 
subsets comprising the selected and discarded micro-
phones, respectively. Recalling the signal model (2), we use 
the convention that the former subset S[k] contains the 
microphones capturing the SOI with high quality while the 
latter subset is its complement S[k] for those microphones 
dominated by the non-coherent noise field. Relaxing the 

(32)min
σj[k],rj[k],tj[k]

∥∥∥Cj[k] − σj[k]rj[k]t
T
j [k]

∥∥∥
2

2
.

(33)řj[k + 1] =
(
Cj[k + 1]CT

j [k + 1]
)
rj[k],

(34)rj[k + 1] =
řj[k + 1]

�řj[k + 1]�2
.

(35)R[k] =
[

r1[k]
[r1[k]]1

, . . . ,
rJ [k]

[rJ [k]]J

]
∈ R

J×J .
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hard assignment of microphones to these subsets to a 
soft assignment leads to continuous real-valued utility 
estimates as shown in the following. Spectral partitioning 
techniques [31, 47, 48] operating on graph structures can 
determine such optimal partitionings very efficiently, espe-
cially when the number of microphones J is large.

Thus, we model the pairwise similarity of microphone 
channels using a time-variant graph structure G(V , E[k]) 
[47], comprising a set of vertices V representing micro-
phones and a set of weighted edges E[k] representing 
the microphones’ similarity at time frame k. For each 
edge (j, j′,wjj′ [k]) ∈ E[k] , the weight wjj′ [k] ∈ [0, 1] cap-
tures the similarity of microphones j and j′ . The graph is 
equivalently specified by its weighted adjacency matrix 
W[k] ∈ R

J×J , containing all weights wjj′ [k],∀j, j
′ ∈ P . 

The pairwise microphone similarity should be a sym-
metric measure, i.e., channel j should be as similar to j′ as 
channel j′ is to j, such that wjj′ [k] = wj′j[k] . To reflect this 
symmetry and the varying degrees of similarity, the graph 
should be undirected and weighted. Since the matrix R[k] 
in (35) does not necessarily exhibit these properties, only 
the symmetric part of its element-wise magnitude is used 
to construct the weighted adjacency matrix W[k] , i.e.,

The degree [47] of the j-th vertex is defined as the sum of 
all outgoing edges’ weights

which are collected in the diagonal degree matrix

Note that dj[k] ≥ 1, ∀j ∈ P since the sum in (37) includes 
wjj[k] = 1 , which ensures invertibility of D[k] even for 
degenerate graphs.

For an ideal partitioning, like for clustering, it is desira-
ble that microphone signals belonging to the same group 
are similar while microphone signals belonging to differ-
ent groups are dissimilar to allow for a clear distinction 
between the selected and the discarded microphones.

Using (2) gives an interpretation in the context of 
microphone selection: SOI-dominated microphones 
exhibit strongly mutually correlated feature sequences 
and thus form one of the two partition subsets, while the 
feature sequences of noise-dominated microphones are 
only weakly correlated with the SOI-dominated micro-
phones, and thus form the other subset. In addition, 
even if the noise components nj[t] are uncorrelated, 

(36)
wjj′ [k] =[W[k]]jj′

=
1

2

(∣∣∣[R[k]]jj′
∣∣∣+

∣∣∣[R[k]]j′j
∣∣∣
)
.

(37)dj[k] =

J∑

j′=1

wjj′ [k],

(38)D[k] = Diag
{
d1[k], . . . , dJ[k]

}
.

their features likely are correlated, especially if they 
capture underlying statistics like variance. These inter-
group and intra-group similarities of a set S[k] ⊂ P and 
its complement S[k] are measured by [48]

respectively. Balancing the inter- and intra-group similar-
ity to avoid degenerate solutions yields the normalized 
cut objective function [49]

As shown in [49], minimization of (41) w. r. t. S can be 
reformulated as minimization of the generalized Rayleigh 
quotient

where i[k] is a J-dimensional discrete indicator vector 
satisfying

Additionally, the elements of i[k] may only take either of 
two values [49]

When the discreteness constraint (44) on i[k] is relaxed 
to allow arbitrary real values, i.e., i[k] ∈ R

J , the mini-
mizer of the generalized Rayleigh quotient in (42) is a 
solution to the generalized eigenvalue problem

where �[k] is the generalized eigenvalue and i[k] is the 
generalized eigenvector. The equivalent standard eigen-
value problem is obtained by left-multiplication of D−1[k]

with the normalized random-walk Laplacian matrix [47]

(39)cut(S[k],S[k]) =
∑

j∈S[k],j′∈S[k]

wjj′ [k],

(40)vol(S[k]) =
∑

j∈S[k]

dj[k],

(41)
ncut(S[k],S[k]) =cut(S[k],S[k]) ·

(
1

vol(S[k])
+

1

vol(S[k])

)
.

(42)

min
S[k],S[k]

ncut(S[k],S[k]) = min
i[k]

i
T[k]

(
D[k] −W[k]

)
i[k]

iT[k]D[k]i[k]
,

(43)iT[k]D[k]1J = 0.

(44)[i[k]]j ∈

{
1,

∑
j′∈S[k] dj′ [k]∑
j′∈S[k] dj′ [k]

}
.

(45)(D[k] −W[k])i[k] = �[k]D[k]i[k],

(46)L[k]i[k] = �[k]i[k]

(47)
L[k] =D−1[k](D[k] −W[k])

=IJ −D−1[k]W[k].
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Thus, an approximate minimizer of (42) is obtained by find-
ing the smallest eigenvalue and its corresponding eigenvec-
tor of L[k] . The trivial eigenvalue 0 and its corresponding 
eigenvector 1J [48] are excluded by the constraint (43). Thus, 
the solution is the so-called Fiedler vector v[k] , i.e., the eigen-
vector corresponding to the smallest non-trivial eigenvalue 
of L[k] [48], which automatically satisfies (43) as shown in 
[49]. While an approximate solution to the discrete prob-
lem can be obtained by discretizing v[k] , e.g., based on the 
sign of each element, here we use the real-valued solution 
directly as an estimate of the microphones’ utility.

As an eigenvector, the scale and in particular the sign 
of v[k] is ambiguous, i.e., both −v[k] and v[k] are valid 
solutions to the eigenvalue problem (46). The same 
holds for the objective function (41), which is invariant 
to exchanging S[k] with S[k] . This ambiguity is usually 
not a problem for partitioning, since only the associa-
tion of vertices to groups is desired, but not the identity 
of each group. In other words, the partitioning given 
by v[k] distinguishes between the most and least useful 
microphones, but does not say which group is which. 
Additionally, in low-SNR scenarios, noise-dominated 
microphone signals may exhibit large feature PCC values 
due to similar noise signal statistics despite only weakly 
coherent noise signals. To facilitate this distinction, we 
consider supplemental side information captured by a 
vector β[k] which is correlated with the preliminary util-
ity estimates

Choices for β[k] are discussed below. Depending on the 
sign of the PCC ρ[k] , the sign of the estimated utility val-
ues is flipped to produce the final utility estimates

In [32], the supplemental information was chosen as the 
node degree, i.e., [β[k]]j = dj[k] . While this choice allows 
detection of outliers if the volumes of the two subsets in 
the partition are very different, i.e., a large majority of 
microphones is either useful or not useful, it also requires 
further assumptions or knowledge about the identity of 
the majority group, e.g., that the majority of microphones 
observes the desired SOI. To address these shortcomings, 
we consider typical SOI and interfering signals: typi-
cal SOI signals, especially speech, are non-Gaussian and 
exhibit spectro-temporal structure. Meanwhile, typical 
signal degradations, like reverberation or additive non-
coherent noise, exhibit less or no structure, thus reducing 
the structure of the acoustic mixture. Thus, the differen-
tial signal entropy [39] is used to capture the structured-
ness of the observed signals

(48)ρ[k] = R(v[k],β[k]).

(49)u[k] =

{
v[k] if ρ[k] ≥ 0

−v[k] if ρ[k] < 0
.

as in [35]. Therein, the Probability Density Function 
(PDF) is estimated by its NB-bin histogram

with enB denoting the histogram bin edges. Note that, for 
the experiments conducted in Section 5, the signal blocks 
used to estimate entropy in (50) are chosen longer than 
those for the feature extraction. The entire microphone util-
ity estimation procedure using Spectral Graph Partitioning 
is concisely summarized as pseudocode in Algorithm 1.

In the presence of point-like interferers, the signal 
model (2) no longer strictly holds, such that it should be 
understood as a first step towards developing methods 
for more general acoustic scenarios. Hence, somewhat 
degraded estimation performance must be expected, 
where the extent of degradation depends on the par-
ticular scenario. For example, in an ASN spanning two 
rooms each with their own SOI with only low-level 
cross-talk between rooms and low-level additive noise, 
groups of useful microphones for either SOI can be 
identified, which still matches well with the desired out-
come. As a second example, consider an ASN in a single 
room, with two closely spaced point sources. For tempo-
rally overlapping source activity with both sources con-
tributing similar signal power to each microphone, all 
microphones exhibit reduced utility w. r. t. either source 
as the other source is considered as noise, again match-
ing qualitatively with reduced feature covariance. For 
source counting and associating the microphone subsets 
with the correct SOI, additional mechanisms need to be 
developed that are beyond the scope of this paper.

Algorithm 1 Recursive microphone utility update using Spectral Graph 
Partitioning

(50)

[β[k]]j =−H
(
xj[k]

)

=

NB−1∑

nB=0

p̂(nB; k) log2(p̂(nB; k))

(51)p̂(nB; k) =
1

Lb

∣∣{t, enB ≤
[
xj[k]

]
t
< enB+1

}∣∣
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3.3  Importance of specific signal features
Choosing an appropriate set of characteristic signal fea-
tures for the microphone signals is vital: too few features 
result in low estimation accuracy, while too many fea-
tures unnecessarily strain the wireless network. Even for 
an appropriate number of features, inappropriate features 
may even reduce overall estimation accuracy. To explore 
the importance of individual signal features, we formu-
late the feature selection as a LS regression problem with 
a sparsity-promoting regularizer in (53) below in order to 
obtain a low regression error while using as few features 
as possible. Specifically, we interpret the matrix Cj[k] as a 
dictionary matrix whose columns, or atoms, contain the 
cross-channel correlation coefficients between the refer-
ence channel j and all channels for one specific signal fea-
ture, and which are linearly combined to approximate the 
MSC of the observed microphone signals. However, for 
the purpose of estimating microphone utility and micro-
phone selection, the relative utility of microphone chan-
nels is more important than the absolute values, such 
that the zero-mean MSC vector, i.e.,

is used as the target quantity. Thus, the ℓ1-regularized LS 
cost function for a single acoustic scenario comprising J 
microphone signals with K time frames is

where φ =
[
φ1, . . . , φF

]T
∈ R

F captures the contribu-
tion of each feature and the parameter δ ∈ R

+ indirectly 
controls the sparsity of the vector, i.e., the number of 
used features. The results of this optimization are shown 
in Section 5.2.

4  Learning‑based utility estimation
Artificial Neural Networks (ANNs) offer the ability to 
learn an optimum feature set (for given training data) to 
characterize the microphone signals, as well as optimally 
combining the features for estimating microphone util-
ity. Thus, we propose learning-based alternatives to both 
the model-based feature extraction (see Section 3.1) and 
the utility estimation (see Section  3.2) subsystems. The 
extractor module in Fig.  4 realizes the feature extractor 
on the left-hand side of Fig.  2 (both in red), while the 
estimator module in Fig.  5 realizes the utility estimator 
on the right-hand side of Fig. 2 (both in blue). For both 
subsystems in Fig.  2, the ANN architectures are chosen 
to reflect the modeling capabilities of their model-based 

(52)�γ [k] = γ [k] −


1

J

J�

j=1

γj[k]


1J ,

(53)C(φ) =
1

JK

J∑

j=1

K∑

k=1

�γ̃ [k] − Cj[k]φ�
2
2 + δ�φ�1,

counterparts. Both modules are trained together in an 
end-to-end fashion. During inference, the extractor and 
utility estimator modules run on the network nodes and 
the AP, respectively, such that only the compressed fea-
ture representation need to be transmitted to the AP.

4.1  Node‑wise feature extraction
The signal features discussed in Section  3.3, although 
effective for utility estimation, are not necessarily opti-
mally suited for utility estimation. Learning a set of fea-
tures specifically tailored to characterize microphone 
signals for the purpose of estimating utility promises 

Fig. 4 Architecture of the feature extractor module

Fig. 5 Architecture of the utility estimator module. Feature vectors 
from different microphones are concatenated to form a single, longer 
feature vector. The GRUs exploit the temporal information contained 
in the feature sequences. The FC layers estimate the microphone 
utility from the GRU outputs
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improved accuracy and a more compact representation. 
The structure of the feature extractor module is depicted 
schematically in Fig. 4.

Recalling that the ground-truth utility is given by the 
MSC, spectral representations of the input data appear to 
be an obvious choice. Since the phase of a signal is largely 
uninformative w. r. t. the SOI without a second signal for 
reference, we focus on models using the magnitude spec-
trum as input in the following. Our initial experiments 
support this, where models using the magnitude spec-
trum have outperformed models using the time-domain 
waveform. The resulting halving of the model’s input size 
is a welcome additional benefit.

Thus, the magnitude spectrum of a single microphone 
signal block xj[k] as defined in (3) is computed first. Due 
to the loss of phase information, this transform is not 
invertible and thus prevents the model from learning 
exact equivalents of the time-domain features in Sec-
tion  3.1. The magnitude spectrum then passes through 
a series of fully connected feed-forward layers that get 
progressively narrower to condense information until 
a desired number of signal features is reached. The final 
batch normalization and Gated Recurrent Unit (GRU) 
layer allows the extractor module to learn features that 
describe the evolution of some quantity over time, e.g., 
spectral flux. Trained weights are shared between the 
instances of the module at different microphones, i.e., no 
sensor-specific features are extracted.

4.2  Utility estimation
The architecture of the utility estimator is shown in Fig. 5 
using the concatenated feature vectors aj[k] from the 
individual microphones as an input. The memory of the 
first GRU layer allows capturing the temporal evolution 
of the feature sequences and allows establishing relations 
between the different microphone signals based on their 
extracted features. The following fully connected layers 
all contain the same number of neurons and are respon-
sible for regression of the GRU outputs onto the target 
MSC values. Passing the feature sequences themselves 
into the ANN, instead of the PCCs as in the model-based 
method in Section 3, allows the network to differentiate 
between useful and non-useful microphones, such that 
no separate disambiguation step or supplemental infor-
mation is needed. Unlike the model-based estimation in 
Section 3.2, the number of microphones J directly deter-
mines the number of neurons in the later fully connected 
layers. Thus, the model must be retrained whenever the 
number of microphones changes, but is capable of learn-
ing optimal feature representations. For practical applica-
tions, building a modular model, e.g., from microphone 
pair-wise submodels, could overcome this restriction at 
the cost of some modeling capability.

5  Experimental validation
The algorithms from Sections  3 and 4 are evaluated on 
simulated and recorded acoustic data. The considered 
scenarios feature both static and moving SOIs, different 
room dimensions and reverberation times, and differ-
ent arrangements of J = 10 microphones, some of which 
may be physically obstructed by objects. Although each 
microphone represents its own network node here, this 
does not conflict with the general assumptions outlined 
in Section 1.

5.1  Acoustic data
This section describes the different acoustic data used in 
the following experimental validation.

5.1.1  Simulated data
Microphone signals for a single SOI moving in a shoe 
box room are simulated using the image-source method 
[50, 51]. The SOI trajectory is restricted to the Region 
of Interest (RoI), chosen as a horizontal plane at 1.2-m 
height with at least 1-m distance to the walls. The tra-
jectory is spatially discretized such that successive SOI 
positions are at most 5 cm apart. The resulting set of 
time-variant Room Impulse Responses (RIRs) is then 
convolved with the corresponding SOI signal excerpts 
to obtain the microphone signals evoked by the moving 
SOI. Speech segments of 28 s duration, from both male 
and female speakers, are used as SOI signals. The source 
moves rapidly during the time intervals 8–10 s and 18–20 
s, and otherwise moves slightly around a resting posi-
tion to simulate the behavior of human speakers. With 
a maximum cross section through the RoI of about 8 m, 
the maximum possible SOI speed is about 4m/s. Under 
these constraints, 20 different, random source trajec-
tories are generated. Three different rooms with typical 
living room-like acoustic properties (see Table 1) are con-
sidered. In each room, J = 10 cardioid microphones are 
placed at random positions and with random azimuthal 
rotation. In total, Rsim = 120 distinct acoustic setups (20 
trajectories × 2 signals × 3 rooms) are simulated, result-
ing in 56 min of speech data. The generated SOI images 
are superimposed with spatially uncorrelated white noise 
of an equal, fixed level to attain an SNR of 10 dB at the 
microphone with the strongest source image on average. 
Due to the lower SOI contribution, other microphones 
have a lower average SNR. Figure  6 illustrates room A 
along with an exemplary source trajectory.

5.1.2  Recorded data
The recorded acoustic data is obtained from J = 10 
microphones arranged pair-wise in a quarter circle 
around a static loudspeaker representing the SOI as 
shown in Fig.  7. Although the microphones capsules 
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are omnidirectional, they exhibit nonuniform directiv-
ity due to being mounted in metal enclosures facing 
the SOI which causes diffraction. SOI signals comprise 
male, female, and children’s speech. Instead of a mov-
ing source, different usefulness of the microphones is 
induced by occluding some of the sensors. Obstacles 
may cover two microphone pairs as indicated in Fig. 7, 
or a single microphone pair. Additionally, obstacles 
consist of different materials, i.e., solid wood, foam, and 
cloth, such that sound can permeate through some of 
them. In total, Rrec = 36 distinct acoustic setups (12 
obstructions × 3 signals) are recorded, resulting in 36 
min of speech data. Like for simulated data, spatially 
uncorrelated white noise is added to the recorded 
microphone signals to achieve an SNR of 10 dB.

5.2  Feature importance
Summing C(φ) in (53) over Rsim = 120 experiment tri-
als (see Section  5.1.1) and then minimizing the sum 

yields the features weights φ depicted in Fig. 8. Natu-
rally, higher values of δ result in sparser solutions, 
i.e., less selected features, ranging from 3 features to 
12 features for the considered range of δ . The most 
important features appear to be lower-order statistical 
moments of the temporal waveform (td_centroid, 
td_spread, td_skewness), higher-order statistical 
moments of the magnitude spectrum (sd_skewness, 
sd_kurtosis), and features capturing the tempo-
ral variation of the magnitude spectrum (sd_flux, 
sd_variation, sd_fluxnorm). For δ = 0.001 , the 
selection comprises the four features td_skewness, 
sd_slope, sd_kurtosis, and sd_fluxnorm, 
two of which were also part of the heuristic selection 
made in [36]. To keep the number of selected features 

Table 1 Dimensions and reverberation times of simulated 
rooms

Room Dimensions Reverberation 
time T60

x[m] y[m] z[m]

A 5.0 5.2 3.0 500 ms

B 6.2 5.0 2.5 700 ms

C 4.8 4.2 2.3 350 ms

Fig. 6 Simulated room A and exemplary source trajectory (red) 
for synthesized data

Fig. 7 Experiment setup and exemplary obstruction for recorded 
data

Fig. 8 Feature weights φf  for different values of δ
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similar to prior work [32, 35], we choose the aforemen-
tioned four features of δ = 0.001 for the experimental 
validation in Section  5.3. Note that the obtained fea-
ture weights are only used for feature selection so far, 
but could possibly be used to improve the estimates’ 
robustness in the future.

5.3  Accuracy of estimated utilities
Estimation accuracy is quantified by computing the time-
variant PCC between the estimated utility vector u[k] 
and the MSC vector γ [k]

For the following experiments, signals are sampled at 
fs = 16 kHz. For block processing, signals are parti-
tioned into blocks of Lb = 1024 samples with a block 
shift of Ls = 512 samples. As the only exception, differ-
ential entropy in (50), since it is estimated by a histogram 
approach, uses longer blocks of 32 000 samples for more 
robust estimates. Due to the larger block size, the esti-
mated differential entropy also changes more slowly over 
time, thus promoting temporal continuity of the esti-
mated utility via (49).

For the proposed model-based approach from Sec-
tion  3, termed model-KF in the following, the micro-
phone signals are characterized using the four features 
identified in Section 3.3, i.e., td_skewness, sd_slope, 
sd_kurtosis, and sd_fluxnorm. The temporal recur-
sive smoothing factor in (14) is chosen as � = 0.99 ; the 
scaling factors for the KF process and observation noise 
are α1 = 1 and α2 = 50 , respectively.

For the learning-based approach, the extractor con-
tains six fully connected layers with 513, 256, 128, 64, 
32, and 16 neurons, respectively, followed by a single 
GRU layer with 16 inputs and 16 hidden states. Recall 
that Lb = 1024 such that the 513 inputs to the first layer 
correspond to the non-redundant part of the signal’s 
magnitude spectrum. The utility estimator contains a 
single GRU layer with 16J = 160 inputs and 10 hidden 
states, followed by three fully connected layers with 10 
neurons each. Since identical copies of the extractor 
module are run for each microphone channel j ∈ P , the 
total number of parameters is 175 000 for the extractor 
regardless of the number of microphones J, and 5 500 for 
the utility estimator with the above configuration which 
scales asymptotically quadratically with the number of 
channels J. The objective function to be minimized in 
training is the Mean Square Error (MSE) between the 
estimated utility u[k;�] and the ground-truth MSC γ [k]

(54)r[k] = R(u[k], γ [k]).

(55)min
�

1

K

K∑

k=1

�u[k;�] − γ [k]�22,

where � denotes the set of all trainable parameters. 
The model is trained by the Adam optimizer [52] with 
a learning rate of 10−3 . The available acoustic scenarios 
(120 for ML-sim, 36 for ML-tuned and 156 for ML-
joint, respectively) are split into 70% training and 30% 
validation data. Due to the combinatorial construction of 
the acoustic data (see Sections 5.1.1and 5.1.2), it is likely 
that the same speech signal occurs both in the training 
and the testing data. However, they never occur in the 
same combination of source trajectory and simulated 
room which are the predominant influencing factors of 
microphone utility.

A total of 8 algorithmic variants and baselines are eval-
uated. Note that we deliberately to not enforce a com-
mon constraint regarding communication cost, because 
our primary goal is to establish performance bounds. 
However, for practical application, the trade-off between 
accurate utility estimates and minimal communication 
costs must be carefully considered. First, two baseline 
variants, termed baseline-MSC and baseline-CDR, 
use the cross-microphone MSC and the Coherent-to-
Diffuse power Ratio (CDR) as oracle features. For base-
line-MSC, the estimated MSC values directly represent 
a normalized similarity of the respective microphones, s. 
t. they directly comprise B̃(f )[k] in (30). The CDR is com-
puted by a Direction of Arrival (DOA)-independent esti-
mator [53] assuming a diffuse noise coherence, which has 
been successfully used in weighting and selecting obser-
vations made by different microphones [33, 54]. Because 
the CDR is not bounded, the diffuseness [53, 55] is used 
in its place to construct B̃(f )[k] . Note that although MSC 
and CDR imply oracle knowledge in the sense of signal 
availability at the AP and thus transmission of the sen-
sor signal, the MSC is still computed from time-limited 
observation windows and thus entails all of the associ-
ated estimation challenges, e.g., [56, 57]. The same holds 
for the CDR, as it is based directly on the estimated MSC.

The model-based system described in Section 3 includ-
ing the KFs for covariance estimation is termed model-
KF. To evaluate the effectiveness of the KF, a variant of 
the proposed system is evaluated that uses a simple 
recursive temporal smoothing like (14) for feature covari-
ance estimation, termed model-smooth. Furthermore, 
to judge the modeling capabilities of the ML-estimator, 
hybrid combines all 18 traditional features from Sec-
tion 3.1 and the ML-based utility estimator module from 
Section  4.2. Computational complexity of the different 
features obviously varies, computation of a single fea-
ture is about 20–40× faster than real time running sin-
gle-threaded on a CoreTM i5-6600K at 3.5 GHz. Entropy 
computation being only slightly faster than real time is a 
notable exception, but required for the disambiguation of 
solutions in (49).
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In addition, three different training variants are inves-
tigated: The first variant ML-sim uses exclusively simu-
lated data. For practical application, it is highly desirable 
to deploy a pre-trained model and fine-tune its param-
eters specifically toward a new unseen scenario. To this 
end, a copy of the pre-trained ML-sim is fine-tuned on 
recorded data, termed ML-tuned. Finally, a third version 
trained on both simulated and recorded data simultane-
ously, termed ML-joint, is also evaluated. In terms of 
simulation run time, the learning-based variants achieve 
about 40× real-time speeds, i.e., are on par with the com-
putation of a single model-based feature.

5.3.1  Simulated data
Figure  9 shows the median, as well as lower and upper 
quartile, of the PCC r[k] across trials as a function of the 
time frame k for simulated data, which should ideally 
produce values close to 1. Whenever the source moves 
(indicated by the gray-shaded vertical areas in Fig.  9), 
the source-microphone distances suddenly change caus-
ing the observed rapid decrease of r[k]. Both baseline 
methods baseline-MSC and baseline-CDR achieve 
limited performance due to the high relative noise levels 
in the microphone signals and the time-limited observa-
tion windows impeding accurate estimation. Both purely 
model-based variants model-KF and model-smooth 
exhibit good steady-state performance with PCCs around 
0.9 and quick initial convergence and reconvergence 
after source motion. The KF variant model-KF achieves 
slightly better accuracy on average than model-
smooth and is more robust, e.g., visible at around 4 s and 
13 s. The trained hybrid offers only very small improve-
ments over model-KF and model-smooth despite 
using all of the features, indicating that the four selected 
features for model-KF and model-smooth are close to 

optimal for these scenarios. The learning-based ML-sim 
trained on matching data achieves very similar perfor-
mance, trading a more consistent performance when the 
SOI does not move for a slightly slower reconvergence 
behavior. As expected, fine-tuning the ML model using 
recorded data significantly degrades performance for 
simulated data, as shown by ML-tuned. Finally, the ML 
model with both simulated and recorded data from the 
beginning, i.e., ML-joint, clearly outperforms all other 
considered methods, with only minor breakdowns and 
very fast recovery. Interestingly, incorporating recorded 
data besides the simulated into the training procedure 
also improves performance on simulated data. Conver-
gence of all methods is very fast, reaching peak accuracy 
almost instantaneously after the SOI becomes active after 
an initial silence period of about 1 s.

While the ML models implicitly learning the temporal 
structure of the source movement might be a concern 
here, our experiments with random time intervals of 4 
to 12 s between two successive source movements have 
shown no noticeable degradation compared to fixed time 
intervals.

5.3.2  Recorded data
As for the simulated data, Fig. 10 shows the median and 
quartiles of r[k] across trials as a function of the time 
frame k for recorded data. Since the SOI is static, the use-
fulness of microphones is predominantly influenced by 
their occlusion and no clear temporal structure can be 
discerned. Both of the oracle baselines achieve consist-
ent but limited performance with PCCs between 0.6 and 
0.8. The advantage of baseline-CDR may be attributed 
to the diffuse noise coherence model, which enhances 
the contrast between microphones since residual coher-
ence is considered as noise, particularly in low-frequency 

Fig. 9 Median (solid) and lower/upper quartile (shared areas) of PCC r[k] over all Rsim = 120 synthetic experiment trials. Gray-shaded areas indicate 
time intervals of source movement



Page 16 of 19Günther et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:29 

regions. While the median of both model-KF and 
model-smooth reaches 0.9 after about 2 s, their perfor-
mance degrades over the experiment duration. Note that 
convergence of these two model-based variants and the 
baselines is initially delayed by about 1.5 s due to incor-
rect disambiguation of the utility estimates in (49), indi-
cating opportunity for future improvements. Beyond 
this initial phase, (49) is effective at disambiguating the 
microphone partitions as shown by the consistently posi-
tive values in Fig. 9. This is reinforced by hybrid, which 
simultaneously avoids this initial delay and achieves sig-
nificantly better performance. Thus, hybrid, which has 
access to all features, outperforming model-KF suggests 
that the four selected features are suboptimal for the type 
of degradation encountered in the recorded data. While 
the relatively weak performance of ML-sim with median 
values of around 0.5 is unsurprising since the model was 
not trained using recorded data, the method does not 
completely fail for unseen data. The performance of ML-
tuned is only on par with model-KF, indicating that 
adjustment of a pre-trained model is not as straightfor-
ward as anticipated, likely due to pre-training driving 
the ANN parameters to a local minimum that cannot 
be escaped easily by subsequent tuning. Like for simu-
lated data, ML-joint outperforms other methods on 
recorded data, achieving almost ideal values extremely 
fast and consistently, i.e., at almost no spread. Because 
they share their architecture and thus modeling capabil-
ity, the advantage of ML-joint over ML-tuned is due 
to the different training data, which matches the phe-
nomenon that unrelated data improves performance, as 
it is also observed for simulated data (see Fig. 9).

5.3.3  Identification of a single most useful microphone
Besides the accuracy of the estimated continuous-valued 
utilities, the capability of different algorithmic variants to 
correctly identify the microphone with the highest utility 

is investigated. To this end, the channel-wise SNR in (9) is 
computed using oracle knowledge of the individual signal 
components, i.e., the SOI source image and the additive 
noise. The microphone that maximizes (9) is considered the 
most useful, representing the ground truth in this experi-
ment. Note that, as the SNR changes over time, so does the 
identity of the best microphone. For brevity, we restrict the 
investigation to the best performing model-based and ML-
based variants, i.e., model-KF, hybrid and ML-joint. 
For each variant, the microphone with the highest esti-
mated utility is selected. In the absence of a more directly 
comparable approach, the microphone with the highest 
average pair-wise CDR is selected as a baseline. Therein, 
the CDR is computed using the DOA-independent estima-
tor [53] and a diffuse noise coherence model as described 
in Section 5.3. Because the microphones are connected to 
separate network nodes, this CDR baseline requires trans-
mission of all microphone signals to one of the network 
nodes, which limits its practical applicability in ASNs. As 
performance measure, we use the fraction of time frames 
in which the estimated identity of the most useful micro-
phone coincides with the SNR-based ground truth.

The obtained results are shown in Table  2 separately 
for simulated and recorded data. For simulated data, all 
proposed variants clearly outperform the CDR base-
line, with ML-joint achieving the highest accuracy as 
expected from the previous results. In the more challeng-
ing scenarios with recorded data, the overall accuracy 
decreases for all methods. Although the CDR baseline 
outperforms both model-KF and hybrid which use 
hand-crafted signal features, the ML-based ML-joint 
outperforms all off the remaining considered methods. It 
must be reiterated that the CDR baseline in Table 2 uses 
the microphone signal MSC as oracle knowledge, requir-
ing transmission of all microphone signals. In contrast, 
the proposed model-KF, hybrid and ML-joint have 
no such limitations.

Fig. 10 Median (solid) and lower/upper quartile (shared areas) of PCC r[k] over all Rrec = 36 real-data experiment trials
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5.3.4  Discussion
Let us summarize the previous Sections 5.3.1 to 5.3.3 and 
point out implications for practical application. The per-
formance of ML-sim on recorded data and ML-tuned 
on simulated data indicates limits on the generalization 
capabilities of the respective trained models to unseen 
data. Meanwhile, ML-joint provides very good util-
ity estimates but requires both simulated and recorded 
acoustic data for training. This suggests that data mis-
match due to the simplified acoustic simulation, e.g., 
neglecting the occlusions present in recorded data, is 
responsible for the aforementioned performance deg-
radation of ML-sim and ML-tuned, requiring further 
investigation of the root cause. Comparing the results of 
ML-tuned and ML-joint, adaptation of a pre-trained 
network to new scenarios is not straightforward, likely 
requiring more sophisticated transfer learning tech-
niques. As major drawback for ASNs in realistic condi-
tions, obtaining a sufficient amount of labeled training 
data for a variety of acoustic scenarios is difficult since 
the estimation of the MSC values necessary for training 
require prior transmission and potentially synchroniza-
tion of all observed signals. While this could be remedied, 
e.g., by network nodes with enough memory to buffer the 
signals before transmission, this problem is beyond the 
scope of this contribution. Furthermore, the architecture 
of the utility estimator module explicitly depends on the 
number of microphones J and thus requires retraining 
whenever J changes, e.g., new ASN nodes are added.

In contrast, the model-based approach model-KF 
has shown a more modest, yet robust, performance for 
both simulated and recorded data. It is also blind, i.e., 
does not require knowledge of array geometries, acoustic 
meta parameters like reverberation time, and especially 
the number of microphones J. Thus, it can be straightfor-
wardly deployed in different acoustic environments with-
out the need to collect acoustic data to train or fine-tune 
the model. For a real system, a model-based scheme can 
be used as initial solution to collect labeled training data, 
which can then be used to tailor an ML-based model to 
the specific acoustic scenario of the training data.

6  Conclusion
In this contribution, we tackled microphone utility esti-
mation for ASNs. Specifically, we revisited model-based 
approaches and discussed the usefulness of specific fea-
tures, with features describing temporal variations and 
higher-order statistical moments of the signals’ mag-
nitude spectra being the most useful overall. Further-
more, we proposed alternative, machine learning-based 
realizations to learn an optimal feature set and utility 
estimator. Experimental validation showed that both 
model- and ML-based approaches are viable in princi-
ple with their own strengths and drawbacks. The model-
based approach is straightforwardly applied to ASNs 
with an arbitrary number of microphones J, but is clearly 
outperformed by suitably trained ML models. In con-
trast, the ML-based approaches, particularly ML-joint, 
achieve superior performance if matching training data 
are available.

Abbreviations
ANN  Artificial Neural Network
AP  Access Point
ASN  Acoustic sensor network
ASR  Automatic Speech Recognition
CDR  Coherent-to-Diffuse power Ratio
CLT  Central Limit Theorem
DFT  Discrete Fourier Transform
DOA  Direction of Arrival
DRR  Direct-to-Reverberation Ratio
ERLE  Echo Return Loss Enhancement
GRU   Gated Recurrent Unit
KF  Kalman Filter
LASSO  Least Absolute Shrinkage and Selection Operator
LCMV  Linearly Constrained Minimum Variance
LS  Least Squares
ML  Machine Learning
MMSE  Minimum mean square error
MSC  Magnitude-Squared Coherence
MSE  Mean Square Error
MVDR  Minimum Variance Distortionless Response
PCC  Pearson correlation coefficient
PDF  Probability Density Function
PPM  Parts per million
PSD  Power Spectral Density
RIR  Room Impulse Response
RoI  Region of Interest
SDR  Signal-to-Distortion Ratio
SNR  Signal-to-Noise Ratio
SOI  Source of Interest
SVD  Singular Value Decomposition

Acknowledgements
The authors thank Adhithyan Ramadoss for his help acquiring the recorded 
acoustic data used in the experimental study.

Authors’ contributions
MG designed the proposed systems, designed and conducted the experimen-
tal studies, analyzed their results, and drafted the manuscript. AB co-designed 
the proposed systems and the experiments, and provided invaluable technical 
feedback on the manuscript draft. WK provided extensive feedback on the 
manuscript draft, and helped with interpreting the experimental results. All 
authors read and approved the final manuscript.

Table 2 Fraction of time frames where the single most useful 
microphone is identified correctly. The ground-truth selection is 
given by the microphone with the maximum oracle SNR (9)

Algorithm variant Synthetic data Recorded data

average pair-wise CDR [53] 0.4269 0.1717

model-KF 0.5465 0.1551

hybrid 0.5698 0.1277

ML-joint 0.5793 0.1940



Page 18 of 19Günther et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:29 

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was 
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation)—282835863—within the Research Unit FOR2457 “Acoustic Sen-
sor Networks.”

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
WK is the Lead Guest Editor of the special issue “Signal Processing and 
Machine Learning for Speech and Audio in Acoustic Sensor Networks” this 
manuscript is submitted to.

Received: 22 December 2022   Accepted: 7 July 2023

References
 1. A. Bertrand, in, 18th IEEE Symposium on Communications and Vehicular 

Technology in the Benelux (SCVT). Applications and trends in wireless 
acoustic sensor networks: A signal processing perspective 2011, 1–6 
(2011). https:// doi. org/ 10. 1109/ SCVT. 2011. 61013 02

 2. H. Wang, P. Chu, in 1997 IEEE International Conference on Acoustics, Speech, 
and Signal Processing, vol. 1, Voice source localization for automatic cam-
era pointing system in videoconferencing (1997), pp. 187–190. https:// 
doi. org/ 10. 1109/ ICASSP. 1997. 599595

 3. L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, C. Maple, A Survey of Localization 
in Wireless Sensor Network. Int. J. Distrib. Sens. Netw. 8(12) (2012). https:// 
doi. org/ 10. 1155/ 2012/ 962523

 4. A. Brendel, W. Kellermann, Distributed source localization in acoustic sen-
sor networks using the coherent-to-diffuse power ratio. IEEE J. Sel. Top. 
Sign. Process. 13(1), 61–75 (2019). https:// doi. org/ 10. 1109/ JSTSP. 2019. 
29009 11

 5. L. Kaplan, Q. Le, N. Molnar, in IEEE Int. Conf. Acoust., Speech, Signal Process. 
(ICASSP), Maximum likelihood methods for bearings-only target localiza-
tion, vol.5 (2001), pp. 3001–3004. https:// doi. org/ 10. 1109/ ICASSP. 2001. 
940281

 6. C. Evers, H.W. Löllmann, H. Mellmann, A. Schmidt, H. Barfuss, P.A. Naylor, 
W. Kellermann, The LOCATA challenge: Acoustic source localization and 
tracking. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1620–1643 
(2020)

 7. M. Brandstein, Microphone arrays: signal processing techniques and applica-
tions (Springer Science & Business Media, Berlin, 2001)

 8. A. Bertrand, M. Moonen, in IEEE Int. Conf. Acoust., Speech, Signal Process. 
(ICASSP), Distributed adaptive estimation of correlated node-specific 
signals in a fully connected sensor network (Taipei, Taiwan, 2009), pp. 
2053–2056. https:// doi. org/ 10. 1109/ ICASSP. 2009. 49600 18

 9. S. Markovich-Golan, A. Bertrand, M. Moonen, S. Gannot, Optimal 
distributed minimum-variance beamforming approaches for speech 
enhancement in wireless acoustic sensor networks. Signal Process. 107, 
4–20 (2015)

 10. S.L. Gay, J. Benesty, Acoustic signal processing for telecommunication, vol. 
551 (Springer Science & Business Media, New York, 2012)

 11. L.M. Oliveira, J.J. Rodrigues, Wireless Sensor Networks: a Survey on Envi-
ronmental Monitoring. J. Commun. 6(2), 143–151 (2011). https:// doi. org/ 
10. 4304/ jcm.6. 2. 143- 151

 12. S. Goetze, J. Schroder, S. Gerlach, D. Hollosi, J.E. Appell, F. Wallhoff, Acous-
tic monitoring and localization for social care. J. Comput. Sci. Eng. 6(1), 
40–50 (2012)

 13. A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent, B. Raj, 
T. Virtanen, in DCASE 2017 - Workshop on Detection and Classification of 
Acoustic Scenes and Events, DCASE 2017 Challenge setup: Tasks, datasets 
and baseline system (Munich, Germany, 2017). https:// hal. inria. fr/ hal- 
01627 981. Accessed date 19 Dec 2021

 14. M. Wolf, C. Nadeu, in Proc. of I Joint SIG-IL/Microsoft Workshop Speech Lang. 
Technol. Iberian Lang., Towards microphone selection based on room 
impulse response energy-related measures (Porto Salvo, Portugal, 2009), 
p. 4

 15. A. Bertrand, M. Moonen, in European Signal Process. Conf. (EUSIPCO), 
Efficient sensor subset selection and link failure response for linear MMSE 
signal estimation in wireless sensor networks (Aalborg, Denmark, 2010), 
pp. 1092–1096

 16. J. Szurley, A. Bertrand, M. Moonen, P. Ruckebusch, I. Moerman, in Euro-
pean Signal Process. Conf. (EUSIPCO), Energy aware greedy subset selection 
for speech enhancement in wireless acoustic sensor networks (Bucharest, 
2012), pp. 789–793

 17. J. Szurley, A. Bertrand, P. Ruckebusch, I. Moerman, M. Moonen, Greedy 
distributed node selection for node-specific signal estimation in wireless 
sensor networks. Signal Process. 94, 57–73 (2014). https:// doi. org/ 10. 
1016/j. sigpro. 2013. 06. 010

 18. O. Roy, M. Vetterli, Rate-Constrained Collaborative Noise Reduction for 
Wireless Hearing Aids. IEEE Trans. Signal Process. 57(2), 645–657 (2009). 
https:// doi. org/ 10. 1109/ TSP. 2008. 20092 67. https:// ieeex plore. ieee. org/ 
docum ent/ 46710 85/

 19. S. Srinivasan, A.C. den Brinker, Rate-Constrained Beamforming in Binaural 
Hearing Aids. EURASIP J. Adv. Signal Process. 2009(1) (2009). https:// doi. 
org/ 10. 1155/ 2009/ 257197. https:// asp- euras ipjou rnals. sprin gerop en. 
com/ artic les/ 10. 1155/ 2009/ 257197. Accessed date 10 June 2023

 20. J. Amini, R.C. Hendriks, R. Heusdens, M. Guo, J. Jensen, Rate-Constrained 
Noise Reduction in Wireless Acoustic Sensor Networks. IEEE/ACM Trans. 
Audio Speech Lang. Process. 28, 1–12 (2020). https:// doi. org/ 10. 1109/ 
TASLP. 2019. 29477 77. https:// ieeex plore. ieee. org/ docum ent/ 88711 50/

 21. J. Casebeer, J. Kaikaus, P. Smaragdis, in IEEE Int. Conf. Acoust., Speech, Signal 
Process. (ICASSP), Communication-Cost Aware Microphone Selection for 
Neural Speech Enhancement with Ad-Hoc Microphone Arrays (2021), pp. 
8438–8442. https:// doi. org/ 10. 1109/ ICASS P39728. 2021. 94147 75

 22. J. Zhang, S.P. Chepuri, R.C. Hendriks, R. Heusdens, Microphone Subset 
Selection for MVDR Beamformer Based Noise Reduction. IEEE/ACM Trans. 
Audio Speech Lang. Process. 26(3), 550–563 (2018). https:// doi. org/ 10. 
1109/ TASLP. 2017. 27865 44

 23. J. Zhang, J. Du, L.R. Dai, Sensor Selection for Relative Acoustic Transfer 
Function Steered Linearly-Constrained Beamformers. IEEE/ACM Trans. 
Audio Speech Lang. Process. 29 (2021). https:// doi. org/ 10. 1109/ TASLP. 
2021. 30643 99

 24. J. Benesty, J. Chen, Y. Huang, Microphone array signal processing, vol. 1 
(Springer Science & Business Media, Berlin, 2008)

 25. K. Kumatani, J. McDonough, J. Lehman, B. Raj, in Joint Workshop Hands-
free Speech Commun. Microphone Arrays (HSCMA), Channel selection 
based on multichannel cross-correlation coefficients for distant speech 
recognition (Edinburgh, UK, 2011), pp. 1–6. https:// doi. org/ 10. 1109/ 
HSCMA. 2011. 59423 98

 26. IEEE Standard for Information technology - Telecommunications and 
information exchange between systems Local and metropolitan area 
networks - Specific requirements - Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-
2016 (Revision of IEEE Std 802.11-2012) (Aachen, 2016), pp. 1–3534

 27. A. Chinaev, G. Enzner, T. Gburrek, J. Schmalenstroeer, in European Signal 
Process. Conf. (EUSIPCO), Online Estimation of Sampling Rate Offsets in 
Wireless Acoustic Sensor Networks with Packet Loss (Dublin, 2021), pp. 1–5

 28. S.E. Kotti, R. Heusdens, R.C. Hendriks, in 2020 28th European Signal Process-
ing Conference (EUSIPCO), Clock-Offset and Microphone Gain Mismatch 
Invariant Beamforming (IEEE, Amsterdam, Netherlands, 2021), pp. 
176–180. https:// doi. org/ 10. 23919/ Eusip co479 68. 2020. 92878 52. https:// 
ieeex plore. ieee. org/ docum ent/ 92878 52/. Accessed date 10 June 2023

 29. S. Wehr, I. Kozintsev, R. Lienhart, W. Kellermann, in IEEE Sixth International 
Symposium on Multimedia Software Engineering, Synchronization of 

https://doi.org/10.1109/SCVT.2011.6101302
https://doi.org/10.1109/ICASSP.1997.599595
https://doi.org/10.1109/ICASSP.1997.599595
https://doi.org/10.1155/2012/962523
https://doi.org/10.1155/2012/962523
https://doi.org/10.1109/JSTSP.2019.2900911
https://doi.org/10.1109/JSTSP.2019.2900911
https://doi.org/10.1109/ICASSP.2001.940281
https://doi.org/10.1109/ICASSP.2001.940281
https://doi.org/10.1109/ICASSP.2009.4960018
https://doi.org/10.4304/jcm.6.2.143-151
https://doi.org/10.4304/jcm.6.2.143-151
https://hal.inria.fr/hal-01627981
https://hal.inria.fr/hal-01627981
https://doi.org/10.1016/j.sigpro.2013.06.010
https://doi.org/10.1016/j.sigpro.2013.06.010
https://doi.org/10.1109/TSP.2008.2009267
https://ieeexplore.ieee.org/document/4671085/
https://ieeexplore.ieee.org/document/4671085/
https://doi.org/10.1155/2009/257197
https://doi.org/10.1155/2009/257197
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2009/257197
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2009/257197
https://doi.org/10.1109/TASLP.2019.2947777
https://doi.org/10.1109/TASLP.2019.2947777
https://ieeexplore.ieee.org/document/8871150/
https://doi.org/10.1109/ICASSP39728.2021.9414775
https://doi.org/10.1109/TASLP.2017.2786544
https://doi.org/10.1109/TASLP.2017.2786544
https://doi.org/10.1109/TASLP.2021.3064399
https://doi.org/10.1109/TASLP.2021.3064399
https://doi.org/10.1109/HSCMA.2011.5942398
https://doi.org/10.1109/HSCMA.2011.5942398
https://doi.org/10.23919/Eusipco47968.2020.9287852
https://ieeexplore.ieee.org/document/9287852/
https://ieeexplore.ieee.org/document/9287852/


Page 19 of 19Günther et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:29  

acoustic sensors for distributed ad-hoc audio networks and its use for blind 
source separation (Miami, USA, IEEE, 2004), pp.18–25

 30. D. Cherkassky, S. Gannot, Blind Synchronization in Wireless Acoustic 
Sensor Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 25(3), 
651–661 (2017). https:// doi. org/ 10. 1109/ TASLP. 2017. 26552 59. https:// 
ieeex plore. ieee. org/ docum ent/ 78271 05/

 31. M. Fiedler, Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 
298–305 (1973)

 32. M. Günther, H. Afifi, A. Brendel, H. Karl, W. Kellermann, in IEEE Int. Conf. Acoust., 
Speech, Signal Process. (ICASSP), Network-aware optimal microphone channel 
selection in wireless acoustic sensor networks (Toronto, 2021)

 33. M. Günther, A. Brendel, W. Kellermann, in 14. ITG Conf. on Speech Comm., 
Microphone Utility-based Weighting for Robust Acoustic Source Localiza-
tion in Wireless Acoustic Sensor Networks (Kiel, Germany, 2021)

 34. H. Afifi, M. Günther, A. Brendel, H. Karl, W. Kellermann, in 14. ITG Conf. on 
Speech Comm., Reinforcement Learning-based Microphone Selection in 
Wireless Acoustic Sensor Networks Considering Network and Acoustic 
Utilities (Kiel, Germany, 2021)

 35. M. Günther, A. Brendel, W. Kellermann, in European Signal Process. Conf. 
(EUSIPCO), Online estimation of time-variant microphone utility in 
wireless acoustic sensor networks using single-channel signal features 
(Dublin, Ireland, 2021)

 36. M. Günther, A. Brendel, W. Kellermann, in Int. Congress on Acoust. (ICA), 
Single-channel signal features for estimating microphone utility for 
coherent signal processing (2019), pp. 2716–2723

 37. G. Peeters, A large set of audio features for sound description (similarity 
and classification). CUIDADO project Ircam technical report (2004). http:// 
reche rche. ircam. fr/ equip es/ analy se- synth ese/ peete rs/ ARTIC LES/ Peete rs_ 
2003_ cuida doaud iofea tures. pdf. Accessed date 19 Dec 2021

 38. T. Virtanen, M. Plumbley, D. Ellis, Computational analysis of sound scenes 
and events (Springer, Cham, 2018)

 39. T.M. Cover, J.A. Thomas, Elements of information theory, 2nd edn. (Wiley-
Interscience, Hoboken, N.J., 2006)

 40. R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems. 
J. Basic Eng. 82(1), 35–45 (1960). https:// doi. org/ 10. 1115/1. 36625 52. 
https:// doi. org/ 10. 1115/1. 36625 52

 41. H.V. Henderson, S.R. Searle, Vec and vech operators for matrices, with 
some uses in Jacobians and multivariate statistics. Can. J. Stat. 7(1), 65–81 
(1979)

 42. G. Enzner, H. Buchner, A. Favrot, F. Kuech, in Academic Press Library in 
Signal Processing, vol. 4, Acoustic Echo Control (Elsevier, Oxford, 2014), pp. 
807–877

 43. B. Schwartz, S. Gannot, E.A.P. Habets, Online Speech Dereverberation 
Using Kalman Filter and EM Algorithm. IEEE/ACM Trans. Audio Speech 
Lang. Process. 23(2), 394–406 (2015)

 44. A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Pro-
cesses, 4th edn. (McGraw-Hill, New York, 2001)

 45. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New 
York, 2006)

 46. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (The Johns 
Hopkins University Press, Baltimore, 2013)

 47. F.R. Chung, F.C. Graham, Spectral graph theory, vol. 92 (American Math-
ematical Soc, Providence, Rhode Island, 1997)

 48. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 
395–416 (2007)

 49. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pat-
tern. Anal. Mach. Intell. 22(8), 888–905 (2000)

 50. J.B. Allen, D.A. Berkley, Image method for efficiently simulating small-
room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979). https:// doi. org/ 
10. 1121/1. 382599

 51. E.A.P. Habets. Signal generator for MATLAB (2011). https:// github. com/ 
ehabe ts/ Signal- Gener ator. Accessed date 19 Dec 2021

 52. D.P. Kingma, J. Ba. Adam. A method for stochastic optimization. 
(San Diego, 2017), Available online at https:// arxiv. org/ abs/ 1412. 
6980v9. https:// doi. org/ 10. 48550/ arXiv. 1412. 6980

 53. A. Schwarz, W. Kellermann, Coherent-to-Diffuse Power Ratio Estimation 
for Dereverberation. IEEE/ACM Trans. Audio Speech Lang. Process. 23(6), 
1006–1018 (2015)

 54. A. Brendel, C. Huang, W. Kellermann, STFT Bin Selection for Localization 
Algorithms based on the Sparsity of Speech Signal Spectra (Proc, Euronoise, 
2018)

 55. G. Del Galdo, M. Taseska, O. Thiergart, J. Ahonen, V. Pulkki, The diffuse 
sound field in energetic analysis. J. Acoust. Soc. Am. 131(3), 2141–2151 
(2012). https:// doi. org/ 10. 1121/1. 36820 64. Number: 3

 56. G. Carter, Time delay estimation for passive sonar signal processing. IEEE 
Trans. Acoust. Speech Signal Process. 29(3), 463–470 (1981)

 57. G. Carter, Coherence and time delay estimation. Proc. IEEE 75(2), 236–255 
(1987)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TASLP.2017.2655259
https://ieeexplore.ieee.org/document/7827105/
https://ieeexplore.ieee.org/document/7827105/
http://recherche.ircam.fr/equipes/analyse-synthese/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf
http://recherche.ircam.fr/equipes/analyse-synthese/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf
http://recherche.ircam.fr/equipes/analyse-synthese/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1121/1.382599
https://doi.org/10.1121/1.382599
https://github.com/ehabets/Signal-Generator
https://github.com/ehabets/Signal-Generator
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1121/1.3682064

	Microphone utility estimation in acoustic sensor networks using single-channel signal features
	Abstract 
	1 Introduction
	2 Notation and signal model
	3 Model-based utility estimation using Spectral Graph Partitioning
	3.1 Node-wise feature extraction
	3.2 Utility estimation
	3.3 Importance of specific signal features

	4 Learning-based utility estimation
	4.1 Node-wise feature extraction
	4.2 Utility estimation

	5 Experimental validation
	5.1 Acoustic data
	5.1.1 Simulated data
	5.1.2 Recorded data

	5.2 Feature importance
	5.3 Accuracy of estimated utilities
	5.3.1 Simulated data
	5.3.2 Recorded data
	5.3.3 Identification of a single most useful microphone
	5.3.4 Discussion


	6 Conclusion
	Acknowledgements
	References


