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Abstract 

The presence of noise and reverberation significantly impedes speech clarity and intelligibility. To mitigate these 
effects, numerous deep learning-based network models have been proposed for speech enhancement tasks aimed 
at improving speech quality. In this study, we propose a monaural speech enhancement model called the channel 
and temporal-frequency attention UNet (CTFUNet). CTFUNet takes the noisy spectrum as input and produces a com-
plex ideal ratio mask (cIRM) as output. To improve the speech enhancement performance of CTFUNet, we employ 
multi-scale temporal-frequency processing to extract input speech spectrum features. We also utilize multi-conv head 
channel attention and residual channel attention to capture temporal-frequency and channel features. Moreover, we 
introduce the channel temporal-frequency skip connection to alleviate information loss between down-sampling 
and up-sampling. On the blind test set of the first deep noise suppression challenge, our proposed CTFUNet has bet-
ter denoising performance than the champion models and the latest models. Furthermore, our model outperforms 
recent models such as Uformar and MTFAA in both denoising and dereverberation performance.

Keywords Speech enhancement, Neural network, Denoising, Dereverberation

1 Introduction
Speech is vital in various aspects of our daily lives, 
including mobile communication, audio chat, remote 
conferences, and speech control. There are many sources 
of noise, such as car honking, machine noise, rain, and 
murmurs. Reverberation occurs when sound waves prop-
agate indoors, reflecting and absorbing off walls, ceilings, 
floors, and other obstacles. Even after the sound source 
has stopped, the sound wave persists in the room, reflect-
ing and absorbing until it eventually dissipates. There-
fore, noise and reverberation frequently disrupt speech, 
severely affecting the listener’s experience. In light of the 
issues above, removing background noise and reverbera-
tion from noisy speech is essential. Because of the user’s 

desire for high-quality speech, speech enhancement, and 
de-reverberation technologies are increasingly critical.

Speech enhancement techniques can be broadly clas-
sified into traditional methods and deep neural network 
(DNN)-based methods. Traditional methods refer to 
completing the speech enhancement task via signal pro-
cessing and certain statistical assumptions. Examples of 
traditional methods include subspace algorithms [1], 
spectral subtraction [2], and algorithms based on statis-
tical models [3, 4]. Traditional methods mainly operate 
under the assumption that noise signals are stationary. 
However, most noise in natural environments is non-sta-
tionary, and most traditional methods have limitations.

Due to significant advancements in computing 
power, DNN-based speech enhancement methods have 
become increasingly prevalent. Because DNNs are 
highly effective in handling non-stationary noise, the 
research on DNN-based speech enhancement is more 
and more abundant. DNN-based speech enhancement 
methods can be categorized into time-domain and 
time-frequency domain approaches. The time-domain 
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approach directly estimates the clean speech sig-
nal based on the noisy speech, taking an end-to-end 
approach. Wavenet [5], the first DNN capable of gen-
erating natural human speech and better modeling 
acoustic features, was instrumental in developing end-
to-end denoising methods. Rethage et al. [6] propose an 
end-to-end denoising method that retains the acoustic 
feature modeling capability of Wavenet while reducing 
the algorithm’s time complexity by removing its auto-
regressive features. Speech enhancement models gen-
erally process only the amplitude spectrum, ignoring 
the phase information. To exploit phase information 
fully, Stoller et al. [7] propose the time-domain end-to-
end speech enhancement model Wave-U-Net, which 
allows the modeling of phase information and avoids 
fixed spectral transformations. To mitigate high delay 
and computational cost issues, Luo et al. [8] propose an 
end-to-end full-convolution time-domain speech sepa-
ration network (Conv-TasNet).

Scholars have made significant progress in speech 
enhancement in the time domain; however, speech 
enhancement in the time-frequency domain is becom-
ing increasingly popular. The time-frequency domain 
approach offers several advantages, such as the ability to 
focus on features often overlooked by the time-domain 
approach, enhanced robustness, and reduced computa-
tional cost [9]. The time-frequency domain approach typ-
ically involves two main methods: spectral mapping and 
spectral masking.

Spectral mapping refers to estimating the clean spec-
trum from the noisy spectrum. In the time-frequency 
domain-based speech enhancement algorithms, the 
phase information plays a crucial role in the enhance-
ment performance [9, 10]. However, estimating the 
phase spectrum directly is challenging since it lacks a 
clear structure. To address this problem, Tan et  al. pro-
pose a novel framework using a convolutional recurrent 
network (CRN) [11] and introduce a gated convolution 
module [12] to estimate the phase spectrum.

Spectral masking takes the noisy spectrum as input and 
the mask as a training target. The mask can take various 
forms, such as ideal binary mask (IBM), ideal ratio mask 
(IRM), and complex ideal ratio mask (cIRM). Chen et al. 
[13] propose a separation and enhancement model based 
on long short-term memory (LSTM) that focuses on the 
temporal dynamics features of speech to improve speech 
intelligibility. This model significantly enhances objective 
speech intelligibility under low delay. Hao et al. propose 
FullSubNet [14], which uses a combination of a pure full-
band model and a pure sub-band model to model the sig-
nal smoothly, pay attention to local features, and capture 
global long-distance features. To address the problems 
of input and output mismatch and rough handling of the 

frequency band, the FullSubNet+ is proposed by Chen 
et al. [15].

In the field of speech enhancement, the attention 
mechanism plays a pivotal role in dynamically adjusting 
focus to distinct regions based on the unique charac-
teristics of input signals. As a result, it has gained wide-
spread adoption in speech enhancement models, aiming 
to enhance the quality and intelligibility of speech signals. 
However, the vanilla attention approach presents signifi-
cant challenges due to its high computational complex-
ity, rendering it impractical for speech-processing tasks. 
Consequently, finding effective strategies to mitigate the 
complexity of attention remains a significant challenge.

In this work, based on time-frequency domain speech 
enhancement and spectral masking, we propose a novel 
model for speech enhancement called the channel and 
temporal-frequency attention UNet (CTFUNet), which 
combines channel and time-frequency attention mecha-
nisms to denoising and dereverberation speech signals. 
CTFUNet takes the noisy complex spectrum as input 
and produces the cIRM as the output, achieving excellent 
performance in speech enhancement. Our contributions 
are summarized as follows:

• To alleviate the computational complexity of vanilla 
self-attention, we propose the multi-conv head 
channel attention (MCHCA) module. It enables the 
extraction of temporal-frequency speech features 
while maintaining linear complexity calculations for 
self-attention.

• With the aim of improving the efficiency of channel 
feature extraction, we introduce the residual channel 
attention module (RCAM) into our work. This mod-
ule can selectively highlight the channels with the 
most features in the neural network.

• In the encoding and decoding framework, the encod-
ing process compresses and loses a large amount of 
detailed information. To alleviate this problem and 
further extract features from channel dimensions and 
temporal-frequency dimensions at multiple scales 
and levels, we propose the channel temporal-fre-
quency skip connection (CTFSC) between the down-
sampling and up-sampling modules.

The remaining contents of this paper are presented as fol-
lows: In Section 2, we provide an overview of the related 
works relevant to our study. Section  3 presents the sig-
nal model and the various components of our proposed 
CTFUNet in detail. Section 4 elaborates on the datasets 
used in our experiments and the implementation details 
of our experiments. Section 5 presents the results of our 
experiments and provides a detailed analysis. Finally, in 
Section 6, we draw conclusions based on our findings.
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2  Related works
2.1  Self‑attention
Self-attention is a widely used attention mechanism 
and a crucial component of transformer. By utiliz-
ing self-attention, the network can capture long-range 
dependencies in the input, and the multi-head struc-
ture enables parallel attention calculation. Recently, the 
effectiveness of self-attention has been demonstrated in 
various fields such as computer vision, natural language 
processing, and speech processing [16–18]. The specific 
calculation process of self-attention is as follows:

where Q, K, and V denote query, key, and value projec-
tion vectors. dk represents the dimension of K.

However, self-attention takes up a significant amount 
of computation and graphics memory when calculat-
ing the attention map. For example, for an image with 
H ×W  pixels, its complexity is O(H2W 2).

To alleviate this problem, Zhao et  al. [19] make 
improvements to the vanilla attention by dividing tem-
poral-frequency attention into temporal attention and 
frequency attention, reducing the complexity of atten-
tion. Zhang et  al. [20] propose a axial self-attention 
(ASA) for speech enhancement. ASA can reduce the 
need for memory and computation, making it more 
suitable for speech signals. In our research, we make 
improvements to self-attention, reducing its complexity 
by implicitly encoding global information by calculat-
ing self-attention on the channel dimension.

2.2  Temporal convolutional network
Previous research has demonstrated that recurrent 
neural networks (RNNs) excel in addressing sequence-
related tasks [21, 22]. However, RNNs operate one time 
step at a time and process the next step only after com-
pleting the previous one. As a result, RNN calculations 
require significant memory to store all intermediate 
results. To overcome this challenge, researchers pro-
pose a new network for time series processing called 
temporal convolutional network (TCN) [23]. TCN is 
based on convolutional neural networks (CNNs) and 
incorporates causal convolution, dilated convolution, 
and residual module. In comparison to RNNs, TCN 
offers several benefits, including:

• Parallelism. Unlike RNN, TCN processes the input 
time series as a whole without waiting for the last 
time step to complete processing.

(1)Attention(Q,K, V) = Softmax
QKT

dk
V

• Flexible receptive field size. Dilated convolution 
improves the receptive field, so TCN can flex-
ibly change the size of the receptive field by using 
dilated convolution.

• Because of the introduction of the residual module, 
TCN has stable gradients, which can avoid gradient 
explosion or vanishing.

• During training, TCN requires less memory than 
RNN.

In the field of speech enhancement, TCN is widely used 
because of its superior ability to process sequence-
related tasks than RNN [24]. Pandey et al. [25] insert a 
TCN between the encoder and decoder and achieve a 
good performance of speech enhancement with fewer 
trainable parameters. Lin et  al. [26] combine self-
attention with TCN and adopt the multi-stage learning 
method to extract features. In our study, we used tem-
poral-frequency convolutional network (TFCN) [27] 
instead of TCN. TFCN is an improvement of TCN that 
can simultaneously utilize features from both temporal 
and frequency dimensions, resulting in stronger mod-
eling capabilities.

2.3  UNet
UNet [28, 29] is a network model that follows a sym-
metrical U-shaped structure. It is typically an encoder-
decoder structure. The first half of UNet is responsible 
for feature extraction and continuously reducing the 
input size, typically achieved through convolution and 
down-sampling operations. The latter half aims to 
restore the original input size. Apart from convolution, 
the crucial steps of this process include up-sampling 
and skip connections. Skip connections concatenate 
the location information of the bottom layer with the 
semantic information of the deep layer to achieve bet-
ter results. While UNet has a straightforward structure 
and good performance, its model size is relatively large, 
and its performance may be affected by the receptive 
field.

Because the network structure of UNet has local con-
nectivity characteristics, it can be used for speech signal 
processing. Choi et  al. [30] improve UNet by proposing 
Tiny Recurrent UNet (TRUNet) and propose phase-
aware β-sigmoid mask (PHM) for speech enhancement. 
Fu et al. [29] build a network framework based on UNet 
and Conformer [31]. In addition, they simultaneously 
model the real and imaginary parts of the input speech 
spectrum and calculate self-attention on both temporal-
frequency dimensions. In our study, we also improve 
UNet to focus not only on temporal-frequency dimen-
sional features, but also on channel dimensional features.
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3  Method
3.1  Signal model
Assuming that x(t) represents a clean speech signal, the 
acoustic signal captured by the microphone in a noisy 
room can be expressed as follows:

where h(t) denotes the room impulse response (RIR), 
n(t) indicates the background noise, and ∗ denotes con-
volution operation. Moreover, based on the definition of 
reverberation, the RIR h(t) can be decomposed into the 
direct part hd(t) and the reflection part hr(t) , so y(t) can 
be re-expressed as:

where d(t) denotes direct sound, which is the sound that 
travels directly from the sound source to the listener 
without reflecting off any surfaces, and r(t) denotes rever-
beration, which is the sound that is reflected off the sur-
faces in the room before reaching the listener’s ear. The 
discrete Fourier transform of Eq. 3 is given by:

where l and f denote frame index and frequency bin, 
respectively. D(l, f) represents the target to be estimated, 
while R(l, f) and N(l, f) represent the complex spectrum 
of the reverberation and noise that need to be removed, 
respectively.

The proposed model in our study takes Y(l, f) as input 
and outputs the estimated spectrum mask M̂(l, f ) . Sub-
sequently, we use M̂(l, f ) to estimate the desired output 
D̂(l, f ).

(2)y(t) = h(t) ∗ x(t)+ n(t)

(3)
y(t) =hd(t) ∗ x(t)+ hr(t) ∗ x(t)+ n(t)

=d(t)+ r(t)+ n(t)

(4)Y (l, f ) = D(l, f )+ R(l, f )+ N (l, f )

3.2  Overall structure
In recent years, UNet has demonstrated its efficacy in 
feature extraction from data. This architecture has been 
widely adopted in speech enhancement and has shown 
remarkable results [28, 29]. The proposed CTFUNet, 
which follows a typical UNet structure, is presented in 
Fig.  1. The input to CTFUNet is the complex spectrum 
of noisy speech. First, a phase encoder (PE) is employed 
to convert complex spectral features to real spectral 
features. Then, an 3x3 input convolution layer extracts 
features and changes the channel number for the later 
calculations. Following this, three encoders, two neck 
modules, three decoders, and CTFSC are utilized to con-
struct the main network.

Each encoder mainly comprises a frequency down-
sampling (FD) module, a temporal-frequency convolu-
tion module (TFCM), a MCHCA module, and a RCAM. 
The neck module consists of a TFCM, a MCHCA mod-
ule, and a RCAM. The structure of the decoder is similar 
to that of the encoder, but with a frequency up-sampling 
(FU) module replacing the FD module. Furthermore, we 
utilize the CTFSC to connect the encoder and decoder. 
Finally, an output convolution layer is employed to obtain 
the cIRM M̂(l, f ) , and the masking method proposed by 
[20] is applied to obtain the enhanced spectrum D̂(l, f ).

3.3  Phase encoder and TF‑convolution module
Some previous studies [32, 33] have proven that real-
valued speech enhancement networks are easier to 
build and achieve better enhancement effects on vari-
ous datasets. Inspired by [20], we introduce the PE 
module into the model to perform the mapping of 
complex spectral features to real spectral features. The 
structure of our PE module is similar to that in [20], but 
it consists of only one complex convolution layer for 

Fig. 1 Overall structure diagram of the proposed channel and temporal-frequency attention UNet
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processing the noisy speech spectrum. The kernel size 
and the stride of the complex convolution layer are set 
to (1,3) and (1,1). The feature dynamic range compres-
sion layer’s power compression ratio [34] is 0.5.

To efficiently extract temporal-frequency features 
using small parameters and convolution kernels, [27] 
proposes a TFCN by replacing 1-D convolutions in 
TCN with 2-D convolutions. Motivated by this study, 
we introduce TFCM, which contains 6 TFCNs, each 
consisting of two point-wise convolution layers and a 
2-D dilated convolution layer. The kernel size and stride 
of the 2-D dilated convolution layer are (3,3) and (1,1), 
respectively. For the ith TFCN, the dilations of the 2-D 
dilated convolution layer are set to 2i−1 . For the ith 
TFCN, its detailed description is shown in Table 1.

The input size and the output size of each layer are 
specified in channel_numbers × frequency_frames × 
time_frames format, and the hyperparameters in (ker-
nelsize, strides, dilations) format.

3.4  Multi‑conv head channel attention
Due to its large receptive field, self-attention has 
been widely used to capture long-term dependen-
cies between features. However, its use in neural 
networks significantly increases the network’s com-
putational complexity. For instance, when calculating 
the self-attention map of a speech spectrum with size 
of C × F × L , the time complexity can be as high as 
C × F2 × L2 . To ease this problem, many scholars put 
forward their solutions [35, 36]. Motivated by these 
works, we propose the MCHCA module as illustrated 
in Fig.  2. After replacing vanilla self-attention with 
MCHCA, the time complexity of calculating the self-
attention map becomes C2 × F × L , where C is far less 
than L. MCHCA can capture long-term information 
with linear complexity, thanks to its two key features:

• MCHCA avoids calculating self-attention across 
the temporal-frequency dimension and instead 
obtains the self-attention map across the channel 
dimension to encode global information implicitly. 
This approach effectively reduces the computa-
tional complexity of traditional self-attention.

• To focus on local information, we incorporate 1x1 
point-wise convolutions and 3x3 depth-wise convo-
lutions prior to generating the self-attention map.

In MCHCA, we first apply layer normalization to the 
input. After the point-wise convolution layer captures 
the cross-channel information, we use the depth-wise 
convolution layer to extract the temporal-frequency 
information and obtain query (Q), key (K), and value (V) 
projection vectors. The process is mathematically repre-
sented as follows:

where W ∗
P  and W ∗

D represent the projection matrixes in 
the point-wise convolution and depth-wise convolu-
tion layers. The integration of point-wise and depth-wise 

(5)
Q =W

Q
D W

Q
P LayerNorm(x)

K =WK
D WK

P LayerNorm(x)

V =WV
D WV

P LayerNorm(x)

Table 1 Architecture of the ith TFCN

Layer name Input size Hyperparameters Output s

conv2d-1 C × F × L (1,1),(1,1),(1,1) C × F × L

conv2d-2 C × F × L (3,3),(1,1),(1,2i−1) C × F × L

conv2d-3 C × F × L (1,1),(1,1),(1,1) C × F × L

Fig. 2 The structure diagram of multi-conv head channel attention 
module
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convolution layers exploits the features of different chan-
nels in the same temporal-frequency position, enabling 
the network to concentrate on local information.

For subsequent computation, we reshape Q ∈ R
(C ,F×L) , 

K ∈ R
(F×L,C) and V ∈ R

(C ,F×L) from the original size of 
R
(C ,F ,L) . Then, we calculate the dot product of Q and K 

to encode global information across the channel dimen-
sion. Following this, we apply the Softmax function to the 
result to obtain the channel attention map, which has a 
size of R(C×C) . Finally, we take the dot product of chan-
nel attention map and V to obtain the channel attention. 
The complete channel attention calculation process is 
expressed as Eq. 6:

where µ is a learnable scaling factor to adjust the result of 
the dot product of Q and K. The overall calculation pro-
cess of MCHCA is expressed as follows:

Furthermore, we incorporate multi-head processing on 
the channel dimension in MCHCA, which enables paral-
lel computation of attention and the capture of features at 
multiple scales. Table 2 provides a detailed description of 
MCHCA, the hyperparameters are in (kernelsize, strides) 
format.

To confirm that our proposed MCHCA indeed reduces 
time complexity, we compared it with vanilla self-atten-
tion (VSA), improved T-F self-attention (ISA) [19], and 
axial self-attention (ASA) [20]. To ensure the success-
ful operation of vanilla self-attention, the length of the 
speech is selected as 5 s. The comparison results are 
shown in Table 3.

Compared to VSA and ASA, although MCHCA has 
more MACs and the number of parameters, MCHCA 
greatly shortens the runtimes. Compared to ISA, 
MCHCA has similar runtime in fewer MACs and the 
number of parameters.

3.5  Residual channel attention module
Although we use MCHCA to obtain the channel attention 
map with the size of R(C×C) , its essence is still temporal-
frequency attention. [37] proposes a residual channel 

(6)ChAtten(Q,K, V) = Softmax

(

Q · K

µ

)

· V

(7)z = WpChAtten(Q,K, V)+ x

attention block, which allows the network to focus more 
on useful feature channels. Based on it, we introduce 
RCAM to capture features across different channels. The 
specific structure of RCAM is illustrated in Fig. 3.

The input first passes through the instance normaliza-
tion layer and then through the depth convolution-ReLU-
depth convolution block (a simple residual block) to 
obtain the residual features. Subsequently, the residual 
features are used to obtain the feature information of all 
channels through 2-D average pooling, down-sampling 
convolution, ReLU, up-sampling convolution, and sig-
moid activation functions. Finally, the residual features 
are multiplied by the channel feature information and 

Table 2 Architecture of MCHCA

Layer name Input size Hyperparameters Output size

conv2d-1 C × F × L (1,1),(1,1) 3C × F × L

conv2d-2 3C × F × L (3,3),(1,1) 3C × F × L

conv2d-3 C × F × L (1,1),(1,1) C × F × L

Table 3 Comparison results of several self-attentions

Times(s) MACs Para.

VSA 7.015 317.482 M 3.936 K

ISA [19] 0.064 495.581 M 6.144 K

ASA [20] 0.192 152.933 M 1.752 K
ours. 0.062 400.079 M 4.960 K

Fig. 3 The structure diagram of residual channel attention module
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added to the input to enable the network to use channel 
information fully. Table  4 provides a detailed descrip-
tion of RCAM, the hyperparameters are in (kernelsize, 
strides) format.

3.6  Frequency down and up sampling
In [20], their works have been demonstrated that FD and 
FU modules are effective in extracting multi-scale fea-
tures. Based on their works, we incorporate FD and FU 
modules into our approach. Additionally, at each scale, 
we introduce TFCM, MCHCA, and RCAB to enable the 
network to more effectively capture temporal-frequency 
and channel features.

The FD and FU modules in our work have similar 
structures to those proposed in [20]. However, we make 
modifications by replacing the batch normalization layer 
with the instance normalization layer, which is better for 
speech enhancement tasks [38, 39]. Furthermore, we set 
the kernel size, stride, and groups of both the convolution 
layer and the transpose convolution layer to (4, 4), (2, 1), 
and 2, respectively.

3.7  Channel temporal‑frequency skip connection
Up to now, significant progress has been made in 
research on attention mechanisms. The incorporation of 
attention can not only highlight critical regions but also 
enhance the representation power of these regions. Woo 
et al. [40] and Hu et al. [41] calculate attention weights on 
both the channel and spatial dimensions, highlighting the 
importance of channel attention. To further exploit the 
features of the temporal-frequency and channel dimen-
sions at multiple scales and levels, we propose CTFSC, as 
illustrated in Fig. 4. CTFSC mainly consists of a channel 
focussing module and a temporal-frequency focussing 
module.

In the channel focussing module, input first passes 
through the average pooling layer and the max pooling 
layer to aggregate the temporal-frequency features of 
speech and obtain Pca and Pcm , respectively. Then, Pca 
and Pcm are fed into a convolution block (CB) with shared 
parameters. Finally, we merge and output the channel 
eigenvector Fc using a sigmoid function and element-wise 

addition. The overall calculation process of the channel 
focussing module is as follows:

where σ denotes sigmoid function, Avg(·) represents 
average pooling calculation, Max(·) denotes max pool-
ing calculation, x represents the input, and ⊗ denotes 
element-wise product.

In the temporal-frequency focussing module, the 
output of channel focussing module Fc passes through 
the average pooling layer and the max pooling layer for 
channel dimension to aggregate the channel features of 
speech, obtaining Psa and Psm , respectively. Subsequently, 

(8)Fc=σ(CB(Avg(x))+CB(Max(x)))⊗x

Table 4 Architecture of RCAM

Layer name Input size Hyperparameters Output size

conv2d-1 C × F × L (3,3),(1,1) C × F × L

conv2d-2 C × F × L (3,3),(1,1) C × F × L

avg pooling2d C × F × L - C × 1× 1

conv2d-3 C × 1× 1 (1,1),(1,1) C/4× 1× 1

conv2d-4 C/4× 1× 1 (1,1),(1,1) C × 1× 1

Fig. 4 The structure of channel temporal-frequency skip connection
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the concatenation of Psa and Psm passes through a con-
volution layer with a kernel size of (7, 7) followed by a 
sigmoid layer to obtain the output. The calculation pro-
cess of the temporal-frequency focussing module can be 
expressed as follows:

where W denotes the projection matrix of the 7x7 con-
volution layer. Table 5 provides a detailed description of 
CTFSC, the hyperparameters are in (kernelsize, strides) 
format.

3.8  Loss function
For speech enhancement tasks, both magnitude and 
phase information are crucial. Therefore, we adopt the 
complex mean squared error (cMSE) proposed in [42] as 
our loss function. The cMSE is defined as follows:

where PcRI and PcMag can be expressed as follows:

where ScRI and ScMag represent the complex compres-
sion spectrum and magnitude compression spectrum of 
clean speech. Ŝ∗ denotes the estimated speech spectrum. 
It should be noted that we omit the frame index l and the 
frequency index f for brevity. α and β are 0.3 and 0.7. ScRI , 
and ScMag can be specifically expressed as follows:

where c denotes the compressibility coefficient, set as 0.3.

(9)z = σ(W ([Avg(Fc);Max(Fc)]))⊗ Fc

(10)L =
1

l × f

(

α · PcRI + β · PcMag

)

(11)

PcRI =
∑

l,f

∣

∣

∣
ŜcRI − ScRI

∣

∣

∣

2

PcMag =
∑

l,f

∣

∣

∣
ŜcMag − ScMag

∣

∣

∣

2

(12)ScMag =
∣

∣SMag

∣

∣

c
, ScRI = ScMag ·

SRI

SMag

4  Experiment
4.1  Datasets
In our experiment, we utilize three training datasets, 
all of which are derived from clean speech and noise 
datasets provided by the first Deep Noise Suppres-
sion Challenge [43]. The clean speech datasets include 
about 500 h of English speech clips from 2150 speak-
ers. The noise datasets are composed of 181 h of clips 
from 150 classes. To conduct the ablation study, we 
first use the image source method to obtain 100,000 
pairs of RIRs with reverberation time RT60 from 0.3 
s to 1.4 s. We convolve 75% of the clean speech with 
randomly selected RIRs and add noise with a random 
signal-to-noise ratio (SNR) ranging from −5 to 20 dB 
to the reverberant speech. Finally, we generate a 100-h 
train dataset and a 20-h validation dataset. For our test 
set, we select the blind test set provided by the 1st DNS 
challenge, which comprises two parts: with reverbera-
tion and without reverberation. The SNR of the blind 
test set ranges from 0 to 20 dB.

We generate the second dataset to compare the denois-
ing performance with other models. All generation pro-
cesses are the same as above, except that the duration of 
the dataset is 500h. To ensure the fairness of comparison, 
we also select the blind test set provided by the 1st DNS 
challenge as the test set.

To evaluate the denoising and dereverberation perfor-
mance of the CTFUNet, we still employ the clean speech 
datasets and the noise datasets provided by the 1st DNS 
challenge to generate our third dataset. We divide the 
clean speech and noise datasets into the train, valida-
tion, and test datasets according to the proportion of 
80%, 10%, and 10%. Subsequently, all clean speech is con-
volved with the RIRs generated earlier, and noise with 
SNR range from −5 to 20 dB is randomly added. Finally, 
we obtain a 100-h train dataset, a 10-h validation dataset, 
and a 5-h test dataset for our experiments.

The sampling rate of all the above speech is 16 kHz.

4.2  Implementation details
In the experiment, the frame length and hop length of the 
STFT complex spectrum are 20 ms and 10 ms. The out-
put channel numbers of PE and input convolution layer 
are 2 and 32. The output channel numbers of the three 
FDs are 64, 128, and 256. The output channel numbers 
of the three FUs are 128, 64, and 32. The head numbers 
of MCHCA are 1, 2, and 4 in encoders and 8 in the neck 
module. The multiple of down-sampling convolution 
and up-sampling convolution in RCAM is 4. The out-
put channel number of the output convolution layer is 4. 
Table 6 provides a detailed description of CTFUNet, the 
hyperparameters are in (kernelsize, strides) format.

Table 5 Architecture of CTFSC

Layer name Input size Hyperparameters Output size

avg pooling2d-1 C × F × L - C × 1× 1

max pooling2d-1 C × F × L - C × 1× 1

conv2d-1 C × 1× 1 (1,1),(1,1) C × 1× 1

conv2d-2 C × 1× 1 (1,1),(1,1) C × 1× 1

avg pooling2d-2 C × F × L - 1× F × L

max pooling2d-2 C × F × L - 1× F × L

concatenation 2, 1× F × L - 2× F × L

conv2d-3 2× F × L (7,7),(1,1) 1× F × L



Page 9 of 14Xu et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:30  

The optimizer is AdamW, and the initial learning rate 
is 0.001 decaying exponentially by 0.98 with the training 
epoch increasing. We train the network for 50 epochs 
with a batch size of 2.

To evaluate the denoising performance of the CTFU-
Net, we select the following metrics: WB-PESQ [44], 
NB-PESQ [45], STOI [46], SI-SDR [47], and DNSMOS 
[48]. To evaluate the dereverberation performance of the 
CTFUNet, we select SRMR [49], CD [50], LLR [50], and 
SNR fw [50] as our objective evaluation metrics.

5  Results and analysis
5.1  Ablation study
In this section, we conduct an ablation study to investi-
gate the impact of key modules in the proposed CTFU-
Net on performance. We evaluate denoising performance 
on the blind test set while disregarding dereverberation 
performance. Specifically, we replace MCHCA with ISA 
and ASA to demonstrate the superiority of MCHCA. We 
do not choose VSA because its computational complex-
ity is too large to be used for speech processing tasks. 
Besides, we individually remove RCAM, MCHCA, and 
CTFSC modules from the CTFUNet architecture. “+ISA” 

and “+ASA” refer to replace MCHCA with ISA and 
ASA. “−CTFSC” refers to simply passing the output of 
FD into FU, concatenating, and element-wise multiply-
ing with the input of FU without any further processing. 
Table  7 presents the results of the ablation study. After 
replacing MCHCA with ISA and ASA, there is a sig-
nificant decrease in various performances. Combined 
with Table  3, our proposed MCHCA has significant 
advantages in both runtimes and performance. CTFSC 
increases the number of parameters by 0.2 M, but it sig-
nificantly enhances the denoising performance of the 
network. The CTFSC module helps alleviate information 
loss during down-sampling and up-sampling. MCHCA 
adds 1 M parameters to the network but fully extracts 
temporal-frequency features and improves denoising 
capability. RCAM captures channel dimension features, 
leading to a parameter increase of 1.2 M.

5.2  Denoising performance comparison
Table 8 illustrates the denoising performance comparison 
between our proposed CTFUNet and other models with 
similar parameters. Compared with the champion model 
DCCRN [51] in the real-time track of the 1st DNS chal-
lenge, the NB-PESQ scores of CTFUNet increased by 
0.664 and 0.373 with and without reverberation. In com-
parison with the champion model PoCoNet [53] in the 
non-real-time track of the 1st DNS challenge, the WB-
PESQ scores of CTFUNet increased by 0.535 and 0.428 
with and without reverberation. Additionally, we also 
compare with several speech enhancement models pro-
posed in recent years, such as GaGNet [55], FullSubNet+ 
[15], and FS-CANet [56]. The results demonstrate that 
the WB-PESQ, NB-PESQ, STOI, and SI-SDR of CTFU-
Net are significantly better than those of other models, 
with or without reverberation. Therefore, our proposed 
CTFUNet can achieve excellent denoising performance 
with a 500-h train dataset, which is much smaller than 
the datasets used by other models.

Table 6 Architecture of CTFUNet

Layer name Input size Hyperparameters Output size

PE 2× 161× L - 2× 161× L

input conv2d 2× 161× L (3,3),(1,1) 32× 160× L

encoder-fd-1 32× 160× L (4,4),(2,1) 64× 80× L

encoder-fd-2 64× 80× L (4,4),(2,1) 128× 40× L

encoder-fd-3 128× 40× L (4,4),(2,1) 256× 20× L

neck-1 256× 20× L - 256× 20× L

neck-2 256× 20× L - 256× 20× L

decoder-fu-1 256× 20× L (4,4),(2,1) 128× 40× L

decoder-fu-2 128× 40× L (4,4),(2,1) 64× 80× L

decoder-fu-3 64× 80× L (4,4),(2,1) 32× 160× L

output conv2d 32× 160× L (3,3),(1,1) 4× 161× L

Table 7 Performance of WB-PESQ, NB-PESQ, STOI, and SI-SDR in the ablation study

Model #Para. With reverb Without reverb

WB‑PESQ NB‑PESQ STOI(%) SI‑SDR WB‑PESQ NB‑PESQ STOI(%) SI‑SDR

Noisy - 1.822 2.753 86.62 9.03 1.582 2.454 91.52 9.07

+ISA 6.5M 2.525± 0.089 3.290± 0.042 89.36± 0.19 13.38± 0.50 2.214± 0.076 3.023± 0.051 92.32± 0.15 13.84± 0.57

+ASA 5.4M 3.155± 0.012 3.658± 0.007 93.44± 0.03 16.14± 0.13 2.945± 0.017 3.520± 0.008 96.45± 0.05 17.35± 0.14

CTFUNet 6.1M 3.196± 0.014 3.673± 0.003 93.63± 0.01 16.36± 0.03 2.979± 0.003 3.540± 0.001 96.64± 0.03 17.60± 0.03

−RCAM 4.9M 3.157± 0.015 3.648± 0.006 93.51± 0.07 16.27± 0.08 2.951± 0.001 3.517± 0.002 96.53± 0.03 17.52± 0.05

−MCHCA 5.1M 3.143± 0.007 3.643± 0.003 93.38± 0.06 16.08± 0.02 2.951± 0.012 3.510± 0.001 96.54± 0.02 17.43± 0.16

−CTFSC 5.9M 2.996± 0.150 3.576± 0.054 92.93± 0.34 15.57± 0.60 2.820± 0.117 3.428± 0.072 96.08± 0.25 16.97± 0.48
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5.3  Denoising and dereverberation performance 
comparison

In this section, we conduct a comparative analysis of the 
denoising and dereverberation performance of CTFUNet, 
Uformer [29], and MTFAA [20]. The datasets and experi-
mental conditions for the three models are identical. The 
evaluation results are presented in Tables 9, 10, and 11.

To compare the denoising performance separately, 
we generate five noisy test sets with SNR ranging from 
−5 to 15 dB in 5 dB intervals. Each test set lasts 1 h, 
and all speech has no reverberation. We use WB-PESQ, 
DNSMOS, STOI, and SI-SDR as metrics. Table 9 shows 
the results of denoising performance. Obviously, our 
proposed CTFUNet has tremendous advantages over 
MTFAA and Uformer in denoising performance. On 
average, CTFUNet improves WB-PESQ by 1.002, DNS-
MOS by 0.795, STOI by 5.762%, and SI-SDR by 5.161 
compared with noisy speech, demonstrating significant 
denoising capability.

To compare the dereverberation performance sepa-
rately, we generated six reverberation test sets with 
RT60 range of 0.4 s to 1.4 s in steps of 0.2 s. WB-PESQ, 
DNSMOS, STOI, SI-SDR, SRMR, CD, LLR, and SNR fw 
are selected as metrics, and the results of dereverbera-
tion performance are illustrated in Table 10. Compared 
with unprocessed reverberation speech, the three mod-
els significantly improve WB-PESQ, DNSMOS, STOI, 
SI-SDR, SRMR, and reduce CD, LLR at each reverbera-
tion time. For SNR fw , all models decrease in low RT60 
and increase in high RT60 compared with reverbera-
tion speech, but only SNR fw of CTFUNet is higher than 
reverberation speech in the end. Overall, CTFUNet has 
more significant advantages than other models in all 
metrics except SI-SDR and SRMR. On average, CTFU-
Net improves WB-PESQ by 0.927 and DNSMOS by 
0.978 and decreases CD by 1.297 and LLR by 0.306. 
Therefore, CTFUNet exhibits an excellent enhancement 
effect on reverberant speech.

Table 8 Denoising performance comparison of CTFUNet with other models

Model #Para. Year With reverb Without reverb

WB‑PESQ NB‑PESQ STOI(%) SI‑SDR WB‑PESQ NB‑PESQ STOI(%) SI‑SDR

Noisy - - 1.822 2.753 86.62 9.033 1.582 2.454 91.52 9.07

DCCRN [51] 3.7M 2020 - 3.077 - - - 3.266 - -

DCCRN+ [52] 4.7M 2021 - 3.30 - - - 3.33 - -

Conv-TasNet [8] 5.1M 2019 2.75 - - - 2.73 - - -

PoCoNet [53] 50M 2020 2.832 - - - 2.748 - - -

CTS-Net [54] 4.4M 2021 3.02 3.47 92.7 15.58 2.94 3.42 96.66 17.99

FullSubNet [14] 5.6M 2021 3.057 3.584 92.11 16.04 2.882 3.428 96.32 17.30

GaGNet [55] 5.9M 2022 3.18 3.57 93.22 16.57 3.17 3.56 97.13 18.91

FullSubNet+ [15] 8.7M 2022 3.177 3.648 93.64 16.44 3.002 3.503 96.67 18.00

FS-CANet [56] 4.2M 2022 3.218 3.665 93.93 16.82 3.017 3.513 96.74 18.08

CTFUNet 6.1M 2023 3.367 3.741 94.39 17.16 3.176 3.639 97.17 18.66

Table 9 Denoising performance on test dataset without reverberation

SNR −5 dB 0 dB 5 dB 10 dB 15 dB Avg. −5 dB 0 dB 5 dB 10 dB 15 dB Avg.

WB‑PESQ DNSMOS
Noisy 1.257 1.379 1.593 1.901 2.323 1.691 1.809 2.135 2.491 2.758 2.936 2.423

Uformer 1.588 1.761 1.192 2.008 2.060 1.723 2.711 2.876 2.994 3.047 3.054 2.936

MTFAA 1.575 1.831 2.153 2.485 2.822 2.173 2.695 2.920 3.101 3.228 3.310 3.051

CTFUNet 2.005 2.341 2.711 3.052 3.358 2.693 3.000 3.145 3.252 3.323 3.368 3.218
STOI (%) SI‑SDR

Noisy 77.117 84.300 90.089 94.036 96.674 88.443 0.925 5.903 10.953 15.860 20.872 10.903

Uformer 82.139 86.073 88.034 86.620 88.257 86.625 7.615 9.481 10.576 10.900 10.624 9.8392

MTFAA 83.204 89.440 93.281 95.608 96.970 91.701 6.245 9.805 12.674 14.843 16.393 11.992

CTFUNet 88.186 92.517 95.329 96.987 98.006 94.205 10.288 13.331 16.309 19.001 21.390 16.064
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Finally, we generate a test set containing noise and 
reverberation to evaluate the denoising and derever-
beration performance of CTFUNet simultaneously. 
The test set contains noisy-reverberant speech with 
RT60 range of 0.4 s to 1.4 s and SNR ranging from 
−5 to 15 dB. The results of Table 11 show that CTFU-
Net has notable advantages in all metrics except 
SRMR, which is basically consistent with previous 
experimental results. Compared with unprocessed 

noisy-reverberation speech, CTFUNet improves WB-
PESQ by 0.869 and DNSMOS by 1.421 and decreases 
CD by 2.173 and LLR by 0.524. To observe the speech 
enhancement effect of CTFUNet more intuitively, 
Fig.  5 illustrates the comparison results of the unpro-
cessed speech spectrogram and the enhanced speech 
spectrogram. Obviously, the enhanced speech spec-
trogram of CTFUNet is similar to the clean speech 
spectrogram, demonstrating that CTFUNet can effec-
tively suppress noise and reverberation. In addition, we 
visualize the learned attention matrix of each layer, as 
shown in Fig.  6. This picture shows that MCHCA has 
learned the correlation between different channels and 
is able to utilize global contextual information.

Based on the results of all experiments, we can con-
clude that CTFUNet can effectively improve the clar-
ity and intelligibility of speech under different noise and 
reverberation levels.

6  Conclusions
Noise and reverberation seriously affect the quality and 
intelligibility of speech. To address this issue, we propose 
CTFUNet, a speech enhancement model that adopts a 
typical encoder-decoder framework. We mainly use the 

Table 10 Dereverberation performance on test dataset without noise

RT60 0.4 0.6 0.8 1.0 1.2 1.4 Avg. 0.4 0.6 0.8 1.0 1.2 1.4 Avg.

WB‑PESQ DNSMOS
Noisy 2.448 1.923 1.574 1.694 1.382 1.342 1.727 2.922 2.398 1.732 1.849 1.498 1.274 1.946

Uformer 3.279 2.765 2.468 2.663 2.214 2.136 2.588 3.144 2.996 2.774 2.805 2.788 2.715 2.870

MTFAA 2.923 2.437 2.115 2.372 1.834 1.892 2.262 3.077 2.960 2.681 2.757 2.702 2.650 2.804

CTFUNet 3.280 2.798 2.477 2.798 2.312 2.260 2.654 3.106 2.981 2.818 2.910 2.893 2.834 2.924
STOI SI‑SDR

Noisy 97.215 93.456 87.571 90.498 87.087 83.495 89.887 11.619 7.071 4.333 6.915 3.874 2.845 6.110

Uformer 97.950 95.279 93.492 94.100 93.306 91.338 94.244 13.236 9.286 8.262 10.596 8.267 7.144 9.465
MTFAA 97.468 94.035 91.818 93.170 90.699 90.039 92.872 10.865 7.354 5.437 8.776 5.471 4.533 7.073

CTFUNet 98.047 95.473 93.228 94.469 93.481 91.848 94.424 13.359 9.098 7.262 10.328 7.793 6.519 9.060

SRMR CD
Noisy 4.870 4.200 3.452 4.692 3.194 3.224 3.939 1.644 2.497 3.278 3.402 3.729 4.206 3.126

Uformer 5.995 5.879 5.404 7.124 6.276 5.682 6.060 1.615 2.018 2.115 2.222 2.508 2.756 2.206

MTFAA 5.589 5.309 4.866 6.419 5.146 5.129 5.410 1.629 2.033 2.216 2.248 2.525 2.656 2.218

CTFUNet 5.695 5.493 5.163 6.820 5.662 5.634 5.745 1.405 1.658 1.804 1.850 2.037 2.222 1.829
LLR SNRfw

Noisy 0.142 0.309 0.492 0.537 0.635 0.708 0.471 22.821 17.353 13.867 14.091 12.258 11.086 15.246

Uformer 0.122 0.209 0.216 0.264 0.298 0.363 0.245 18.674 15.013 14.752 14.889 13.764 12.002 14.849

MTFAA 0.123 0.232 0.286 0.282 0.387 0.450 0.293 16.069 13.704 12.868 12.780 11.146 11.019 12.931

CTFUNet 0.096 0.142 0.155 0.163 0.198 0.235 0.165 19.873 16.570 15.764 15.680 14.648 13.219 15.959

Table 11 Denoising and dereverberation performance on test 
dataset

WB‑PESQ STOI(%) SI‑SDR DNSMOS
Noisy 1.295 78.683 3.250 1.384

Uformer 1.996 86.851 7.745 2.698

MTFAA 1.792 84.869 5.391 2.510

CTFUNet 2.164 88.645 8.008 2.805
SRMR CD LLR SNRfw

Noisy 3.149 4.911 0.870 9.814

Uformer 6.340 3.350 0.672 9.407

MTFAA 5.333 3.270 0.476 9.818

CTFUNet 5.948 2.738 0.346 11.717
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temporal-frequency convolution module and the multi-
conv head channel attention with linear complexity to 
extract the temporal-frequency features of the signal. We 
use the residual channel attention module to capture the 
signal’s channel features. Additionally, we introduce the 
channel temporal-frequency skip connection to mitigate 
the information loss problem in the process of down-
sampling and up-sampling. Experimental results dem-
onstrate that CTFUNet can effectively suppress different 
levels of noise and reverberation, exhibiting excellent 
speech enhancement performance.

Abbreviations
CTFUNet  Channel and temporal-frequency attention UNet
cIRM  Complex ideal ratio mask
DNNs  Deep neural networks
TCNN  Temporal convolutional neural network
Conv-TasNet  Full-convolution time-domain speech separation 

network
CRN  Convolutional recurrent network
IBM  Ideal binary mask
IRM  Ideal ratio mask
LSTM  Long short-term memory
MCHCA  Multi-conv head channel attention
RCAM  Residual channel attention module
CTFSC  Channel temporal-frequency skip connection
RNNs  Recurrent neural networks

Fig. 5 Comparison of the unprocessed speech spectrogram and the enhanced speech spectrogram

Fig. 6 The learned attention matrix of each layer
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TCN  Temporal convolutional network
CNN  Convolutional neural network
PE  Phase encoder
FD  Frequency down-sampling
FU  Frequency up-sampling
TFCM  Temporal-frequency convolution module
TFCN  Temporal-frequential convolutional network
cMSE  Complex mean squared error
RIRs  Room impulse responses
DNS  Deep noise suppression
SNR  Signal noise ratio
PESQ  Perceptual evaluation of speech quality
STOI  Short-time objective intelligibility
SI-SDR  Scale-invariant signal-to-distortion ratio
DNSMOS  Deep noise suppression mean opinion score
SRMR  Speech-to-reverberation modulation energy ratio
CD  Cepstrum distance
LLR  Log likelihood ratio
SNR fw  Frequency-weighted segmental signal-to-noise ratio
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