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Abstract 

This paper presents three cascade algorithms for combined acoustic feedback cancelation (AFC) and noise reduction 
(NR) in speech applications. A prediction error method (PEM)-based adaptive feedback cancelation (PEM-based AFC) 
algorithm is used for the AFC stage, while a multichannel Wiener filter (MWF) is applied for the NR stage. A scenario 
with M microphones and 1 loudspeaker is considered, without loss of generality. The first algorithm is the baseline 
algorithm, namely the cascade M-channel rank-1 MWF and PEM-AFC, where a NR stage is performed first using 
a rank-1 MWF followed by a single-channel AFC stage using a PEM-based AFC algorithm. The second algorithm 
is the cascade (M+ 1)-channel rank-2 MWF and PEM-AFC, where again a NR stage is applied first followed by a single-
channel AFC stage. The novelty of this algorithm is to consider an ( M+ 1)-channel data model in the MWF formula-
tion with two different desired signals, i.e., the speech component in the reference microphone signal and in the 
loudspeaker signal, both defined by the speech source signal but not equal to each other. The two desired signal 
estimates are later used in a single-channel PEM-based AFC stage. The third algorithm is the cascade M-channel PEM-
AFC and rank-1 MWF where an M-channel AFC stage is performed first followed by an M-channel NR stage. Although 
in cascade algorithms where NR is performed first and then AFC the estimation of the feedback path is usually 
affected by the NR stage, it is shown here that by performing a rank-2 approximation of the speech correlation matrix 
this issue can be avoided and the feedback path can be correctly estimated. The performance of the algorithms 
is assessed by means of closed-loop simulations where it is shown that for the considered input signal-to-noise ratios 
(iSNRs) the cascade (M+ 1)-channel rank-2 MWF and PEM-AFC and the cascade M-channel PEM-AFC and rank-1 
MWF algorithms outperform the cascade M-channel rank-1 MWF and PEM-AFC algorithm in terms of the added 
stable gain (ASG) and misadjustment (Mis) as well as in terms of perceptual metrics such as the short-time objective 
intelligibility (STOI), perceptual evaluation of speech quality (PESQ), and signal distortion (SD).

Keywords Combined acoustic feedback cancelation and noise reduction, Multichannel Wiener filter, Prediction-error 
method based adaptive feedback cancelation

1 Introduction
Acoustic feedback and noise are common problems that 
corrupt microphone signals and affect the performance 
of speech and audio signal processing applications and 

devices, such as hearing aids, public address (PA) sys-
tems, in-car communication, and teleconferencing sys-
tems. Acoustic feedback occurs whenever a signal is 
captured by a microphone, amplified and played back 
by a loudspeaker within the same acoustic environment. 
This acoustic coupling between the microphone (array) 
and loudspeaker may give rise to instabilities in the sys-
tem, which translates into signal degradation and, in the 
worst case, acoustic howling. Different approaches can 
be found to tackle this problem, with the two most pop-
ular being howling suppression and acoustic feedback 
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cancelation (AFC) [1]. AFC solutions rely on a decor-
relation of the microphone and loudspeaker signals to 
obtain an unbiased feedback path estimate [1, 2]. In the 
literature, many different solutions for AFC can be found 
using different decorrelation procedures such as probe-
noise injection [3], time-varying or nonlinear processes 
in the forward path [4], null-steering (array) [5], subband 
implementations [6], and prewhitening [7]. The latter 
approach has been shown to provide limited perceptual 
distortion [8, 9]. Similarly, for multi-microphone noise 
reduction (NR), a wide range of solutions can be found 
in the literature, where one of the popular algorithms 
is the multi-channel Wiener filter (MWF) [10–12], 
and more recently deep learning-based methods have 
appeared [13].

Few solutions for combined multi-microphone AFC 
and NR have been reported in the literature [14, 15]. 
Similarly to combined acoustic echo cancelation (AEC) 
and NR, combined AFC and NR can be tackled with inte-
grated and cascade approaches. An integrated approach 
combines the AFC and NR tasks in a single optimization 
criterion [14, 15]. A cascade approach consists of an AFC 
stage and a NR stage which can be combined in two ways, 
i.e., a multichannel AFC stage followed by a multichannel 
NR stage, or a single-channel AFC stage preceded by a 
multichannel NR stage. The order of the stages has per-
formance implications on the combined system [14, 15].

Existing solutions to combined AFC and NR mainly 
cover single-microphone scenarios [16] and hearing 
aid applications [5, 14]. In [16], the prediction-error 
method (PEM)-based adaptive filtering with row opera-
tions (PEM) algorithm [17] is used in combination with 
an NR stage based on a minimum mean squared error 
short-time log-spectral amplitude (MMSE-LSA) estima-
tion, for a single-microphone scenario. In [14] and [15], 
multiple schemes are presented for combined AFC and 
NR using a generalized sidelobe canceler (GSC) for the 
NR stage and a PEM-based AFC stage. In [18], active 
feedback suppression for one microphone in a hearing 
aid is proposed using multiple loudspeakers, without 
considering the presence of noise in the microphone sig-
nal. A real-time implementation of a combined NR and 
feedback suppression method using spectral subtraction 
in a smartphone-based hearing aid is presented in [19]. 
In [20], the authors presented integrated and cascade 
approaches for combined AEC and NR in the context of 
wireless acoustic sensor and actuator networks. The algo-
rithms in [20] did not consider the presence of a closed-
loop system, therefore they are not appropriate solutions 
for combined multi-microphone AFC and NR.

In [21], the authors presented two cascade algorithms 
for combined multi-microphone AFC and NR for speech 
applications using a PEM-based AFC algorithm and 
MWF. The aim of these cascade algorithms is to estimate 
a desired speech signal without the feedback and noise 
components, as observed at a chosen reference micro-
phone. A scenario with M microphones and one loud-
speaker is considered, without loss of generality. The first 
algorithm in [21] is the baseline algorithm, namely the 
cascade M-channel rank-1 MWF and PEM-AFC, where a 
NR stage is performed first using a rank-1 MWF followed 
by a single-channel AFC stage using the PEM-based AFC 
algorithm. It is shown by means of simulations that this 
algorithm does not improve the added stable gain (ASG) 
in the closed-loop system. The second algorithm is the 
cascade (M + 1)-channel rank-2 MWF and PEM-AFC 
where again a NR stage is applied first followed by a sin-
gle-channel AFC stage. The novelty of this algorithm is 
to consider an ( M + 1)-channel data model in the MWF 
formulation (i.e., by including the loudspeaker signal) 
with two different desired signals, i.e., the speech compo-
nent in the reference microphone signal and in the loud-
speaker signal, both defined by the speech source signal 
but not equal to each other [12]. The two desired signal 
estimates are later used in a single-channel PEM-based 
AFC stage [7, 22]. Although in cascade algorithms where 
NR is performed first and then AFC, the estimation of 
the feedback path is usually affected by the NR stage, it is 
shown in [21] that by performing a rank-2 approximation 
of the speech correlation matrix this issue can be avoided 
and the feedback path can be correctly estimated.

The contributions of this paper in comparison to [21] 
are as follows. A third cascade algorithm for AFC and 
NR using the PEM-based AFC algorithm and MWF is 
presented, and then the three algorithms are further 
analyzed and compared. The third algorithm is the cas-
cade M-channel PEM-AFC and rank-1 MWF, where an 
M-channel AFC stage is performed first followed by an 
M-channel rank-1 NR stage. A comparison of the per-
formance of the three algorithms is provided based on 
closed-loop simulations using three different scenarios 
under three signal-to-noise ratios (SNRs). It is shown that 
for the considered input SNRs (iSNRs) both the cascade 
(M + 1)-channel rank-2 MWF and PEM-AFC and the 
cascade M-channel PEM-AFC and rank-1 MWF algo-
rithms outperform the cascade M-channel rank-1 MWF 
and PEM-AFC algorithm in terms of ASG and misad-
justment (Mis) as well as in terms of perceptual metrics 
such as the short-time objective intelligibility (STOI), 
perceptual evaluation of speech quality (PESQ), and sig-
nal distortion (SD). Additionally, the ASG definition is 
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modified to account for the presence of the NR filters in 
the closed-loop system.

The algorithms in [14] and [15] are similar to the ones 
presented in this paper. However, there are several differ-
ences. The algorithms in this paper rely on a voice activ-
ity detector (VAD) to estimate statistics of the signals 
during noise-only and speech-plus-noise periods, while 
the GSC requires prior knowledge of the desired speech 
source and loudspeaker location to design the fixed 
beamformer and blocking matrix. The GSC in [14] and 
[15] is defined in the time domain, while the NR stage in 
this paper is performed in the frequency domain. In [15], 
the combined AFC and NR problem is tackled by using 
adaptive filters with prefiltering on the output signals of 
the blocking matrix (noise references), while in [14], one 
of the proposed schemes uses the loudspeaker signal as 
an extra input to the adaptive filters. In [14] and [15], the 
GSC schemes were tested in scenarios where the forward 
path gain does not increase over time, i.e., with a fixed 
gain, whereas in this paper a gain profile is used to gradu-
ally increase the gain in the closed-loop system.

The paper is organized as follows. The signal model is 
presented in Section  2. The formulation of the cascade 
M-channel rank-1 MWF and PEM-AFC algorithm is pro-
vided in Section 3. The cascade (M + 1)-channel rank-2 
MWF and PEM-AFC algorithm is described in Section 4. 
The cascade M-channel PEM-AFC and rank-1 MWF is 
described in Section 5. The computational complexity of 
the three presented algorithms is analyzed in Section 6. 
Simulation results are given in Section 7, and finally Sec-
tion 8 concludes the paper.

2  Signal model
Consider a room with M microphones and L loudspeakers 
where the aim is to record a desired speech signal, amplify 
it and play it back in the loudspeakers. The case when 

L = 1 will be considered, without loss of generality, with 
the speech source signal denoted by s(t), the loudspeaker 
signal denoted by u(t) and the mth microphone signal, with 
m = 1, . . . ,M , modeled as

where H (m)(q, t) and F (m)(q, t) are the transfer func-
tion from the speech source position and from the loud-
speaker to the mth microphone, respectively. The latter is 
also known as the feedback path transfer function. The 
direct noise signal in the mth microphone is denoted by 
n(m)(t)1. The discrete time index is represented by t and 
q−1 is the delay operator, i.e., q−ku(t) = u(t − k) . The 
loudspeaker signal can be expressed as

where G(m)(q, t) is the forward path transfer function for 
the mth microphone signal, us(t) is the desired speech 
component, and un(t) is the noise component in the 
loudspeaker signal. The presence of the forward path cre-
ates a closed-loop system which introduces signal corre-
lation between the loudspeaker and microphone signals. 
Figure 1 depicts a block diagram of the closed-loop sys-
tem. It is assumed that the speech source signal can be 
modeled as

(1)
x(m)(t) = H (m)(q, t)s(t)+ F (m)(q, t)u(t)+ n(m)(t)

(2)u(t) =

M

m=1

G(m)(q, t) x(m)(t),

(3)u(t) =us(t)+ un(t)

Fig. 1 Block diagram of the closed-loop system

1 It is noted that u(t) may also add an additional noise component to x(m)(t) , 
cfr. (3).
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where 1
A(q,t) is an autoregressive (AR) process excited by 

the white noise signal e(t), which is a common assump-
tion in PEM-based AFC and it is highly time-varying [1, 
7, 22] . A combined NR and AFC algorithm aims to esti-
mate the desired speech signal without the feedback and 
noise components, as observed at a chosen reference 
microphone (m = r) , i.e.,

where H (r)(q, t) is the transfer function from the speech 
source position to the reference microphone. Addition-
ally, the speech component including the feedback con-
tribution in the reference microphone signal is expressed 
as

The STFT domain representation of the time-domain 
signals will be used here, which is obtained by means of 
an R samples long analysis window in a WOLA filterbank 
with 50% overlap [23]. Therefore, the STFT x(m)(κ , l) 
of the mth microphone signal, x(m)(t) , at frame l can be 
defined as

with κ ∈ {0, 1, . . . ,R− 1} the frequency bin index, 
l ∈ {0, 1, . . . , Lf − 1} with Lf  being the number of frames, 
FR being the discrete Fourier transform (DFT) matrix 
of size R and ga(t) being an analysis window. Using the 
STFT representation of each microphone signal, the 
following M × 1 STFT-domain microphone vector is 
defined

Furthermore, an (M + 1)× 1 signal vector, consisting 
of loudspeaker and microphone signals, can be expressed 
as

(4)s(t) =
1

A(q, t)
e(t)

(5)d(t) = H (r)(q, t)s(t)

(6)x(r)s (t) = H (r)(q, t)s(t)+ F (r)(q, t)us(t).

(7)






x(m)(0, l)
.
.
.

x(m)(R− 1, l)




 = FR










x(m)

�

l
R

2

�

ga(0)

.

.

.

x(m)

�

R− 1+ l
R

2

�

ga(R− 1)










(8)x(κ , l) =
[

x(1)(κ , l) · · · x(M)(κ , l)
]T

.

(9)
y(κ , l) �

[
u(κ , l)
x(κ , l)

]

=

[
us(κ , l)
xs(κ , l)

]

︸ ︷︷ ︸

ys(κ ,l)

+

[
un(κ , l)
xn(κ , l)

]

︸ ︷︷ ︸

yn(κ ,l)

where s(κ , l) , us(κ , l) , u(κ , l) , and yn(κ , l) are the STFT-
domain speech source signal, speech component in the 
loudspeaker signal, loudspeaker signal, and noise com-
ponent in the microphone and loudspeaker signals, 
respectively2. It is noted that yn(κ , l) includes the noise 
component in the loudspeaker signal (first vector compo-
nent) as well as its coupling into the microphones, added 
to the direct noise components in the microphones (all 
other vector components). The STFT-domain transfer 
functions from the speech source position to the micro-
phones and from the loudspeaker to the microphones 
are respectively denoted by h(κ , l) and f(κ , l) . The time-
frame and frequency-bin indices l and κ will be mostly 
omitted in the following for brevity.

The speech correlation matrix is defined as

where �ss = E{ss∗},�su = E{su∗s } , �us = E{uss
∗} = �∗

us , 
�uu = E{usu

∗
s } , E{·} denotes statistical expectation, and 

(·)∗ and (·)H are the conjugate and conjugate transpose 
operator, respectively. Performing an LDL factorisation 
on the matrix with the � ’s in (11), R̄yy|ss can alternatively 
be expressed as

where ǫ =
�su

�uu
 and Ŵ = �ss −

�su�us

�uu
 . It is clear that 

from the knowledge of R̄yy|ss in (12) alone, f  and h cannot 
be uniquely defined whenever there is a non-zero corre-
lation between s and us . In Section 4.1, R̄yy|ss is modeled 
using a rank-2 approximation by assuming that the for-
ward path delay is at least one STFT frame. This delay 
allows to view the loudspeaker signal as a second source 
and hence use a rank-2 approximation for R̄yy|ss . An 
experimental validation of this assumption is presented 
in Section 7.4.

Three different cascade algorithms are presented in 
the following sections for AFC and NR. The first algo-
rithm performs an M-channel rank-1 MWF-based NR to 
estimate the contribution of s(κ , l) and us(κ , l) in the ref-
erence microphone, and then a single-channel AFC is 

(10)
=

[
0

h(κ , l)

]

s(κ , l)+

[
1

f(κ , l)

]

us(κ , l)

︸ ︷︷ ︸

ys(κ ,l)

+yn(κ , l)

(11)R̄yy|ss = E{ysy
H
s } =

[
1 0
f h

] [
�uu �us

�su �ss

] [
1 fH

0 hH

]

(12)R̄yy|ss =

[
1 0

f + ǫh h

] [
�uu 0
0 Ŵ

] [
1 fH + ǫ∗hH

0 hH

]

2 The STFT-domain multiplicative transfer function model in (10) is an 
approximation, the approximation being better when the STFT uses fre-
quency selective analysis filters, and when the frame length matches that of 
the room impulse responses [24]
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performed on the resulting signals. The second algorithm 
performs an (M + 1)-channel rank-2 MWF-based NR 
stage first followed by a single-channel AFC stage, where 
the rank-2 MWF-based NR is used to estimate the contri-
bution of s(κ , l) and us(κ , l) in the reference microphone 
as well as in the loudspeaker, and then a single-channel 
AFC is performed on the resulting signals. The third algo-
rithm performs an M-channel AFC stage first followed by 
an M-channel rank-1 MWF-based NR stage. In this case, 
after the M-channel AFC stage removes the feedback com-
ponent in each microphone, a rank-1 MWF-based NR is 
used to estimate the contribution of s(κ , l) in the reference 
microphone.

3  Cascade M‑channel rank‑1 MWF and PEM‑AFC
3.1  NR stage
The objective of the NR stage is to provide an estimate of 
the speech component in the reference microphone signal. 
The feedback component will still be present in the out-
put of the NR stage; hence, a single-channel AFC stage is 
required to remove it.

In the STFT domain, the correlation matrix of the micro-
phone signal vector x can be expressed as

where

are the M ×M microphone-only speech and noise cor-
relation matrix, respectively. The expressions in (13)–(15) 
are obtained based on the assumption that s and xn are 
uncorrelated. The minimization of the mean squared 
error (MSE) between the desired signal and the filtered 
microphone signals defines an optimal filter

with dNR = x
(r)
s  representing the speech component 

(total contribution of s together with us ) in the reference 
microphone signal. The desired signal estimate d̂NR is 
obtained as

The solution to (16) is the MWF [10, 12], given by

where er selects the rth column of a matrix.
In practice, by using a VAD, R̄xx and R̄xx|nn are first esti-

mated during speech-plus-noise periods where the speech 

(13)R̄xx = E{xxH } = R̄xx|ss + R̄xx|nn

(14)R̄xx|ss = E{xsx
H
s } = E{(hs + fus)(hs + fus)

H },

(15)R̄xx|nn = E{xnx
H
n }

(16)w̄ = min
w

E
{∥
∥dNR − wHx

∥
∥
2
}

(17)d̂NR = w̄Hx.

(18)w̄ = R̄−1
xx R̄xx|sser

source signal and noise are active and noise-only periods 
where only the noise is active, i.e.,

where R̂xx(κ , l) and R̂xx|nn(κ , l) represent estimates of R̄xx 
and R̄xx|nn at frame l and frequency bin κ , respectively. 
The forgetting factor 0 < β < 1 can be chosen depending 
on the variation of the statistics of the signals, i.e., if the 
statistics change slowly then β should be chosen close to 
1 to obtain long-term estimates that mainly capture the 
spatial coherence between the microphone signals. The 
following criterion will then be used to estimate R̄xx|ss 
[12],

where � · �F denotes the Frobenius norm. Spatial pre-
whitening is applied by pre- and post-multiplying by 
R̂
−1/2
xx|nn and R̂−H/2

xx|nn , respectively. The solution to (20), (21) is 
based on a generalized eigenvalue decomposition (GEVD) 
of the ( M ×M ) matrix pencil {R̂xx , R̂xx|nn} [12, 25]

where �̂xx and �̂xx|nn are diagonal matrices and Q̂ is an 
invertible matrix. The rank-1 speech correlation matrix 
estimate R̂xx|ss is then [12]

where σ̂xx,i and σ̂xx|nn,i are the ith diagonal element of �̂xx 
and �̂xx|nn , respectively, corresponding to the ith largest 
ratio σ̂xx,i/σ̂xx|nn,i . Using (24) and R̂xx (cfr. (22)) in (18), 
the rank-1 MWF estimate ŵ can be expressed as

The estimate, x̂(r)s  , is obtained as in (17) with ŵ 
replacing w̄

(19)

if VAD(κ , l) = 1 :

R̂xx(κ , l) = βR̂xx(κ , l − 1)+ (1− β)x(κ , l)xH (κ , l),

if VAD(κ , l) = 0 :

R̂xx|nn(κ , l) = βR̂xx|nn(κ , l − 1)+ (1− β)x(κ , l)xH (κ , l),

(20)
R̂xx|ss =

min
Rxx|ss

∥
∥
∥R̂

−1/2
xx|nn

(

R̂xx − R̂xx|nn − Rxx|ss

)

R̂
−H/2
xx|nn

∥
∥
∥

2

F

(21)
s.t. rank(Rxx|ss) = 1,

Rxx|ss � 0

(22)R̂xx = Q̂�̂xxQ̂
H

(23)R̂xx|nn = Q̂�̂xx|nnQ̂
H

(24)R̂xx|ss = Q̂diag{σ̂xx,1 − σ̂xx|nn,1, 0, . . . , 0}Q̂
H

(25)ŵ = Q̂−Hdiag

{

1−
σ̂xx|nn,1

σ̂xx,1
, 0, . . . , 0

}

Q̂Her .

(26)x̂(r)s = ŵHx.
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The corresponding time-domain signals are obtained 
by adding the Lf  overlapping windowed frames as

where gs is a synthesis window with nonzero values in the 
interval 0 ≤ t ≤ R− 1 and δNR is the delay from the NR 
stage.

3.2  AFC stage
The NR stage provides an estimate for x

(r)
s (t) 

(cfr.  (6)) from which the AFC stage will now estimate 
H (r)(q, t)s(t) . A single-channel PEM-based AFC algo-
rithm is used. This kind of algorithms were initially devel-
oped in [7, 17], and they provide estimates of both the 
feedback path and the speech source signal model. The 
PEM-based AFC algorithm used here is the frequency-
domain version presented in [22] (the reader is referred 
to [22] for a detailed explanation of the AFC algorithm). 
The algorithm uses an overlap-save (OLS) filterbank to 
compute convolutions in the frequency domain, which 

(27)x̂(r)s,seg (l) =F
−1
R ,

[

x̂
(r)
s (0, l) · · · x̂

(r)
s (R− 1, l)

]T

(28)

x̂(r)s,seg (l) =

[

x̂(r)s,seg

(

l
R

2

)

, . . . , x̂(r)s,seg

(

R− 1+ l
R

2

)]T

,

(29)x̂(r)s (t − δNR) =

Lf −1
∑

l=0

x̂(r)s,seg

(

t − l
R

2

)

gs

(

t − l
R

2

)

requires a rectangular window. The input signals to 
the AFC algorithm are the (noisy) loudspeaker signal u 
and the estimate in (29). A short description of the sin-
gle-channel PEM-based AFC algorithm is provided in 
Algorithm 1.

Algorithm 1 Single-channel PEM-based AFC [22]

Fig. 2 Block diagrams for cascade algorithms
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A complete description of the cascade M-channel 
rank-1 MWF and PEM-AFC algorithm is provided in 
Algorithm 2, with a block diagram provided in Fig. 2(a).

Algorithm 2 Cascade M-channel rank-1 MWF and PEM-AFC

4  Cascade ( M + 1)‑channel rank‑2 MWF 
and PEM‑AFC

4.1  NR stage
The objective of the NR stage is to provide an estimate of 
the speech component in the reference microphone signal 
and in the loudspeaker signal. The feedback component 
will still be present in the former, hence a single-channel 
AFC stage is required to remove it.

In the STFT domain, the correlation matrix of the signal 
vector y in (9) can be expressed as

with R̄yy|nn = E{yny
H
n } the (M + 1)× (M + 1) noise cor-

relation matrix. The final expression in (30) is obtained 
based on the assumption that s and n are uncorrelated. 
The minimization of the mean squared error (MSE) 
between the desired signals and the filtered microphone 
and loudspeaker signals defines an optimal filter

with dNR =
[

us x
(r)
s

]T
 . The desired signal estimates ûs 

and x̂(r)s  are obtained as

The solution to (31) is the MWF [10, 12], given by

In practice, by using a VAD, R̄yy and R̄yy|nn are first esti-
mated during speech-plus-noise periods where the desired 
speech signal and noise are active, and noise-only periods 
where only the noise is active, i.e.,

(30)R̄yy = E{yyH } = R̄yy|ss + R̄yy|nn

(31)W̄
(M+1)×2

= min
w

E
{∥
∥dNR −WHy

∥
∥
2
}

.

(32)ûs = eH1 W̄
Hy,

(33)x̂(r)s = eH2 W̄
Hy.

(34)W̄ = R̄−1
yy R̄yy|ss[e1|er+1].

where R̂yy(κ , l) and R̂yy|nn(κ , l) represent estimates of R̄yy 
and R̄yy|nn at frame l and frequency bin κ , respectively. 
The following criterion will then be used to estimate 
R̄yy|ss [12],

Assuming an exact speech signal modelSpatial pre-
whitening is applied by pre- and post-multiplying by 
R̂
−1/2
yy|nn and R̂−H/2

yy|nn  , respectively. The solution to (36)-(37) 
is based on a GEVD of the (M + 1)× (M + 1) matrix 
pencil {R̂yy , R̂yy|nn} [12, 25]

where �̂yy and �̂yy|nn are diagonal matrices and Q̂ is an 
invertible matrix. The rank-2 speech correlation matrix 
estimate R̂yy|ss is then [12]

where σ̂yy,i and σ̂yy|nn,i are the ith diagonal element of �̂yy 
and �̂yy|nn , respectively, corresponding to the ith largest 
ratio σ̂yy,i/σ̂yy|nn,i . Using (40) and R̂yy (cfr. (38)) in (34), the 
rank-2 MWF estimate Ŵ can be expressed as

The estimates ûs and x̂(r)s  , are now obtained as in (32)-
(33) with Ŵ replacing W̄

The corresponding time-domain signals are obtained 
by adding the Lf  overlapping windowed frames as

(35)

if VAD(κ , l) = 1 :

R̂yy(κ , l) = βR̂yy(κ , l − 1)+ (1− β)y(κ , l)yH (κ , l),

if VAD(κ , l) = 0 :

R̂yy|nn(κ , l) = βR̂yy|nn(κ , l − 1)+ (1− β)y(κ , l)yH (κ , l)

(36)
R̂yy|ss =

min
Ryy|ss

∥
∥
∥R̂

−1/2
yy|nn

(

R̂yy − R̂yy|nn − Ryy|ss

)

R̂
−H/2
yy|nn

∥
∥
∥

2

F

(37)
s.t. rank(Ryy|ss) = 2,

Ryy|ss � 0.

(38)R̂yy = Q̂�̂yyQ̂
H

(39)R̂yy|nn = Q̂�̂yy|nnQ̂
H

(40)
R̂yy|ss = Q̂diag{σ̂yy,1 − σ̂yy|nn,1, σ̂yy,2 − σ̂yy|nn,2, 0, . . . , 0}Q̂

H

(41)

Ŵ = Q̂
−Hdiag

{

1−
σ̂yy|nn,1

σ̂yy,1
, 1−

σ̂yy|nn,2

σ̂yy,2
, 0, . . . , 0

}

Q̂
H [e1|er+1].

(42)ûs = eH1 Ŵ
Hy,

(43)x̂(r)s = eH2 Ŵ
Hy.
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4.2  AFC stage
In the AFC stage a single-channel PEM-based AFC 
algorithm is used. The PEM-based AFC algorithm used 
here is the frequency-domain version presented in [22]. 
The input signals to the AFC algorithm are ûs and x̂(r)s  . 
A short description of the PEM-based AFC algorithm is 
provided in Algorithm 1. Note that in this AFC stage, the 
estimates of the speech component in the loudspeaker 
signal (cfr.  (49)) and in the reference microphone signal 
(cfr.  (48)) are used to estimate the feedback path, unlike 
in Section 3.2 where the estimate of the speech compo-
nent in the reference microphone signal (cfr. (29)) and 
the noisy loudspeaker signal are used.

A complete description of the cascade ( M + 1)-chan-
nel rank-2 MWF and PEM-AFC algorithm is pro-
vided in Algorithm 3, with block diagram provided in 
Fig. 2(b).

Algorithm 3 Cascade ( M+ 1)-channel rank-2 MWF and PEM-AFC

(44)x̂(r)s,seg (l) = F
−1
R

[

x̂
(r)
s (0, l) · · · x̂

(r)
s (R− 1, l)

]T
,

(45)ûs,seg (l) = F
−1
R

[
ûs(0, l) · · · ûs(R− 1, l)

]T

(46)

x̂(r)s,seg (l) =

[

x̂(r)s,seg

(

l
R

2

)

, . . . , x̂(r)s,seg

(

R− 1+ l
R

2

)]T

,

(47)

ûs,seg (l) =

[

ûs,seg

(

l
R

2

)

, . . . , ûs,seg

(

R− 1+ l
R

2

)]T

,

(48)

x̂(r)s (t − δNR) =

Lf −1
∑

l=0

x̂(r)s,seg

(

t − l
R

2

)

gs

(

t − l
R

2

)

,

(49)ûs(t − δNR) =

Lf −1
∑

l=0

ûs,seg

(

t − l
R

2

)

gs

(

t − l
R

2

)

.

5  Cascade M‑channel PEM‑AFC and rank‑1 MWF
Assuming an exact speech signal model A−1(q, t) is avail-
able (see (4)), a prefilter A(q, t) can be applied, such that 
the time-domain prefiltered loudspeaker and mth micro-
phone signal can be expressed as

Similarly, the prefiltered version of the signal vector y 
in (9) can be expressed as

where ũ(κ , l) and x̃(κ , l) represent the STFT-domain pre-
filtered loudspeaker and microphone signals. Similarly, 
ũs(κ , l) is the STFT-domain prefiltered desired speech 
component in the loudspeaker signal and ỹn(κ , l) is the 
STFT-domain prefiltered noise component in the loud-
speaker and microphone signals. The speech correlation 
matrix can be rewritten as

where �ũũ = E{ũũ∗} , �ee = E{ee∗} , �eũ = E{eũ∗} = 0 
and �ũe = E{ũe∗} = 0 . Since (54) is computed in the 
STFT domain, the cross-correlation terms would only be 
zero if there is a delay of at least one STFT-frame in the 
forward path. It can be observed that, after prefiltering, 
h and f  can be readily computed from R̄ỹỹ|ss . In this case, 
the order of the AFC and NR stages can be inverted so 
that an M-channel AFC stage is performed first, which 
will estimate the speech component (without its feedback 
contribution) together with the noise component, and 
then a multichannel NR stage can follow.

5.1  AFC stage
In the AFC stage, a single-channel PEM-based AFC algo-
rithm is used for each microphone, i.e., M times. The AR 
model is estimated for each single-channel PEM-based 
AFC algorithm. The same step-size tuning is used for 

(50)ũ(t) = A(q, t)u(t),

(51)x̃(m)(t) = A(q, t)x(m)(t).

(52)ỹ(κ , l) =

[
ũ(κ , l)
x̃(κ , l)

]

(53)

=

[
0

h(κ , l)

]

e(κ , l)+

[
1

f(κ , l)

]

ũs(κ , l)+ ỹn(κ , l)

(54)R̄ỹỹ|ss =

[
1 0
f h

][
�ũũ 0
0 �ee

][
1 fH

0 hH

]

(55)=

[
1
f

]

�ũũ

[
1 fH

]
+

[
0
h

]

�ee

[
0 hH

]
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all adaptive algorithms. The PEM-based AFC algorithm 
used here is the frequency-domain version presented in 
[22]. The input signals to the AFC algorithm are u and 
x(m), ∀m . A short description of the PEM-based AFC 
algorithm is provided in Algorithm 1.

5.2  NR stage
A rank-1 MWF is used for the NR stage which operates 
on the microphone signals after the AFC stage.

The STFT domain representation of the time-domain 
signals will be used here, which is obtained by means of 
an R samples long analysis window in a WOLA filterbank 
with 50% overlap [23]. Therefore, the STFT x(m)

f (κ , l) of 
the mth microphone signal after the AFC stage, x(m)

f (t) , at 
frame l can be defined as

The STFT-domain multi-channel microphone signal 
after the AFC stage, assuming perfect feedback cancela-
tion, is modeled as

where xf |n(κ , l) is the STFT-domain noise component in 
the microphone signal after feedback cancelation. The 
minimization of the mean squared error (MSE) between 
the desired signal and the filtered feedback-compensated 
microphone signals, xf  , defines an optimal filter

with dNR = x
(r)
f |s . The desired signal estimate is then 

obtained as d̂NR = w̄Hxf  . The solution to (58) is the well-
known MWF [10, 12], given by

where R̄xf xf = E{xf x
H
f } , R̄xf xf |ss = E{hssHhH } , and, simi-

larly, R̄xf xf |nn = E{xf |nx
H
f |n} . The final expression in (59) is 

obtained based on the assumption that s and xf |n are 
uncorrelated.

In practice, by using a voice activity detector (VAD), 
R̄xf xf and R̄xf xf |nn are first estimated during speech-
plus-noise periods where the desired speech signal and 
background noise are active, and noise-only periods 
where only the noise is active [26], i.e.,

(56)







x
(m)

f (0, l)

.

.

.

x
(m)

f (R− 1, l)






= FR










x
(m)

f

�

l
R

2

�

ga(0)

.

.

.

x
(m)

f

�

R− 1+ l
R

2

�

ga(R− 1)










.

(57)xf (κ , l) = h(κ , l)s(κ , l)+ xf |n(κ , l)

(58)w̄ = min
w

E
{∥
∥dNR − wHxf

∥
∥
2
}

(59)w̄ = R̄−1
xf xf

R̄xf xf |sser

(60)if VAD(κ , l) = 1 :

where R̂xf xf (κ , l) and R̂xf xf |nn(κ , l) represent estimates of 
R̄xf xf and R̄xf xf |nn at frame l and frequency bin index κ , 
respectively. The following criterion will then be used to 
estimate R̄xf xf |ss [12],

Spatial pre-whitening is applied by pre- and post-
multiplying by R̂−1/2

xf xf |nn
 and R̂−H/2

xf xf |nn
 , respectively. The 

solution to (63)–(64) is based on a GEVD of the 
( M ×M ) matrix pencil {R̂xf xf , R̂xf xf |nn} [12, 25]

where �̂xf xf and �̂xf xf |nn are diagonal matrices and Q̂ is 
an invertible matrix. The speech correlation matrix esti-
mate R̂xf xf |ss is then [12]

where σ̂xf xf ,1 and σ̂xf xf |nn,1 are the first diagonal ele-
ment of �̂xf xf and �̂xf xf |nn , respectively, corresponding 
to the largest ratio σ̂xf xf ,i/σ̂xf xf |nn,i . Using (67) and R̂xf xf 
(cfr. (65)) in (59), the rank-1 MWF estimate ŵ can be 
expressed as

The desired signal estimate is then obtained as 
d̂ = ŵHxf  . The time-domain desired signal is obtained by 
adding the Lf  overlapping windowed frames as

(61)
R̂xf xf

(κ , l) = βR̂xf xf
(κ , l − 1)+ (1− β)xf (κ , l)x

H

f
(κ , l),

if VAD(κ , l) = 0 :

(62)
R̂xf xf |nn(κ , l) = βR̂xf xf |nn(κ , l − 1)+

(1− β)xf (κ , l)x
H

f
(κ , l)

(63)

R̂xf xf |ss
=

min
Rxf xf |ss

∥
∥
∥R̂

−1/2

xf xf |nn

(

R̂xf xf
− R̂xf xf |nn − Rxf xf |ss

)

R̂
−H/2

xf xf |nn

∥
∥
∥

2

F

(64)
s.t. rank(Rxf xf |ss) = 1,

Rxf xf |ss � 0.

(65)R̂xf xf = Q̂�̂xf xf Q̂
H
,

(66)R̂xf xf |nn = Q̂�̂xf xf |nnQ̂
H

(67)
R̂xf xf |ss = Q̂diag{σ̂xf xf ,1 − σ̂xf xf |nn,1, 0, . . . , 0}Q̂

H

(68)ŵ = Q̂−Hdiag

{

1−
σ̂xf xf |nn,1

σ̂xf xf ,1
, 0, . . . , 0

}

Q̂Her .

(69)d̂seg (l) =F
−1
R

[

d̂(0, l) · · · d̂(R− 1, l)

]T
,

(70)

d̂seg (l) =

[

d̂seg

(

l
R

2

)

, . . . , d̂seg

(

R− 1+ l
R

2

)]T

,
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where gs(t) is a synthesis window, δt = δAFC + δNR is the 
total delay from both stages and δAFC is the delay from 
the AFC stage. A complete description of the cascade 
M-channel PEM-AFC and rank-1 MWF algorithm is pro-
vided in Algorithm 4 and a block diagram is provided in 
Fig. 2(c).

Algorithm 4 Cascade M-channel PEM-AFC and rank-1 MWF

6  Computational complexity
In [22], the computational complexity of the single-chan-
nel PEM-based AFC algorithm has been provided as 
O
(
6R log2(R)+22R+n2A+nA(5+R)

R/2−nA

)

 in terms of real multiplica-
tions. To obtain this expression, equal complexity for a 
real multiplication and a real division is assumed, as well 
as a complexity of R log2 R for the fast Fourier transform 
(FFT) and inverse FFT operations. The NR stage of the 
rank-1 MWF in Sections 3.1 and 5.2 has a computational 
complexity in terms of real multiplications of O((4M)3) 
per frequency bin; hence, by considering B = R

2 + 1 , the 
total computational complexity of the NR stage is 
O(64BM3) . The NR stage of the rank-2 MWF in Sec-
tion 4.1 has a total computational complexity in terms of 
real multiplications of O(64B(M + 1)3) . Table  1 shows 
the computational complexity for the AFC stage and NR 
stage in terms of real multiplications of each of the pre-
sented algorithms. The algorithms are abbreviated as fol-
lows in the table descriptors. The cascade M-channel 
rank-1 MWF and PEM-AFC algorithm is abbreviated as 
Rank-1 NR-AFC, the cascade (M + 1)-channel rank-2 

(71)d̂(t − δt) =

Lf −1
∑

l=0

d̂seg

(

t − l
R

2

)

gs

(

t − l
R

2

) MWF and PEM-AFC algorithm as Rank-2 NR-AFC and 
the cascade M-channel PEM-AFC and rank-1 MWF as 
AFC-NR.

7  Simulation results
7.1  Scenario description
In order to assess the performance of the presented cas-
cade algorithms, closed-loop simulations were performed 
using the following three scenarios.

• Scenario 1 consists of a 4-microphone linear array 
with an inter-microphone distance of 10 cm and 
a loudspeaker which reproduces an amplified ver-
sion of the desired speech source signal. The desired 
source is 25 cm away from the microphone array at 
an angle of 0◦ . The loudspeaker is 1.4 m away from 
the microphone array at an angle of 45◦ . Artificial 
impulse responses from the loudspeaker and the 
desired source to the microphones were generated 
using the randomized image method in [27], and 
the speech source signal was generated using a cas-
cade of AR models. The signal generation using a 
cascade of AR models was performed by designing a 
1024-order low-pass filter with cut-off frequency of 
0.9 πrad/sample. Then, the linear prediction of order 
30 was used on the low-pass filter coefficients to 
obtain the first stable AR model. The second model 
was designed by first choosing a central frequency 
fcen = 689.1Hz and then the coefficients ac were 
obtained as 

where Fs is the sampling frequency, aorder is the 
order of the AR model. Results for different SNRs are 
shown.

• Scenario 2 has the same set-up as Scenario  1, how-
ever the source signal is replaced by a speech sig-
nal [28] and the reverberation time is set to 0.14  s. 
Results for different SNRs are shown.

• Scenario 3 consists of a 4-microphone array with 
an inter-microphone distance of 10  cm and a loud-
speaker located diagonally (at an angle of approxi-
mately −135◦ ) from it, which reproduces an ampli-
fied version of the desired signal. The desired source 
is in front of the microphone array, at an angle of 
approximately 0◦ . Measured impulse responses [29] 
from the loudspeaker and the desired source to the 
microphones were used and the source signal was 
a speech signal [28]. The labels from [29] that rep-

(72)aorder = round

(
Fs

fcen

)

,

(73)ac =
[
1 0(aorder−2)×1 − 0.1 − 0.5 − 0.1

]T

Table 1 Computational complexity of the presented algorithms

Algorithm Computational complexity

AFC stage NR stage

Rank-1 NR-AFC
O

(
6R log2(R)+22R+n

2
A
+nA(5+R)

R/2−nA

)
O(64BM3)

Rank-2 NR-AFC
O

(
6R log2(R)+22R+n

2
A
+nA(5+R)

R/2−nA

)
O(64B(M+ 1)3)

AFC-NR
O

(

M
6R log2(R)+22R+n

2
A
+nA(5+R)

R/2−nA

)
O(64BM3)
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resent the microphone positions are CMA20_90, 
CMA10_90, CMA10_-90, and CMA20_-90; simi-
larly, the labels for the loudspeaker position and 
desired source position are SL5 and SL2, respec-
tively. For exact coordinates and room description, 
the reader is referred to [29]. The results for different 
SNRs are shown. Although the reverberation time of 
these impulse responses is 0.5 s, they were truncated 
to 0.31 s which keeps most of the reverberant tail.

The loudspeaker signal in all scenarios was obtained by 
using the desired signal estimate d̂(t) , multiplied and 
delayed by the forward path gain and delay respectively. 
The noise added to the microphones in all scenarios was 
uncorrelated white noise. An oracle frequency-domain 
VAD was used and was computed using the desired 
source signal. This oracle VAD was obtained using the 
STFT representation of the desired speech signal. The 
average energy for each frequency bin was computed 
and used as a threshold for determining the speech 
activity in this frequency bin. For comparison, simula-
tion results using the speech presence probability (SPP) 
function from [30] on the microphone signals are shown 
for scenario  2 and scenario 3. The original SPP func-
tion in [30] requires the complete knowledge of the sig-
nal, which is not feasible in an AFC scenario due to the 
closed-loop system. Therefore, the SPP function was 
adapted to online processing by using as input signal the 
current frame and the previous 10 frames of the unpro-
cessed microphone signal. The threshold for determining 
the presence of speech was set to 0.8. The window and 
impulse response length for each scenario are shown in 
Table 2. The forward path gain profile used for scenario 
1 is shown in Fig. 3 with KMSG defined in Section 7.2.2. 
Similar forward path gain profiles were used for scenario 
2 and scenario 3; however, the duration of the signals 
is different. The gain profile was chosen such that the 
noise-only and speech-plus-noise correlation matrices in 
the three algorithms could be updated while the system 
is stable, and then the gain is gradually increased to test 
the proposed algorithms. The forward path delay in the 
simulations depends on the window size used for both 
the WOLA and OLS procedures. In all simulations, the 
forward path delay was set to 3R2  . An R-samples long root-
squared Hann window was used in the WOLA filterbank 
for the NR stage and an R-samples long rectangular win-
dow was used in the OLS filterbank for the AFC stage.

7.2  Feedback cancelation performance measures
7.2.1  Misadjustment (Mis)
The Mis measure is defined as the normalized distance in 
dB between the true and estimated feedback path in the 

time domain. Alternatively, due to Parseval’s energy theo-
rem, the Mis can be expressed in the frequency domain 
as [9]

where f (r)(κ) is the true STFT-domain transfer function 
from the loudspeaker to the reference microphone. To 
compute this metric the impulse response was first trun-
cated to the STFT length.

7.2.2  Added stable gain (ASG)
The ASG measure is based on the so-called maximum 
stable gain (MSG) which is the maximum gain achievable 
in the system without it becoming unstable. In a single-
channel scenario with a spectrally flat forward path, the 
MSG is given by [1]

where P(r)(l) is the set of frequencies that satisfy the 
phase condition of the Nyquist stability criterion [1] at 
the reference microphone. The ASG is then obtained as

where KMSG is the MSG of the system when no feedback 
canceler is included, i.e., f̂ (r)(κ , l) = 0 ∀κ , l, in (75).

When a NR stage is included in the closed-loop sys-
tem, the expression in (75) can be modified to account 
for the NR filters. For this, the MSG is defined at a ref-
erence microphone as

(74)Mis(l) = 20 log10






1
R

�
R−1
κ=0

�

f
(r)(κ)− f̂

(r)(κ , l)
�2

1
R

�
R−1
κ=0

�
f (r)(κ)

�2




 dB

(75)

MSG(l) = −20 log10

[

max
κ∈P(r)(l)

∣
∣
∣f (r)(κ)− f̂ (r)(κ , l)

∣
∣
∣

]

dB

(76)ASG(l) = MSG(l)− KMSG dB

Fig. 3 Forward path gain profile for scenario 1
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where for an M-channel NR stage f̂ ⋆(r)(κ , l) = f̂ (r)(κ , l) 
and f ⋆(r)(κ , l) is defined as

and for an M + 1-channel NR stage f ⋆(r)(κ , l) and 
f̂ ⋆(r)(κ , l) are

Then, the ASG can be computed as in (76), noting 
that KMSG should be computed similarly to (77) with 
the initial value of Ŵ . For the simulations presented 

here Ŵ was initialized with 





1 0
0 1

0(M−1)×1 0



 . It should be 

noted that a random initialization is also possible.

7.2.3  Signal distortion (SD)
The SD gives an indication of the distortion of the pro-
cessed signal. Unweighted and weighted SD measures 
have been used in the literature [8, 9, 31, 32] for differ-
ent speech enhancement algorithms. The frequency-
weighted SD is defined as in [8]

(77)

MSG(l) = −20 log10

[

max
κ∈P(r)(l)

∣
∣
∣f

⋆(r)(κ , l)− f̂
⋆(r)(κ , l)

∣
∣
∣

]

dB

(78)f ⋆(r)(κ , l) = ŵH (κ , l)f(κ , l),

(79)f ⋆(r)(κ , l) = eHr+1Ŵ
H (κ , l)

[
1

f(κ , l)

]

.

(80)f̂ ⋆(r)(κ , l) = f̂ (r)(κ , l)eHr Ŵ
H (κ , l)

[
1

f(κ , l)

]

.

(81)

SD(l) =

(
∫ fh

fl

wERB(f)

(

10 log10
�e(f , l)

�r(f , l)

)2

df .

)1/2

where �e(f , l) is the PSD of the estimated signal, �r(f , l) 
is the PSD of the reference signal, f is the frequency index 
in Hz, which can be related to κ as f =

fsκ
R  , with fs being 

the sampling rate, and wERB(f ) is a weighting function 
which gives equal weight to each auditory critical band 
between fl = 300Hz and fh = 6400Hz . For this met-
ric, the estimated signal is d̂(t) and the reference signal 
is H (r)(q, t)s(t) (cfr. (5)). The measure is computed only 
during “speech-plus-noise” periods and the average over 
all frames is presented.

7.3  Perceptual performance measures
For the perceptual assessment of the cascade algorithms 
presented in this paper, two metrics have been selected, 
namely, the PESQ and the STOI [9, 33, 34]. The PESQ 
measure is part of an International Telecommunica-
tions Union (ITU) Standard and widely used to objec-
tively assess the perceptual quality of a speech signal. 
The STOI measure is a correlation-based speech intelli-
gibility measure that works on the temporal envelopes of 
short speech frames. We used a MATLAB implementa-
tion of the STOI measure from [34] and the PESQ imple-
mentation from [35]. These metrics were chosen based 
on the results presented in [9] where objective metrics 
were compared to subjective evaluation results for AFC 
algorithms.

7.4  Closed‑loop simulations
Closed-loop simulation results are presented in this sec-
tion. For comparison, simulation results using the GSC 
algorithm from [14] are shown for all scenarios. Two 
noise references were used, and the loudspeaker signal 
was included as an extra noise reference. A recursive least 
squares (RLS) algorithm was used with a forgetting fac-
tor of 0.9999. The fixed beamformer and blocking matrix 

Table 2 Scenarios and simulation parameters

Parameter Scenario 1 Scenario 2 Scenario 3

Impulse response length (samples) 1024 2048 5000

Window length (samples) 1024 2048 5000

Estimated impulse response length (samples) 512 1024 2500

T60 (s) 0 0.14 0.5

Sampling rate (Hz) 16000 16000 16000

Source signal Cascaded AR models Speech Speech

β 0.9 0.9 0.9

nA 30 30 30

α 12 9 9

µfix 0.8 0.3 0.25
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were selected as in [15], where the source is assumed to 
be in front. The algorithms are abbreviated in the legends 
and tables descriptors as mentioned in Section  6. The 
GSC from [14] using an RLS adaptive filter for the noise 
references is abbreviated as GSC-RLS. The three pro-
posed algorithms and the data for scenario 1 are available 
in [36].

First, the assumption that R̂yy|ss in (12) can be 
modeled as a rank-2 matrix is validated experi-
mentally. A closed-loop simulation was performed 
without the NR and AFC stages using Scenario  2. 
A fixed, random beamformer was used to combine 
the microphone signals. No noise was included in 
the microphone signals, β = 0.9 , the forward path 
gain was set as in Fig.  3 with K1 = KMSG − 15 dB and 
K2 = KMSG − 10 dB , the forward path delay was set to 
3R
2  and R = {512, 1024, 2048}samples . The speech cor-
relation matrix R̂yy|ss was computed in the closed-loop 
system, and its eigenvalues (cfr.(40)) are plotted in 
Fig. 4 over time. It can be seen that for all R, there are 
two distinct eigenvalues, which validates the assump-
tion of modeling R̂yy|ss as a rank-2 matrix. It is noted 
that as the forward path gain increases (after 6 s) these 
two distinct eigenvalues get closer to each other. Simi-
larly, as R decreases, the difference between these two 
eigenvalues and the others decreases. The reason for 
this is that the forward path delay also decreases, which 
is defined based on R.

Figure  5 shows the ASG and Mis for three iSNRs for 
all algorithms using scenario 1. The iSNR was computed 
in the reference microphone before any processing of the 
microphone signals. In addition, the STOI and SD scores 
for each algorithm are shown in Table  3. The forward 
path gain was set as in Fig.  3 with K1 = KMSG − 5 dB 
and K2 = KMSG + 10 dB . For the GSC-RLS, the gain was 
fixed at K1 = KMSG − 5 dB to avoid unstability in the 

closed-loop system. It is observed that both the Rank-2 
NR-AFC and AFC-NR increase the ASG and the Mis is 
reduced. Furthermore, the STOI and SD scores outper-
form those of the Rank-1 NR-AFC and GSC-RLS for all 
iSNRs.

Figure  6 shows the ASG and Mis for all algorithms 
using scenario 2. The STOI, PESQ-MOS, and SD scores 
are shown in Table 4. The forward path gain was set as 
in Fig. 3 with K1 = KMSG − 5 dB and K2 = KMSG + 10 dB 
for all algorithms. Results for the Rank-2 NR-AFC and 
the AFC-NR algorithm using the SPP function are also 
included. It can be seen that the Rank-2 NR-AFC and 
the AFC-NR outperform the Rank-1 NR-AFC in terms 
of ASG and Mis. The GSC-RLS also increases the ASG 
of the system, although when the forward path gain is 
reaching its maximum value, K2 , the Mis starts to diverge, 
which makes the closed-loop system unstable. Similarly 
to the results using scenario 1, the STOI, PESQ-MOS, 
and SD scores of both the Rank-2 NR-AFC and AFC-NR 
algorithms when using an oracle VAD outperform those 
of the Rank-1 NR-AFC and the GSC-RLS algorithms for 
all iSNRs. As expected, the inclusion of the SPP function 
decreases the performance of the Rank-2 NR-AFC and 
AFC-NR algorithms due to poorer estimates of the cor-
relation matrices.

Figure  7 shows the ASG and Mis for all algorithms 
using scenario 3. The forward path gain was set as in Fig. 3 
with K1 = KMSG − 5 dB and K2 = KMSG + 10 dB . For the 
GSC-RLS, K1 = KMSG − 10 dB and K2 = KMSG − 5 dB . It 
can be seen that the ASG is increased for the Rank-2 NR-
AFC and the AFC-NR algorithms for all iSNRs. It is also 
observed that the Rank-2 NR-AFC and AFC-NR decrease 
the Mis, however not as much as in scenario 1 and sce-
nario 2. It is also noted that the GSC-RLS increases the 
ASG until the forward path gain starts to increase, and 
then the system becomes unstable. The STOI and SD 

Fig. 4 Eigenvalues of R̂yy|ss for different window lengths
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scores are presented in Table 5. Both the Rank-2 NR-AFC 
and AFC-NR outperform the Rank-1 NR-AFC and the 
GSC-RLS algorithm for all iSNRs.

The observed high ASG values for the Rank-2 NR-
AFC and AFC-NR algorithms in scenario 1 and scenario 

2 can be explained by the inclusion of the NR filters 
in the ASG computation (cfr. (78)–(80)) which means 
that the MWF also influences the stability of the sys-
tem. The fluctuating ASG values for the Rank-1 NR-
AFC algorithm mean that the system stability is not 
guaranteed. This has been confirmed both by the per-
ceptual performance measures scores in Tables  3 and 
4 and by the presence of howling in the resulting audio 
signals. Additionally, it should be noted that the SD 
scores in Tables  3, 4 and 5 for all algorithms are con-
siderably higher than those reported in the literature 
[9]. The reason for this is the sensitivity of this metric to 
the presence of noise in the microphone signals, which 
distorts the signal. In the literature, most of the con-
sidered SNRs are around 30  dB, which is considerably 
higher than the ones in this paper. Similarly, the STOI 
and PESQ metrics are low in all scenarios. This is due 
to the metrics being computed using the estimate of 
the desired speech component in the closed-loop sys-
tem. This means that all changes in the NR and AFC 
filters are reflected in the desired signal estimate. In 
scenario 3, the feedback path estimate is being under-
modeled (cfr. Table  2) which explains the low ASG 
values for all the algorithms. The estimated feedback 
path has a smoother frequency response than the true 
feedback path which can cause a magnitude difference 

Fig. 5 ASG and Mis for the three cascade algorithms in scenario 1

Table 3 STOI and SD for the three cascade algorithms using 
scenario 1

SNR Algorithm STOI Mean (SD) Max (SD)

10 dB Rank-1 NR-AFC 0.33 198.00 307.14

Rank-2 NR-AFC 0.80 4.72 5.91

AFC-NR 0.85 4.57 10.37

GSC-RLS 0.53 10.38 11.75

Microphone signal 0.20 11.41 13.29

5 dB Rank-1 NR-AFC 0.28 90.91 117.43

Rank-2 NR-AFC 0.72 5.35 6.60

AFC-NR 0.77 4.65 10.10

GSC-RLS 0.54 7.40 9.26

Microphone signal 0.16 11.58 13.52

0 dB Rank-1 NR-AFC 0.23 147.52 256.43

Rank-2 NR-AFC 0.61 5.84 7.33

AFC-NR 0.58 6.02 10.01

GSC-RLS 0.43 7.62 8.98

Microphone signal 0.13 12.57 14.99



Page 15 of 18Ruiz et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:37  

Fig. 6 ASG and Mis for the three cascade algorithms in scenario 2

Table 4 STOI, SD, and PESQ for the three cascade algorithms using scenario 2

SNR Algorithm STOI Mean (SD) Max (SD) PESQ MOS

10 dB Rank-1 NR-AFC (oracle VAD) 0.63 44.99 89.08 1.04

Rank-2 NR-AFC (oracle VAD) 0.83 14.29 34.64 1.64

Rank-2 NR-AFC (SPP) 0.73 18.18 39.69 1.44

AFC-NR (oracle VAD) 0.79 16.68 37.88 1.55

AFC-NR (SPP) 0.78 18.61 40.36 1.42

GSC-RLS 0.71 27.70 72.25 1.13

Microphone signal 0.67 24.66 47.33 1.36

5 dB Rank-1 NR-AFC (oracle VAD) 0.60 36.66 68.54 1.05

Rank-2 NR-AFC (oracle VAD) 0.78 17.18 39.13 1.45

Rank-2 NR-AFC (SPP) 0.67 21.94 44.74 1.26

AFC-NR (oracle VAD) 0.70 20.41 42.51 1.34

AFC-NR (SPP) 0.70 24.00 46.37 1.24

GSC-RLS 0.68 27.31 59.17 1.34

Microphone signal 0.62 27.61 51.58 1.26

0 dB Rank-1 NR-AFC (oracle VAD) 0.56 32.17 56.34 1.08

Rank-2 NR-AFC (oracle VAD) 0.74 19.71 42.17 1.29

Rank-2 NR-AFC (SPP) 0.64 25.66 49.05 1.18

AFC-NR (oracle VAD) 0.67 22.83 46.51 1.22

AFC-NR (SPP) 0.67 25.73 48.94 1.18

GSC-RLS 0.63 31.52 67.50 1.31

Microphone signal 0.58 31.19 55.83 1.16
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in the ASG computation, resulting in a slowing increas-
ing ASG. Similarly to scenario 1 and 2, the system is not 
stable when using the Rank-1 NR-AFC algorithm. The 
GSC-RLS algorithm performs well whenever the for-
ward path gain is not too close to the MSG; however, it 
should be noted that changes in the acoustic environ-
ment cannot be tracked using this algorithm due to the 
prior knowledge that is required.

8  Conclusions
Three cascade multi-channel NR and AFC algorithms have 
been presented. Three different scenarios have been used 
to compare the performance of these algorithms in simula-
tions. It is shown that both the cascade (M + 1)-channel 
rank-2 MWF and PEM-AFC and the cascade M-channel 
PEM-AFC and rank-1 MWF algorithms outperform the 
cascade M-channel rank-1 MWF and PEM-AFC in terms 
of ASG and Mis. It is then shown in Section 7 that both 
the cascade (M + 1)-channel rank-2 MWF and PEM-AFC 
and the cascade M-channel PEM-AFC and rank-1 MWF 
are suitable to solve the combined AFC and NR problem 
in speech applications. It is also shown that by performing 
a rank-2 approximation of the speech correlation matrix 
the feedback path can be correctly estimated when an NR 
stage precedes the AFC stage.

Fig. 7 ASG and Mis for the three cascade algorithms in scenario 3

Table 5 STOI and SD for the three cascade algorithms using 
scenario 3

SNR Algorithm STOI Mean (SD) Max (SD)

10 dB Rank-1 NR-AFC (oracle VAD) 0.47 23.96 65.52

Rank-2 NR-AFC (oracle VAD) 0.67 12.45 17.33

Rank-2 NR-AFC (SPP) 0.54 21.11 27.45

AFC-NR 0.51 15.71 27.27

AFC-NR (SPP) 0.48 21.84 33.02

GSC-RLS 0.38 77.45 126.66

Microphone signal 0.53 22.76 29.23

5 dB Rank-1 NR-AFC (oracle VAD) 0.50 22.82 33.13

Rank-2 NR-AFC (oracle VAD) 0.62 15.25 20.53

Rank-2 NR-AFC (SPP) 0.50 25.21 32.41

AFC-NR (oracle VAD) 0.48 18.44 31.85

AFC-NR (SPP) 0.45 25.66 38.25

GSC-RLS 0.34 84.53 134.66

Microphone signal 0.46 26.68 34.30

0 dB Rank-1 NR-AFC (oracle VAD) 0.44 26.08 33.94

Rank-2 NR-AFC (oracle VAD) 0.57 18.45 25.24

Rank-2 NR-AFC (SPP) 0.45 29.66 37.10

AFC-NR (oracle VAD) 0.43 21.98 35.88

AFC-NR (SPP) 0.42 29.66 42.95

GSC-RLS 0.30 83.13 136.12

Microphone signal 0.41 30.82 37.56
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