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Abstract 

A three-stage approach is proposed for speaker counting and speech separation in noisy and reverberant environ-
ments. In the spatial feature extraction, a spatial coherence matrix (SCM) is computed using whitened relative transfer 
functions (wRTFs) across time frames. The global activity functions of each speaker are estimated from a simplex 
constructed using the eigenvectors of the SCM, while the local coherence functions are computed from the coher-
ence between the wRTFs of a time-frequency bin and the global activity function-weighted RTF of the target speaker. 
In speaker counting, we use the eigenvalues of the SCM and the maximum similarity of the interframe global activ-
ity distributions between two speakers as the input features to the speaker counting network (SCnet). In speaker 
separation, a global and local activity-driven network (GLADnet) is used to extract each independent speaker signal, 
which is particularly useful for highly overlapping speech signals. Experimental results obtained from the real meeting 
recordings show that the proposed system achieves superior speaker counting and speaker separation performance 
compared to previous publications without the prior knowledge of the array configurations.

Keywords  Multichannel blind source separation, Speaker counting and separation, Spatial coherence, Neural 
network

1  Introduction
Blind speech separation (BSS) involves the extraction of 
individual speech sources from a mixed signal without 
prior knowledge of the speakers and mixing systems [1]. 
BSS finds application in smart voice assistants, hands-
free teleconferencing, automatic meeting transcription, 
etc., where only mixed signals from single or multiple 
microphones are available. Several BSS algorithms have 
been developed based on different assumptions about the 
characteristics of the speech sources and the mixing sys-
tems [2–9]. Learning-based BSS approaches have recently 
received increased research attention due to advances in 
deep learning hardware and software. Promising results 

have been obtained using single-channel neural networks 
(NNs) [10–15]. To further improve separation perfor-
mance, techniques have been developed that exploit the 
spatial information embedded in the microphone array 
signals began to emerge [16–19]. However, most of these 
BSS techniques assume a known number of speakers 
prior to separation. As a key step prior to speaker separa-
tion, speaker counting [20] is examined next.

Some studies have assumed the maximum num-
ber of speakers during speaker separation [15, 21–23]. 
Another approach is to extract speech signals in a recur-
sive manner [24–26], where the BSS problem has been 
tackled by a multi-pass source-extraction procedure 
based on a recurrent neural network (RNN). In con-
trast to the previous methods that use implicit speaker 
counting for separation, a multi-decoder DPRNN [27] 
uses a count-head to infer the number of speakers 
and multiple decoder heads to separate the signals. A 
speaker counting technique has been proposed using a 
scheme that alternates between speech enhancement 
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and speaker separation [28]. Instead of exhaustive 
separation, one can selectively extract only the target 
speech signal, with the help of auxiliary information 
such as video images [29, 30], pre-enrolled utterances 
[31–33], and the location of the target speaker [34–37]. 
Although the target speaker extraction approach leads 
to significant performance improvements, the auxiliary 
information may not always be accessible. To overcome 
this problem, the speaker activity-driven speech extrac-
tion neural network [38] has been proposed to facilitate 
target speaker extraction by monitoring speaker activ-
ity. However, the speaker activity-driven speech extrac-
tion neural network is susceptible to adverse acoustic 
conditions in speaker extraction using speaker activ-
ity information alone. In such circumstances, multi-
channel approaches may be more advantageous than 
monochannel approaches. For example, deep cluster-
ing-based speaker counting and mask estimation have 
been incorporated into masking-based linear beam-
forming for speaker separation tasks [39]. Chazan et al. 
presented the use of a deep-neural network (DNN)-
based single-microphone concurrent speaker detector 
for source counting, followed by beamformer coeffi-
cient estimation for speaker separation [40, 41].

Despite the promising results obtained with DNN-
based approaches, most network models require a 
large amount of data for training. Another limitation is 
that identical array configurations used in the test, and 
training phases are preferred. Therefore, DSP-based 
approaches may have certain advantages [42]. Laufer-
Goldshtein et  al. proposed the global and local simplex 
separation algorithm by exploiting the correlation matrix 
of relative transfer functions (RTFs) across time frames 
[43]. The number of speakers is determined from the 
eigenvalue decay of the correlation matrix. The activity 
probabilities of each speaker are estimated from the sim-
plex formed by the eigenvectors. In the separation stage, 
a spectral mask is computed for the identified dominant 
speakers, followed by spatial beamforming and post-
filtering. Although the simplex-based approach is very 
effective in most cases, it does not work well for low-
activity speakers [44].

In general, the DNN-based approaches show promise, 
but require extensive training data and could not gen-
eralize well to unseen array configurations. The DSP-
based approaches require no training and often allow 
for low-resource implementation, but their performance 
depends on the array configuration. While the deep 
clustering-based speaker counting and mask estimation 
methods [39–41] are also array configuration-agnostic, 
their speaker counting capability relies on a single-chan-
nel input feature, which can degrade counting perfor-
mance in adverse acoustic conditions. Furthermore, the 

separation performance of these methods is dependent 
on the array configurations used.

The goal of this study is twofold. First, we reformulate 
a spatial feature that significantly improves the perfor-
mance and robustness of source counting and separation. 
Second, we seek to leverage the strengths of DSP-based 
and learning-based methods for improved speaker count-
ing and speaker separation performance, with robust-
ness to unseen room impulse responses (RIRs) and array 
configurations. Inspired by the work of Gannot et al. [43, 
45], which is a purely DSP-based approach, we propose a 
robust speaker counting and activity-driven speaker sep-
aration algorithm that combines statistical preprocessing 
and a neural network back-end. We formulate a modi-
fied spatial coherence matrix based on whitened relative 
transfer functions (wRTFs) as a spatial signature of direc-
tional sources. The whitening procedure provides spec-
trally rich phase information that proves to be a robust 
spatial signature for dealing with mismatched array con-
figurations. In the speaker counting stage, our approach 
attempts to reliably estimate the number of active speak-
ers in low-SNR and low-activity scenarios by incorporat-
ing eigenvalues from the spatial coherence matrix and the 
maximum similarity between the global activity distribu-
tions. In the speaker separation stage, the local coherence 
functions of each speaker are computed using the coher-
ence between the wRTFs of each time-frequency (TF) bin 
and that weighted by the corresponding global activity 
function. The target masks for each speaker are estimated 
using a global and local activity-driven network (GLAD-
net), which remains effective for “mismatched” RIRs and 
array configurations not included in the training data.

We train our DNN models with RIRs simulated using 
the image-source method [46], while the trained models 
are tested using the measured RIRs recorded at Bar-Ilan 
University [47]. Real-life recordings from the LibriCSS 
meeting corpus [48] are also used to validate the pro-
posed separation networks. In this study, the proposed 
speaker counting and speaker separation algorithms are 
compared with the simplex-based methods developed 
by Laufer-Goldshtein et al. [43] in terms of F1 scores and 
confusion matrices. Perceptual evaluation of speech qual-
ity (PESQ) [49] and word error rate (WER) are adopted 
as the performance measures in speaker separation tasks.

While inspired by Ref. [43], this study presents three 
main contributions that differ from the previous work. 
First, a learning-based robust speaker counting and activ-
ity-driven speaker separation algorithm is developed. Sec-
ond, a modified spatial coherence matrix is formulated to 
effectively capture the spatial information of independent 
speakers. A novel idea based on the maximum similarity 
between the global activity distribution of two speakers 
over time frames is explored as an input feature for speaker 
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counting. Third, an array configuration-agnostic GLAD-
net informed by the global and local speaker activities is 
proposed.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the problem formulation and a brief review 
of the simplex-based approach, which is used as the base-
line in this study. Section 3 presents the proposed speaker 
counting and speaker separation system. In Section  4, 
we compare the proposed system with several baselines 
through extensive experiments. Section  5 concludes the 
paper.

2 � Problem formulation and the baseline approach
2.1 � Problem formulation
Consider a scenario in which the utterances of J speakers 
are captured by M distant microphones in a reverberant 
room. We assume that there is no prior knowledge of the 
array configuration. The array signal model is described 
in the short-time Fourier transform (STFT) domain. The 
received signal at the mth microphone can be written as

where l and f denote the time frame index and frequency 
bin index, respectively; Am

j

(
f
)
 denotes the acoustic trans-

fer function (ATF) between the mth microphone and the 
jth speaker; Sj

(
l, f

)
 denotes the signal of the jth speaker; 

and Vm l, f  denotes the additive sensor noise. This 
study aims to estimate the number of speakers J (speaker 
counting) and extract independent speaker signals from 
the microphone mixture signals without information 
about the sources and the mixing process.

2.2 � Baseline method: the simplex‑based approach
In this section, we present the baseline by revisiting [43]. 
The simplex-based approach [43, 44] is based on the global 
and local simplex representations and relies on the assump-
tion of the speech sparsity in the STFT domain [50]. By 
assuming speech sparsity, each TF bin is dominated by 
either the speaker or the noise. The ideal indicator selected 
in each TF bin can be expressed as follows:

If a TF bin is not dominated by any speakers, such a TF 
bin will be dominated by noise, i.e., 

∑J
j=1Ij

(
l, f

)
= 0 . Let 

pGj (l) be the global activity of speaker j in frame l:

(1)Xm
(
l, f

)
=

J∑

j=1

Am
j

(
f
)
Sj
(
l, f

)
+ Vm

(
l, f

)

(2)Ij
(
l, f

)
=

{
1 jth speaker is dominant
0 otherwise

(3)pGj (l) =
1

F

F∑

f=1

Ij
(
l, f

)

which is the global activity associated with the jth speaker 
in the lth frame. Note that the global activities {
pGj (1)

}J

j=1
 depend only on the frame index, not on the 

frequency index.

2.2.1 � Spatial feature extraction
Assuming speech sparsity in the TF domain, the relative 
transfer function (RTF) [51], which represents the ratio 
between the ATF of the mth microphone and the ATF 
of the first (reference) microphone, can be written as 
follows:

In the following, a feature vector r(l) for each frame l 
is defined to compose D = 2× (M − 1)× K  elements of 
the real and imaginary parts of the computed ratios (4) 
for 1 ≤ k ≤ K  frequency bins and in (M-1) microphone 
signals:

where 
{
fk
}K
k=1

 are the selected frequencies. The cor-
relation matrix W ∈ R

L×L is computed, where 
[W]ln = 1

D r
T (l)r(n) . W can be approximated as [45]

where P =
[
pG1 . . .pGJ

]
∈ R

L×J is composed of the global 
activity vectors pGj =

[
pGj (1) . . . p

G
j (L)

]T
∈ R

L×1 associ-
ated with the jth speaker.

2.2.2 � Speaker counting
For J independent speakers, the matrix P should have 
rank J. It follows that the number of speakers can be 
determined by counting the principal eigenvalues of the 
correlation matrix W. However, selecting an appropriate 
threshold is not straightforward due to complex acous-
tic conditions. To select an appropriate threshold, the 
speaker counting problem has been formulated as a clas-
sification problem [43], where each class corresponds to 
a different number of speakers. A feature vector consist-
ing of the first J ′ principal eigenvalues of the correlation 
matrix is used as the input to the classifier

(4)

Rm(l, k) = Xm(l,k)
X1(l,k)

=





Am
j (f )

A1
j (f )

for Ij
�
l, f

�
= 1, 1 ≤ j ≤ J

Vm(l,f )
V 1(l,f )

for
�J

j=1Ij
�
l, f

�
= 0

(5)
rm(l) =

[
Rm

(
l, f1

)
Rm

(
l, f2

)
· · ·Rm

(
l, fK

)]

rc(l) =
[
r2(l)r3(l) · · · rM(l)

]

r(l) =
[
real

{
rc(l)

}
imag

{
rc(l)

}] T

(6)W ≈ PPT

(7)fbaseline 1 =
[
�1 �2 · · · �J ′

]T
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where J ′ is the maximum possible number of speakers 
and is set to 4 in this study. The multiclass support vector 
machine (SVM) is used as the classifier in [43].

2.2.3 � Speaker separation
Once the number of speakers (J) is available, the eigenvec-
tors associated with the J largest eigenvalues for each frame 
l are selected to form the global mapping vector

where 
{
uj(l)

}J
j=1

 denotes the lth element associated with 
the jth eigenvector.

According to [43, 45], the global mapping vector vG(l) 
can be expressed as a linear transformation of the global 
activity vector pG(l) :

with embedded information of speaker activities. The 
successive projection algorithm [52] can be applied to 
identify the simplex vertices and construct the transfor-
mation matrix G = [vG(l1), v

G(l2), . . . , v
G(lJ )] , where {

lj
}J
j=1

 represents frame indices of the simplex vertices. 
Hence, the global activity can be computed.

For the local mapping, each TF bin is assigned to a domi-
nant speaker or noise. The spectral mask can be obtained 
by using the weighted nearest-neighbor rule.

where πj =
∑L

n=1p
G
j (n) denotes the class normalization 

factor and ωln

(
f
)
 is a Gaussian weighting function [33]:

that is inversely related to the distance in the space 
defined by the local representation 

{
r
(
l, f

)}L
l=1

 between 
frame n and frame l. The signal of the jth speaker can be 
estimated by applying the spectral mask in (11) to the ref-
erence microphone signal:

where β is the attenuation factor to avoid musical noise. 
In this paper, β is set to 0.2 as in [43].

A linearly constrained minimum variance (LCMV) 
beamformer can be used to extract each independent 
speaker signals [43, 44], with the weights below

(8)vG(l) =
[
u1(l),u2(l), . . . ,uJ (l)

]T

(9)vG(l) = GpG(l)

(10)
pG(l) =

[
pG1 (l), p

G
2 (l), . . . , p

G
Ĵ
(l)

]T
= G−1vG(l)

(11)M
(
l, f

)
= arg max

j∈(1,...,J+1)

1

πj

L∑

n=1

ωln

(
f
)
pGj (n)

(12)ωln

(
f
)
= exp

{
−�r

(
l, f

)
− r

(
n, f

)
�
}

(13)ŜMask
j

(
l, f

)
=

{
X1

(
l, f

)
ifM

(
l, f

)
= j

βX1
(
l, f

)
otherwise,

where Â
(
f
)
=

[
â1
(
f
)
, . . . , âJ

(
f
)]T

∈ C
M×J denotes the 

RTF matrix with âj
(
f
)
=

[
Â1
j

(
f
)
, Â2

j

(
f
)
, . . . , ÂM

j

(
f
)]T

 of 
the jth speaker and Rnn

(
f
)
 is the noise covariance matrix. 

In this study, only sensor noise is assumed, i.e., 
Rnn = σnnI . As a result, (14) reduces to

where the RTF of the jth speaker can be estimated by

where Lj =

{
l
∣∣∣pGj (l) > ε, l ∈ {1, . . . , L}

}
 denotes the set 

of frames dominated by the jth speaker, and ε = 0.2 is an 
activity threshold.

To further illuminate the residual noise and interfer-
ence, a single-channel mask is applied [43, 44], as given 
by

where the vector x
(
l, f

)
=

[
X1

(
l, f

)
, . . . ,XM

(
l, f

)]T 
denotes the microphone signals, gjǫRJ×1 is a one-hot 
vector with one in the jth entry and zeros elsewhere, and 
β = 0.2 is a small factor to prevent from musical noise.

3 � Proposed method
Inspired by the above simplex-based approach, we 
develop a robust speaker counting and separation sys-
tem by exploiting spatial coherence features of array sig-
nals, as illustrated in Fig. 1. The system consists of three 
modules: the feature extraction module (Section  3.1), the 
speaker counting module (Section  3.2), and the speaker 
separation module (Section 3.3), as detailed in the sequel.

3.1 � Spatial feature extraction
The simplex-based method [43] exploits the spatial infor-
mation provided by the microphone array. As a result, 
spatial feature extraction plays a critical role in sub-
sequent speaker counting and separation algorithms. 
Instead of the RTF used in [43], in this study, we extract 
spatial information by whitening RTFs with no change in 
phase to enhance the spatial signature of the directional 
source, analogous to generalized cross-correlation with 
phase transformation (GCC-PHAT) [53]. In the light of 
the uncertainty principle [54], this helps to improve the 

(14)
wLCMV = R−1

nn

(
f
)
Â
(
f
)(

ÂH
(
f
)
R−1
nn

(
f
)
Â
(
f
))−1

gj ,

(15)wLCMV = Â
(
f
)(

ÂH
(
f
)
Â
(
f
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gj

(16)Âm
j

(
f
)
=

�l∈Lj
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(
l, f

)
X1∗

(
l, f

)

�l∈Lj
X1

(
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)
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(17)
ŜLCMV−Mask
j

(
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=
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wH
LCMV x

(
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)
gj ifM

(
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= j

βwH
LCMV x

(
l, f

)
gj otherwise,
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time domain resolution for the computation of the spatial 
coherence matrix. Instead of the real feature vector used 
in the simplex-based approach, a “whitened” complex 
feature vector r̃(l) is defined as follows:

Where

Rm(l.f ) is defined in (4), and {fk}Kk=1 is the selected fre-
quency band as in (5). Next, we construct a spatial coher-
ence matrix W̃ ∈ R

L×L with the lnth entry defined as

(18)
r̃(l) =

[
r̃
(
l, f1

)
r̃
(
l, f2

)
· · · r̃

(
l, fK

)]T
∈ C

(M−1)K×1

r̃
(
l, f

)
=

[
R2(l,f )
|R2(l,f )|

· · ·
RM(l,f )
|RM(l,f )|

]

where Re{·} is the real-part operator, �·� denotes the l2-
norm, and D̃ = �r̃(l)� �r̃(n)� = (M − 1)K  due to the fact 
that the feature vectors have been whitened. Note that 
the complex inner product of r̃(l) and r̃(n) is computed, 
which can also be regarded as a sign-sensitive cosine 
similarity based on the Euclidean angle [55]. An exam-
ple of the spatial correlation matrix computed using the 
method reported in the references [43–45] and the pro-
posed spatial coherence matrix are compared in Fig.  2, 
which is generated using a 12-second clip with a three-
speaker mixture captured by an eight-element uniform 

(19)W̃ln =
Re

{
r̃H (l)̃r(n)

}

�r̃(l)��r̃(n)�
=

1

D̃
Re

{
r̃H (l)̃r(n)

}

Fig. 1  Block diagram of the proposed speaker counting and separation system

Fig. 2  Examples of a the spatial correlation matrix W and b the spatial coherence matrix W̃ . The color bars at the top of each figure indicate 
the active span of each speaker
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linear array (ULA) with interelement spacing of 8 cm. 
The image in Fig.  2(b) is preferable to Fig.  2(a) because 
the time span of the proposed spatial coherence matrix 
aligns better than the baseline, especially at the overlap, 
as shown by the ground-truth activity bar at the top of 
the figure. This suggests that the proposed spatial coher-
ence matrix is effective in capturing speaker activity, 
much like a voice activity detector. In addition, the range 
of the proposed coherence matrix is within [−1, 1], which 
is a desired property for network training.

3.2 � Speaker counting
The flowchart of the proposed speaker counting approach 
is detailed in Fig. 3. Two features related to the speaker 
count are extracted from the spatial coherence matrix W̃ 
and input to the speaker counting network (SCnet), as 
will be detailed next.

In this study, we propose to use the eigenvalues 
{
�̃n

}L

n=1
 of 

the spatial coherence matrix W̃ as the feature for the classi-
fier. An example of scatter pattern of the eigenvalues to dis-
criminate between different speaker count classes, 
J ∈ {1, 2, 3, 4} , is illustrated in Fig.  4. We generated 
2000-sample speech mixtures for 1–4 speakers, with 0%, 
10%, 20%, 30%, and 40% overlap ratios. Sensor noise was 
added with 10 dB SNR. Dry signals were convoluted with the 
measured RIRs selected from the Multi-Channel Impulse 
Responses Database [47] that was recorded using an eight-
element ULA with interelement spacing of 8 cm and T60 = 
0.61 s. Each cross in the figure represents one observation to 
specify the number of speakers. Figure 4 shows the ability of 
the eigenvalues obtained from the correlation matrix and the 
coherence matrix to discriminate between different numbers 
of speakers. In addition, the eigenvalues of the coherence 

matrix W̃ can discriminate between different numbers of 
speakers better than those of the correlation matrix W . 
However, some of the observations cannot be classified into 
the correct class according to the eigenvalues. In this study, 
we evaluate the similarity between global activities as auxil-
iary information to address the cases where the principal 
eigenvalue-based counting method does not work.

Apart from eigenvalues of the spatial coherence matrix, 
another feature that can help speaker counting is introduced 
to deal with meeting scenarios in which the overlap ratio of 
conversation is often less than 20% [56]. For such scenarios, 
we first calculate a similarity matrix γ̃ jǫRj×j of the first j 
global activities with the pq-th entry defined as follows:

where “·” denotes the inner product, p̃Gp ∈ R
L×1 and 

p̃Gq ∈ R
L×1 denote the pth and qth global activities 

estimated from the spatial coherence matrix W̃ and 
1 ≤ p, q ≤ j . Next, we find the maximum similarity value 
of all entries but the diagonal entries.

Similarly, γ j
max denotes the maximum similarity calcu-

lated using the first j global activities obtained from the 
spatial correlation matrix W. An example of scatter pat-
tern of the maximum similarity to discriminate between 
different speaker count classes, J ∈ {1, 2, 3, 4} , is illus-
trated in Fig. 5. The data generation is identical to those 
of Fig.  4. To visualize the separability by using the pro-
posed feature, we plot the scatter plot by the projection 

(20)γ̃
j
pq =

p̃Gp · p̃Gq

�p̃Gp ��p̃
G
q �

(21)γ̃
j
max = max

p,q

(
γ̃ j − I

)
pq

Fig. 3  Flowchart of the proposed speaker counting approach
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Fig. 4  Scatter plots of the eigenvalues corresponding to the observations with J ∈ {1, 2, 3, 4} speakers. Each cross with different color represents 
an observation corresponding to different number of speakers. The left row shows the result with the correlation matrix W and the right row 
is the result with the coherent matrix W  
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onto a two-dimensional feature space. Figure 5 suggests 
that the observations are separable by the maximum 
similarity, which helps to classify the number of speakers. 
In Fig. 5(a), the single-speaker observations and the two 
to four speaker observations are clearly separable along 
the γ̃ 2

max coordinate. The one or two speaker observations 
and the three or four speaker observations are clearly 
separable along the γ̃ 3

max coordinate. In Fig. 5(b), the one 
to three speaker observations and the four speaker obser-
vations are clearly separable along the γ̃ 4

max coordinate.
In this study, the speaker counting problem is formu-

lated as a classification problem as in Ref. [43] with four 
classes corresponding to 1 to 4 speakers. For each obser-
vation (audio clip), the number of speakers is indicated 
by a one-hot vector z ∈ R

4×1 . For inference, the predic-
tion is the highest probability of the output distribution. 
Three different input feature vectors are defined for the 
assessment of speaker counting performance:

where J ′ = 4 is the maximum possible number of speak-
ers, and the eigenvalues are normalized by the maximum 
eigenvalue to improve convergence. Features fbaseline 2 is 
obtained from the spatial correlation matrix W, whereas 
features fproposal 1 and fproposal 2 are obtained from the pro-
posed spatial coherence matrix W̃ .

(22)

fbaseline 2 =
[
�2
�1

· · ·
�J ′

�1
γ 2
max · · · γ

J ′

max

]T
∈ 2(J ′−1)

fproposal 1 =

[
�̃2

�̃1
· · ·

�̃J ′

�̃1

]T
∈ R

J ′−1

fproposal 2 =

[
�̃2

�̃1
· · ·

�̃J ′

�̃1
γ̃ 2
max · · · γ̃

J ′

max

]T
∈ R

2(J ′−1),

A DNN model termed SCnet is used as the classifier 
for speaker counting. Figure 6 shows an SCnet consisting 
of three dense layers followed by a rectified linear unit 
(ReLU) activation, with softmax activation in the out-
put layer. In addition, (Fsize,64) means a dense layer with 
input size = Fsize and output size = 64. The cross-entropy 
is used as the loss function in network training.

3.3 � Speaker separation
The simplex-based method relies solely on the spatial cue 
to perform the subsequent beamforming, which depends 
on the specific array configuration. In contrast, our learn-
ing-based approach uses global and local spatial activity 
features to train the model, as shown in Fig. 7. The pro-
posed system consists of two main modules: (1) the local 
coherence estimation of independent speakers, which 
monitors the local activity of each speaker according to 
the global activity of the speaker, and (2) the global and 
local activity-driven network (GLADnet), which extracts 
the speaker signal with the auxiliary information about 
the global and local activities of the speaker.

In the local coherence estimation of a speaker, the local 
coherence is calculated between the wRTF of the target 
speaker and the wRTF of each TF bin. The wRTF of the 
jth speaker is calculated as follows:

where Âm
j

(
f
)
 is the estimated RTF. Thus, the local coher-

ence of the jth speaker can be calculated as follows:

(23)�aj
�
f
�
=




�A2
j

�
f
�

����A2
j

�
f
����

· · ·

�AM
j

�
f
�

����AM
j

�
f
����



T

Fig. 5  Scatter plots of the maximum similarity to the observations with J ∈ {1, 2, 3, 4} speakers. Each cross with different color represents 
an observation corresponding to different number of speakers
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where r̃
(
l, f

)
 is given by the equation under (14). Local 

coherence serves to inform the DNN about the local 
activity of a speaker.

GLADnet is based on a convolutional recurrent net-
work [57], as illustrated in Fig. 8. The network has three 
inputs: the magnitude spectrogram of the reference 
microphone signal, the global activity of the speaker, 
and the local activity of the speaker. GLADnet has six 
symmetric encoder and decoder layers with an 8-16-
32-128-128-128 filter. The convolutional blocks feature 
a separable convolution layer, followed by batch nor-
malization, and exponential linear unit activation. The 
output layer terminates with sigmoid activation. The 
convolution kernel and step size are set to (3,2) and 
(2,1), respectively. Note that 1 × 1 pathway convolu-
tions (PConv) are used as skip connections, which leads 
to considerable parameter reduction with little perfor-
mance degradation. The global activity is concatenated 
to the output of the linear layer with 256 nodes in each 
time frame. The resulting vector is then fed to the fol-
lowing bidirectional long short-term memory layers 
with 256 nodes to sift out the latent features pertaining 
to each speaker. The soft mask estimated by the net-
work is multiplied element-wise with the noisy magni-
tude spectrogram to yield an enhanced spectrogram. 
The complete complex spectrogram can be obtained by 
combining the enhanced magnitude spectrogram with 
the phase of the noisy spectrogram. The network is 
trained to minimize the compressed mean square error 

(24)
pLj

(
l, f

)
=

Re
{
ãHj (l)̃r(l,f )

}

�ãj(l)��r̃(l,f )�

= 1
M−1Re

{
ãHj (l)̃r

(
l, f

)}
,

Fig. 6  Speaker counting network (SCnet)

Fig. 7  Block diagram of the proposed speaker separation module
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between the masked magnitude 
(
Ŝ
)
 and the ground-

truth magnitude (S)

where c = 0.3 is the compression factor and ‖‖F denotes 
the Frobenius norm.

4 � Experimental study
Experiments were performed to validate the proposed 
learning-based speaker counting and separation system. 
The networks were trained on the simulated RIRs and 
tested on the measured RIRs with different T60s and 
array configurations recorded at Bar-Ilan University [47]. 
For meeting scenarios, we also tested the proposed sys-
tem on real meeting recordings from the LibriCSS meet-
ing corpus [48].

4.1 � Training and validation dataset
In total, 50,000 and 5000 samples were used in training 
and validation, respectively. Dry speech signals selected 
from the train-clean-360 subset of th

LibriSpeech corpus [58] were used for training and 
validation. Noisy speech mixtures edited in 12-s clips 
were prepared with different numbers of speakers 
J ∈ {1, 2, 3, 4} in reverberation conditions and signal-
to-noise ratios (SNRs) between −5 dB and 5 dB. The 
overlap ratio of the speech mixtures varied from 0 to 
40%. Reverberant microphone signals were simulated 
by filtering the dry signals with the simulated RIRs 
using the image-source method [46]. The reverbera-
tion time was within the range of [0.2, 0.6] s. Sensor 

(25)JCMSE =
∑

t,f

�|S|c −
∣∣∣Ŝ
∣∣∣
c
�
2

F

noise was added with SNR = 15, 25, and 35 dB. In this 
study, simulated (Gaussian) noise was used to simulate 
the sensor noise. Two microphone array geometries 
were used for training and validation, as depicted in 
Fig. 9. The first microphone array is an eight-element 
ULA with interelement spacing of 8 cm. The geome-
try of the second array is similar to that of the seven-
element uniform circular array (UCA) used in the 
LibriCSS dataset [48] which has one microphone at the 
center and the other six uniformly distributed around 
a circle with a radius of 4.25 cm. The RIRs of rectan-
gular rooms with randomly generated dimensions 
(length, width, and height) in the range of [3 × 3 × 2.5, 
7 × 7 × 3] m were simulated. The ULA was placed at 
0.5 m from the wall, while the UCA was placed at the 
center of the room. Any two speakers were separated 
by at least 15°.

4.2 � Implementation and evaluation metrics
In this study, the signal frame was 128 ms long with a 32 
ms stride. A 2048-point fast Fourier transform was used. 
The sample rate was 16 kHz. The feature vectors in (5) 
and (18) comprised K = 257 frequency bins in 1–3 kHz. 
We chose this frequency range because, as in Ref. [43], it 
performed well in all of the scenarios examined for dif-
ferent simulated and measured RIRs and array configu-
rations. In the experiment, SCnet and GLADnet were 
trained using the Adam optimizer with a learning rate of 
0.001 and a gradient norm clipping of 3. The learning rate 
was halved if the validation loss did not improve for three 
consecutive epochs.

The F1 score and the confusion matrix are used to 
evaluate the speaker counting performance. The F1 score 
is a measure of the accuracy of a test in classification 

Fig. 8  The GLADnet
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problems. It is defined as the harmonic mean of preci-
sion and recall [59]. PESQ [49] is used as a metric for 
speech quality and is computed only in the period when 
the speech is present. In addition, we also evaluate the 
WER achieved by the proposed system compared to 
the baselines, by using a transformer-based pre-trained 
model from the SpeechBrain toolkit [60]. The pre-
trained model was trained on the LibriSpeech dataset. 
The WER obtained with this model when tested on the 
test-clean subset is 1.9%.

4.3 � Spatial feature robustness
In this section, we aim to investigate the robustness of 
the algorithm with respect to the spatial correlation 

matrix and the spatial coherence matrix for measured 
RIRs and unseen array geometries. The proposed spa-
tial coherence matrix based on wRTFs is used as a spa-
tial signature for directional sources. The whitening 
process provides spectrally rich information that better 
accommodates unseen array configurations and meas-
ured RIRs. To see this, we compute the Modal Assurance 
Criterion (MAC) value on the spatial correlation matrix 
and the spatial coherence matrix for various unseen array 
configurations and RIRs. First, we vectorize the spatial 
matrix as ψ = [w1 w2 · · · wL]

T ∈ R
L2×1 , where 

wl = [Wl1 Wl2 · · · WlL] ∈ R
L×1 . ψ and ψ ′ repre-

sent feature vectors associated with two spatial matrices. 
The MAC value between ψ and ψ ′ is defined as follows:

Fig. 9  Settings for network training with different microphone array geometries
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To evaluate the robustness of the proposed spatial 
feature extraction method, we generated four differ-
ent test datasets, each consisting of 500 samples. The 
first three datasets (G1, G2, and G3) were generated 
using measured RIRs from the Multi-Channel Impulse 
Responses Database [47], while the last dataset (sG1) 
was generated using simulated RIRs. As shown in 
Fig. 10, the first array configuration (G1) is included in 
the training set, while the second and third array con-
figurations (G2 and G3) are considered “unseen” to the 
trained model. Note that sG1 had the same array con-
figuration as G1, but with simulated RIRs. Tables 1 and 
2 summary the MAC values obtained using the spa-
tial correlation matrix and spatial coherence matrix. 
The off-diagonal MAC values of the spatial coherence 

(26)MAC
(
ψ ,ψ ′

)
=

(
ψTψ ′

)2

ψTψψ ′Tψ ′

Fig. 10  Microphone array settings for experiments to investigate the effects of array configurations

Table 1  MAC values calculated using the spatial correlation 
matrix for various array configurations and RIRs

MAC sG1 G1 G2 G3

sG1 1 0.923 0.918 0.906

G1 0.923 1 0.918 0.910

G2 0.918 0.918 1 0.919

G3 0.906 0.910 0.919 1

Table 2  MAC values calculated using the spatial coherence 
matrix for various array configurations and RIRs

MAC sG1 G1 G2 G3

sG1 1 0.989 0.986 0.978

G1 0.989 1 0.986 0.975

G2 0.986 0.986 1 0.993

G3 0.978 0.975 0.993 1

Table 3  Comparison of speaker counting performance under different acoustical conditions in terms of F1 score

T60 (ms) 360 610

SNR (dB) 30 20 10 30 20 10 Avg.

baseline 1 99.40 94.42 55.94 98.81 93.72 59.00 83.55

baseline 2 99.52 96.22 82.53 99.57 96.54 84.94 93.22

proposal 1 99.62 98.66 90.79 99.72 98.63 91.29 96.45

proposal 2 99.75 99.37 91.01 99.75 99.25 91.88 96.84

Table 4  Comparsion of low-activity speaker counting performance under different acoustical conditions in terms of F1 score

T60 (ms) 360 610

SNR (dB) 30 20 10 30 20 10 Avg.

Baseline 1 91.34 85.91 54.31 92.50 84.92 50.73 77.22

Baseline 2 97.65 89.49 64.27 96.29 86.47 65.78 82.73

Proposal 1 99.70 95.58 71.17 99.16 94.41 74.47 89.08

Proposal 2 99.70 98.43 78.21 99.75 98.10 80.22 92.40
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matrix are consistently close to one and larger than 
those of the spatial correlation matrix. The MAC test 
demonstrates that the proposed spatial coherence 
matrix exhibits superior robustness to different array 
configurations and RIRs compared to the spatial cor-
relation matrix. This property is desirable for the sub-
sequent learning-based speaker counting and speaker 

separation approaches when dealing with unseen array 
configurations and measured RIRs.

4.4 � Speaker counting performance
In the following, we examine several speaker counting 
methods for different levels of sensor noise and T60s. 
We generated 2000-sample speech mixtures for 1–4 

Fig. 11  Confusion matrices for the speaker counting results obtained using a baseline 1, b baseline 2, c proposal 1, and d proposal 2
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speakers, with 0%, 10%, 20%, 30%, and 40% overlap ratios 
and dry speech signals from the test-clean subset of the 
LibriSpeech corpus. Sensor noise was added with SNR 
= 10, 20, and 30 dB. The measured RIRs were selected 
from the Multi-channel Impulse Responses Database 
[47] recorded using an eight-element ULA with interele-
ment spacing of 8 cm and T60 = 0.36, 0.61 s at Bar-Ilan 
University. The RIRs were measured in 15° intervals from 
−90 to 90° at distances of 1 and 2 m from the array center. 
Table  3 summarizes the speaker counting results in F1 
scores. We compare the proposed counting approaches 
with two baselines. Baseline 1 is the method proposed 
in [43]. The SVM classifier with fbaseline 1 in (7) as the 
input feature is used for training. Baseline 2 is the SCnet 
trained with fbaseline 2 in (22). For the proposed methods, 
proposals 1 and 2 represent the SCnet trained with fpro-

posal 1 and fproposal 2 in (22). The speaker counting perfor-
mance summarized in Table  3 suggests that baseline 1 
performs comparably with baseline 2 in high SNR con-
ditions. However, the speaker counting performance of 
baseline 1 degrades significantly as the SNR decreases. 
The feature using the eigenvalues obtained from the spa-
tial coherence matrix (proposal 1) significantly outper-
form those obtained from the spatial correlation matrix 
(baseline 1), especially when the SNR is low. In addi-
tion, the method trained with the maximum similarity 
(proposal 2) could further improve the speaker count-
ing performance over the method trained with eigenval-
ues only (proposal 1). In this study, speaker counting is 
highly dependent on the quality of spatial information 
extracted from the microphone array. However, it should 
be noted that spatial features tend to degrade as the SNR 
decreases. As a result, the counting performance may be 
relatively lower at SNR = 10.

Next, we investigate speaker counting in low-activity 
scenarios using four-speaker mixtures, where the first 
speaker was active for only 5% of the time. In Table 4, we 
see a significant performance degradation in the SCnet 
trained on the eigenvalues of the spatial correlation 
matrix (baseline 1), even in high-SNR conditions. In con-
trast, the SCnet trained on the eigenvalues and the maxi-
mum similarities computed using the proposed spatial 
coherence matrix (proposal 2) performs quite satisfacto-
rily despite the unbalanced speaker activity.

Lastly, we investigate speaker counting using the real-
life recordings from the LibriCSS dataset [48]. There are 
10 one-hour sessions, including six 10-min mini-sessions 
in each session with different speaker overlap ratios (0S, 
0L, 10%, 20%, 30%, and 40%). In the 0% case, 0S and 0L 
represent the signals with short and long silence periods, 
where inter-utterance silence lasts between 0.1–0.5s and 
2.9–3.0s. The test data was pre-segmented into 12-s clips 
containing 1 to 4 speakers in each session.

The speaker count of each audio clip was labeled by 
using the ground-truth information. In addition, the 
dataset contains 511, 1119, 614, and 154 examples for 
one, two, three, and four speakers, respectively. The 
results of speaker counting are summarized in the confu-
sion matrices depicted in Fig.  11. The F1 scores for the 
baselines 1 and 2, proposals 1 and 2 were 88.37%, 92.44%, 
96.48%, and 97.36%. From Fig.  11, we can see that the 
methods trained on the features from the spatial coher-
ence matrix (proposals 1 and 2) outperform the meth-
ods trained on the features from the spatial correlation 
matrix (baselines 1 and 2). Figure 11(c) and (d) show that 
the methods trained on maximum similarities (proposal 
2) yield significantly lower underestimation rates than the 
methods trained on eigenvalues only (proposal 1). For the 

Fig. 12  Ground truth speaker activities for a case I and b case II
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Fig. 13  Spatial coherence matrices for different number of microphones in a case I and b case II



Page 16 of 21Hsu and Bai ﻿EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:36 

BSS problems, underestimation can undermine the sub-
sequent separation, while overestimation is less critical. 
In summary, we extract spatial information by whiten-
ing the RTFs without changing the phase to enhance the 
spatial signature of the directional source, analogous to 
generalized cross-correlation with phase transformation 
(GCC-PHAT) [53]. In the light of the uncertainty prin-
ciple [54], this helps to improve the time domain resolu-
tion for the computation of the spatial coherence matrix, 
which in turn leads to a more accurate estimation of the 
spatial activity, especially in low SNR cases. This enables 
a more accurate estimation of the maximum similarity of 
two global activities as independent activities, without 
overlooking scenarios with low activity speakers.

Furthermore, unlike most multichannel source count-
ing methods, which typically require more microphones 
than sources, the simplex-based and the proposed meth-
ods are limited by the total number of frames used to 
compute the spatial correlation matrix and the spatial 
coherence matrix, not the number of microphones. This 
implies that, in theory, there is virtually no limit to the 
number of speakers that can be identified. In fact, the 
only limit on counting accuracy is the degree of time 
overlap. To see this, we give two examples with different 
speaker activity patterns to show the maximum num-
ber of independent speakers that can be identified using 
ULAs with 2–5 elements evenly spaced at 8 cm.

Case I represents a scenario where four speakers are 
active in moderately overlapping time periods, as shown 
in Fig. 12(a). Note that at 2–4 s, three speakers are active 
concurrently. Inspection of Fig.  13(a) indicates that the 
spatial coherence matrices associated with different num-
bers of microphones remain very similar. In this case, the 
eigenvalue distribution analysis reveals that the number 

of sources can be accurately estimated, even when the 
number of speakers (4) exceeds the number of micro-
phones (5), as shown in Fig. 14(a).

Case II presents a scenario where the proposed source 
counting method fails, where four independent speakers 
are active with 100% overlap, as shown in Fig.  12(b). In 
this case, the spatial coherence matrices in Fig. 13(b) show 
no meaningful patterns of activity, regardless of the num-
ber of microphones. The eigenvalue distribution analysis 
in Fig. 14(b) provides an incorrect estimate, one. In sum-
mary, methods based on simplex preprocessing are not 
limited by the number of microphones, but rather by the 
overlap percentage of the speaker activity time span.

4.5 � Speaker separation performance
In the following, we compare the proposed speaker 
separation approach (GLADnet) with three baselines. 
The first baseline (mask) uses only a spectral mask (13). 
The second baseline (LCMV-mask) is the simplex-based 
approach [43, 44] with beamforming and spectral mask-
ing (17). The third is the GLADnet, which is trained only 
on the global activity, called the global activity-driven 
network (GADnet). To evaluate the robustness of the 
proposed speaker separation approach when applied to 
unseen RIRs and array configurations, we created three 
2000-sample test datasets for three different array config-
urations (G1, G2, and G3) using the measured RIRs from 
the Multi-Channel Impulse Responses Database [47]. The 
array configurations G1, G2, and G3 are shown in Fig. 10.

First, we examine the separation performance using the 
G1 configuration for different overlap ratios and T60s. 
The results in Fig. 15 show that the proposed GLADnet 
outperforms the three baselines in terms of speech qual-
ity. The performance of the GADnet, which is not trained 

Fig. 14  Eigenvalue distribution in descending order of the spatial coherence matrix for a case I and b case II
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with spatial features, degrades drastically as the overlap 
ratio increases. While the LCMV-mask method achieves 
comparable WER to GLADnet at moderate T60 = 360 
ms, its separation performance drops sharply at high 
reverberation.

Next, the effect of array configurations on separation 
performance is investigated. Figure  16 reveals that the 
speech quality (PESQ) and the ASR performance (WER) 
using the LCMV-mask method degrade as the array spac-
ing and the array aperture decrease, even for moder-
ate T60s. In contrast, the proposed GLADnet performs 

quite satisfactorily despite the unseen RIRs and array 
geometries.

We also evaluated the proposed network in speaker 
separation using a more realistic LibriCSS dataset. The 
dataset generation for network testing is identical to that 
for speaker counting. Figure  17 shows that the LCMV-
mask method has a comparable performance to the pro-
posed GLADnet when the overlap ratio is low. However, 
the performance of the LCMV-mask drops dramatically 
at high overlap ratios. In addition, GADnet performs 
satisfactorily only for non-overlapping speech mixtures. 

Fig. 15  Comparison of separation performance with array configuration (G1) in terms of a, c PESQ and b, d WER for different overlap ratios
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In summary, the separation performance of baselines 
such as mask and LCMV-mask, which rely solely on 
spatial information, can be significantly affected by the 
inter-element spacing and array aperture. On the other 
hand, the baseline GADnet, which relies solely on spec-
tral information, can suffer performance degradation in 
adverse acoustic conditions such as large reverberation 
and high overlap ratios. In contrast to these baselines, 
the proposed GLADnet exploits both spatial and spectral 
information to achieve superior performance in terms 
of PESQ and WER metrics. In addition, the GLADnet is 
trained using the global and local activities derived from 

the wRTFs, which is less sensitive to unseen RIRs and 
array configurations.

5 � Conclusions
In this paper, a learning-based robust speaker count-
ing and separation system has been implemented by 
integrating array signal processing and DNN. In feature 
extraction, the spatial coherence matrix computed with 
wRTFs across time frames shows superior robustness to 
different array configurations and RIRs compared to the 
spatial correlation matrix. In speaker counting, the SCnet 
trained on the eigenvalues and the maximum similarities 

Fig. 16  Comparison of separation performance with array configurations (G1, G2, and G3) in terms of a, c PESQ and b, d WER for different array 
configurations
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obtained from the spatial coherence matrix is conducive 
to speaker counting in adverse acoustic conditions, espe-
cially in unbalanced voice activity scenarios. In speaker 
separation, the GLADnet based on global and local spa-
tial activities proves to be capable of effective and robust 
enhancement with different overlap ratios for unseen 
RIRs and array configurations, which is highly desirable 
for real-world applications.
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