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Abstract 

In this paper, we propose a technique for removing a specific type of interference from a monaural recording. 
Nonstationary interferences are generally challenging to eliminate from such recordings. However, if the interfer-
ence is a known sound like a cell phone ringtone, music from a CD or streaming service, or a radio or TV broadcast, 
its source signal can be easily obtained. In our method, we define such interference as an acoustic object. Even 
if the sampling frequencies of the recording and the acoustic object do not match, we compensate for the mis-
match and use the maximum likelihood estimation technique with the auxiliary function to remove the interference 
from the recording. We compare several probabilistic models for representing the object-canceled signal. Experimen-
tal evaluations confirm the effectiveness of our proposed method.

Keywords  Noise suppression, Acoustic object, Blind synchronization, Sampling frequency mismatch, Maximum 
likelihood estimation, Majorization–minimization algorithm

1  Introduction
Unlike multichannel recording, to which various array 
signal processing techniques can be applied, remov-
ing nonstationary noise from a monaural recording is 
generally challenging. Some algorithms  [1–3] for noise 
suppression are based on estimating a noise power spec-
trum. Because these algorithms assume stationary noise, 
the accuracy of noise estimation is imperfect.

However, the situation is different when the sound 
source waveform of the interference sound is known in 
advance. For instance, it becomes feasible to obtain sig-
nal waveforms for specific sounds such as ringtones of 

mobile phones, commercially distributed music, televi-
sion broadcasts, and similar sounds. We define these sig-
nals as acoustic objects. As with general noise removal, 
various applications can be considered for removing 
these acoustic objects. For example, one might wish to 
eliminate mobile phone ringtones or alarms that were 
inadvertently included in a recording, remove the music 
to circumvent copyright issues, or attenuate any interfer-
ing noise to enhance the precision of speech recognition 
and acoustic scene recognition. Additionally, it may be 
desirable to remove announcements that are specific to 
certain locations in order to anonymize the location of 
the recording. This study aims to achieve high-precision 
removal of the acoustic object from monaural recordings 
by utilizing it.

We treat the obtained acoustic object as a new chan-
nel and apply array signal processing. Note that the 
recording contains an acoustic object regardless of 
when or where it was acquired. However, the sampling 
frequencies of the recording and the available acous-
tic object can be mismatched even when the nominal 
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sampling frequencies are the same. The time drift due 
to the sampling frequency mismatch makes the fre-
quency response time variant, which differs from the 
assumption in array signal processing.

An asynchronous microphone array  [4–19], which 
consists of independent recording devices, also has 
a sampling frequency mismatch. Such a mismatch 
degrades the performance of signal processing  [4–6]. 
To compensate the mismatch, blind synchronization 
methods that use only recordings without prior infor-
mation have been proposed [7–16] and applied as pre-
processing methods for array signal processing [17–19].

In this study, we propose an “acoustic object cancel-
ler,” a framework to remove an acoustic object from a 
monaural recording. The monaural recording and the 
obtained acoustic object are treated as components of 
an asynchronous microphone array and we apply one 
of the blind synchronization methods  [7] for compen-
sating the sampling frequency mismatch. Then, the fre-
quency response of the acoustic object is determined 
by the maximum likelihood estimation by the auxiliary 
function method, also known as the majorization–min-
imization (MM) algorithm  [20], so the acoustic object 
is removed from the recording.

This paper is partially based on a conference 
paper [21] in which we proposed the framework of the 
acoustic object canceller. In summary, the main contri-
butions of this paper are as follows.

•	 We consider three types of model for the object-
canceled signal for the maximum likelihood esti-
mation: generalized Gaussian distribution, mul-
tivariate Laplace distribution, and local Gaussian 
distribution.

•	 We experimentally investigate the dependence of 
the performance on the model parameters using 

the three types of desired sound and four types of 
acoustic objects.

•	 To confirm the effectiveness of the acoustic object 
canceller, we compare it with the amplitude-based 
noise suppression method [22].

•	 We also evaluated the sound quality of the proposed 
method using two speech quality metrics: Perceptual 
Evaluation of Speech Quality (PESQ) [23] and Short-
Time Objective Intelligibility (STOI) [24].

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the problem setting. In Section 3, the 
acoustic object canceller is described. In Section  4, we 
carried out evaluations from the following four perspec-
tives: (i) the effectiveness of the synchronization, (ii) the 
performance in the model for frequency response estima-
tion, and (iii) comparison with the conventional method, 
and (iv) the evaluation of sound quality. We conclude the 
paper in Section 5.

2 � Problem setting
We assume a situation where an acoustic object inter-
feres with a monaural recording. Let x(t) be a monaural 
recorded signal that is modeled by

where o(t) and h(t) are the acoustic object signal and 
the impulse response from the sound source of o(t) to 
the microphone (see Fig.  1),  and  “∗ ” is the convolution 
operator. s(t) denotes signals other than the acoustic 
object signal, such as the desired signal to be recorded 
and background sound. The variable td is the time differ-
ence between x(t) and o(t). The objective of this study is 
to estimate o(t − td) ∗ h(t) including unknown variables 
h(t) and td using o(t) to obtain s(t). Hereafter, we call s(t) 
the target signal.

(1)x(t) = o(t − td) ∗ h(t)+ s(t),

Fig. 1  Problem setting. The acoustic object o(t) radiated through an acoustic path interferes with the monaural recording. Here, the loudspeaker 
has a D/A converter that converts o[n] to o(t), and the microphone has an A/D converter that converts x(t) to x[n]
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We formulate discrete signals of x(t) and o(t). Analog-
to-digital (A/D) converters that sample the monaural 
recorded signal x(t) and the acoustic object signal o(t) 
are different. Therefore, even when the common nomi-
nal sampling frequencies are the same, the sampling fre-
quency differs slightly, mainly because of differences in 
the clock generators. In this study, we assume that this 
slight sampling frequency mismatch can be expressed 
as an unknown time-invariant dimensionless quantity ǫo 
( |ǫo| ≪ 1 )  [7]. Let x[n] and o[n] denote the recorded sig-
nal and the acoustic object signal, expressed as

The x[n] and o[n] are the representations in the dis-
crete-time domain, respectively. fx and fo denote the 
sampling frequency of the recording signal and acoustic 
object signal, respectively.

3 � Acoustic object canceller
We propose a framework “acoustic object canceller” that 
removes the acoustic object signal from the monaural 
recorded signal. Figure 2 shows an overview of the signal 
processing blocks that make up the acoustic object can-
celler. The acoustic object canceller has two inputs and 
an output. The two inputs are the monaural recorded sig-
nal x[n] and the obtained acoustic object signal o[n]. The 
output is the estimated target signal ŝ[n] from which the 
acoustic object signal is removed.

The acoustic object canceller consists of three major 
processes: time shift compensation, sampling frequency 
mismatch compensation, and frequency response esti-
mation. In time shift compensation, we synchronize the 
recorded and acoustic object signals by a rough time 
shift (detailed in Section  3.1). In sampling frequency 

(2)x[n] =x
n

fx
= x

n

(1+ ǫo)fo
,

(3)o[n] =o

(

n

fo

)

.

mismatch compensation, we compensate for the sam-
pling frequency mismatch using blind synchronization 
techniques proposed for ad-hoc microphone arrays  [7] 
(detailed in Section  3.2). In frequency response estima-
tion, the frequency response of the acoustic object signal 
is obtained by maximum likelihood estimation, assuming 
the model of the target signal (detailed in Section 3.3).

3.1 � Time shift compensation
Time shift compensation is achieved by estimating the 
time difference td between the recorded signal x[n] and 
the acoustic object signal o[n] and time-shifting the 
acoustic object signal. However, accurate estimation of 
the continuous time difference td in Eq.  (1) is challeng-
ing when a sampling frequency mismatch occurs, and 
h(t) includes the time delay from the loudspeaker to the 
microphone. On the other hand, the estimation accuracy 
of td need not be perfect since slight estimation errors in 
td can be compensated by the frequency response estima-
tion (described in Section  3.3). Therefore, the discrete-
time difference τ is estimated instead of the continuous 
time difference td . Since we assume that the sampling fre-
quency mismatch ǫo is |ǫo| ≪ 1 , there is a sufficiently high 
correlation between x[n] and o[n] even without sampling 
frequency mismatch compensation. Thus, the estimated 
time difference τ̂ is calculated by finding the time shift τ 
that maximizes the cross-correlation function between 
x[n] and o[n]:

Hereafter, the time-shifted version of o[n] using the 
estimated time difference τ̂ is denoted by ô[n] = o[n− τ̂ ].

3.2 � Sampling frequency mismatch compensation
We compensate for the sampling frequency mismatch 
between the monaural recorded signal x[n] and the time-
shifted acoustic object signal ô[n] . Although resampling 

(4)τ̂ = argmax
τ

{

∑

n

o[n− τ ]x[n]
}

.

Fig. 2  Overview of procedures in proposed acoustic object canceller. First, we synchronize the recording and acoustic object (time shift 
compensation and sampling frequency mismatch compensation). Then the acoustic object is removed using an estimated frequency response
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with a sinc function is necessary to compensate for sam-
pling frequency mismatch, since most array signal pro-
cessing is performed in the short-time Fourier transform 
(STFT) domain, it is efficient to obtain a compensated 
STFT domain representation. Therefore, some com-
pensation techniques for sampling frequency mismatch 
based on the linear-phase drift (LPD) model have been 
proposed  [7, 9, 14–16]. The LPD model applies a linear 
phase shift in the STFT domain. Hereafter, we denote the 
STFT domain representations of the monaural recorded 
signal x[n] as X(k, m) and the STFT domain represen-
tations of the time-shifted acoustic object signal ô[n] as 
Ô(k ,m) . k and m are frequency and time frame indices, 
respectively.

In this study, we use the sampling frequency mismatch 
compensation technique [7]. We adopt the same assump-
tions and approximations as those in the application of 
sampling frequency mismatch compensation  [17, 18]. 
We assume that the sources have stationary amplitudes 
and are motionless and approximate that the phase dif-
ference between channels caused by sampling frequency 
mismatch is constant in the time frame m. Then, the sam-
pling frequency mismatch ǫo is compensated by a linear 
phase shift in the STFT domain. The signals compen-
sated using accurate ǫo are expressed as

and are stationary at each discrete frequency k. Here, 
Ô(k ,m; ǫo) is the acoustic object signal with sampling fre-
quency mismatch compensation by linear phase shift and 
is expressed as

where NFFT and Nshift are the frame length and shift 
length of STFT, respectively. We assume that the mon-
aural recorded and acoustic object signals X̂(k ,m; ǫo) fol-
low a multivariate Gaussian distribution with covariance 
matrix V(k) , and accurate compensation of ǫo recovers 
the stationary X̂(k ,m; ǫo) . Then the log-likelihood func-
tion is expressed as

where {·}H denotes the conjugate transpose, and the 
covariance matrix V(k) is the parameter of the log-like-
lihood function. The V(k) is obtained by sample estima-
tion using X̂(k ,m; ǫo) . The sample estimation for V(k) is 
described as

(5)X̂(k ,m; ǫo) =
[

X(k ,m), Ô(k ,m; ǫo)
]⊤

(6)Ô(k ,m; ǫo) = Ô(k ,m) exp

(−2π jkǫoNshiftm

NFFT

)

,

(7)

J (V(k), ǫo) =
∑

k

∑

m

(−X̂(k ,m; ǫo)HV(k)−1
X̂(k ,m; ǫo)

− log π2 − log detV(k)),

Here, M is the total number of time frames. Substituting 
Eq. (8) into Eq. (7), the first term in Eq. (7) is constant, as 
derived by the following equation:

where I and K indicate a 2× 2 identity matrix and the 
total number of frequency bins, respectively. Tr(·) 
denotes the trace of matrix. In this derivation, we use a 
matrix formula Tr(ABC) = Tr(BCA) for any matrices A , 
B , and C such that ABC is a square matrix. The log-likeli-
hood function simplifies to the following equation where 
the constant term is excluded.

When the sampling frequency mismatch ǫo is not com-
pensated accurately, the log-likelihood function J (ǫo) 
will be small owing to the reduced stationary caused by 
drift. Therefore, we can estimate ǫo by maximizing J (ǫo) . 
Unfortunately, an estimate of ǫo that maximizes the like-
lihood J (ǫo) cannot be obtained analytically. We per-
form a rough full search of ǫo and then a golden section 
search [7].

3.3 � Frequency response estimation
From Eq.  (1), when the length of the impulse response 
h(t) is sufficiently smaller than the window length 
of STFT, the recorded signal in the STFT domain is 
described as

where H(k) is the frequency response of the acoustic 
object signal. Note that H(k) may not be the frequency 
response of the actual impulse response h(t) due to the 
effect of τ̂ described in Eq.  (4). We assume that S(k, m) 
and Ô(k ,m; ǫo) are uncorrelated.

(8)V(k) ← 1

M

∑

m

X̂(k ,m; ǫo)X̂(k ,m; ǫo)H.

(9)

∑

k

∑

m

−X̂(k ,m; ǫo)HV(k)−1
X̂(k ,m; ǫo)

=
∑

k

∑

m

−Tr
(

X̂(k ,m; ǫo)HV(k)−1
X̂(k ,m; ǫo)

)

=
∑

k

∑

m

−Tr
(

V(k)−1
X̂(k ,m; ǫo)X̂(k ,m; ǫo)H

)

=
∑

k

−Tr

(

V(k)−1
∑

m

X̂(k ,m; ǫo)X̂(k ,m; ǫo)H
)

=
∑

k

−Tr(M · I)

= −2MK .

(10)

J (ǫo) = −
∑

k

log det
∑

m

X̂(k ,m; ǫo)X̂(k ,m; ǫo)H

(11)X(k ,m) = Ô(k ,m; ǫo)H(k)+ S(k ,m),
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The target signal S(k, m) can be obtained by rewriting 
Eq. (11) as:

Since time-invariant H(k) is the only unknown factor in 
Eq. (12), we focus on how to estimate it.

In this study, we adopt maximum likelihood estimation 
to estimate H(k) instead of using power minimization, 
which has been commonly used in conventional echo 
and noise cancellers. It is known that assuming a suitable 
distribution p(x), which represents the statistical charac-
teristics of the desired sound, is effective in various appli-
cations, such as in  echo canceller  [25] and blind source 
separation [26–28]. We assume three distributions often 
assumed in the blind source separation: the generalized 
Gaussian distribution  [26], multivariate Laplace distri-
bution  [27], and local Gaussian distribution with vari-
ance represented by nonnegative matrix factorization 
(NMF) [28] (see Table 1).

In maximum likelihood estimation, we estimate the 
frequency response as

where C(H(k)) is a negative log-likelihood function and 
is described as

In the following section, we derive update formulae to 
estimate frequency response.

3.3.1 � Generalized Gaussian distribution
The probability density function of the generalized 
Gaussian distribution is given as

(12)S(k ,m) = X(k ,m)− Ô(k ,m; ǫo)H(k).

(13)Ĥ(k) = argmin
H(k)

C(H(k)),

(14)C(H(k)) =
∑

k

∑

m

− log p(S(k ,m)).

(15)p(S(k ,m)) ∝ exp

(

−
( |S(k ,m)|

α

)β
)

,

where α and β are the scaling and shape parameters, 
respectively. It includes a Gaussian distribution when 
β = 2 and a Laplace distribution when β = 1 . Hereaf-
ter, we consider 0 < β ≤ 2 that corresponds to a super-
Gaussian distribution.

Under the above assumptions, the objective function to 
be minimized, that is, the negative log-likelihood function, 
is given by

where parameter-independent terms are omitted. Note 
that, in the case of β = 2 , minimizing Eq. (16) is equiva-
lent to minimizing the power of the target signal S(k, m), 
as has been commonly used in the conventional echo 
canceller and noise canceller.

The optimization problem to minimize Eq.  (16) in 
terms of H(k) has no closed-form solutions in the case 
of β  = 2 . We apply the auxiliary function method, also 
known as the majorization–minimization (MM) algo-
rithm [20]. In the auxiliary function method, we define 
the auxiliary function, which is an upper bound of an 
objective function and is easier to optimize. Given the 
auxiliary function, we can derive an efficient algorithm 
that minimizes the objective function by iteratively 
minimizing the auxiliary function instead of the objec-
tive function.

An auxiliary function for Eq. (16) is obtained by the theo-
rem described in  [29]. According to the theorem, for the 
continuous and differentiable even function G(x) of x, if 
G′(x)/x is continuous, x > 0 , positive, and monotonically 
decreasing,

holds for any x, and the equality condition is x = ±x0.
From Eq. (17), the auxiliary function of Eq. (16) is calcu-

lated as

(16)C(H(k)) = 1

αβ

∑

k

∑

m

|S(k ,m)|β ,

(17)G(x) ≤ G′(x0)

2x0
x2 +

(

G(x0)−
x0G

′(x0)

2

)

Table 1  Model of S(k, m) and parameters. In Local Gaussian distribution based on NMF, we assume that the variance r(k, m) can be 
expressed by NMF: r(k,m) =

∑

c a(c,m)b(c, k)

Model p(S(k, m)) Parameters

Generalized Gaussian distribution
p(S(k,m)) ∝ exp

(

−
(

|S(k,m)|
α

)β
)

H(k)

Multivariate Laplace distribution
p(S(m)) ∝ exp

(

−
√

∑

k

∣

∣

∣

S(k,m)
σ

∣

∣

∣

2

)

H(k)

Local Gaussian distribution based on NMF p(S(k,m)) ∝ 1
r(k,m)

exp
(

−|S(k,m)|2
r(k,m)

)

H(k), a(c, m), b(c, k)
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Here, H0(k) is an auxiliary variable. The auxiliary func-
tion can be written as follows. Note that terms that do not 
depend on H(k) are omitted.

Equation (20) has a closed-form solution of H(k) because 
it is quadratic in form with respect to H(k).

The following update equation is obtained by differenti-
ating Eq.  (20) with respect to H(k) and setting it to 0 and 
then substituting the frequency response before the update 
for H0(k).

{·}∗ denotes the complex conjugate operator. The esti-
mated target signal Ŝ(k ,m) is obtained by applying these 
updates sufficiently.

3.3.2 � Multivariate Laplace distribution
The probability density function of the multivariate Laplace 
distribution is shown as

where S(m) = [S(0,m), S(1,m), . . . , S(K ,m)]⊤ and σ 
is the scaling parameter. Equation  (23) depends on the 
norm of the vector S(m) that assembles all frequency 
components of the target signal into one vector.

Using this probability density function, the objective 
function to be minimized, the negative log-likelihood func-
tion, can be obtained as

(18)

1

αβ

∑

k

∑

m

|S(k ,m)|β

≤ 1

αβ

∑

k

∑

m

β|S0(k ,m)|β−1

2|S0(k ,m)| |S(k ,m)|2

= 1

αβ

∑

k

∑

m

β|S0(k ,m)|β−2

2
|S(k ,m)|2,

(19)S0(k ,m) = X(k ,m)− Ô(k ,m; ǫo)H0(k).

(20)

Q(H(k),H0(k)) =
1

αβ

∑

k

∑

m

β|S0(k ,m)|β−2

2
|S(k ,m)|2

(21)Ŝ(k ,m) ← X(k ,m)− Ô(k ,m; ǫo)Ĥ(k)

(22)Ĥ(k) ←
∑

m Ô∗(k ,m; ǫo)X(k ,m)|Ŝ(k ,m)|β−2

∑

m |Ô(k ,m; ǫo)|2|Ŝ(k ,m)|β−2

(23)p(S(m)) ∝ exp



−

�

�

�

�

�

k

�

�

�

�

S(k ,m)

σ

�

�

�

�

2


,

(24)C(H(k)) = 1

σ

∑

m

√

∑

k

|S(k ,m)|2,

where terms that do not depend on H(k) are omitted. In 
Eq. (24), 

∑

k |S(k ,m)|2 is included in the square root and 
has no closed-form solution for H(k).

Therefore, we apply the auxiliary function method 
to Eq.  (24) to obtain the solution (see Appendix). We 
obtain the update rules shown as

By sufficiently updating Eq. (25) and Eq. (26), the tar-
get signal is obtained as Ŝ(k ,m).

(25)Ŝ(k ,m) ← X(k ,m)− Ô(k ,m; ǫo)Ĥ(k),

(26)Ĥ(k) ←

∑

m
X(k ,m)Ô∗(k ,m;ǫo)
√

∑

k |Ŝ(k ,m)|2
∑

m
|Ô(k ,m;ǫo)|2

√

∑

k |Ŝ(k ,m)|2

.

3.3.3 � Local Gaussian distribution based on NMF
The probability density function of the local Gaussian 
distribution is shown as

where r(k, m) is the variance of the local Gaussian dis-
tribution. We assume that the variance r(k,  m) can be 
expressed by NMF,

where a(c, m) and b(c, k) denote the activation and the basis 
in NMF, respectively. c denotes the index of the basis.

The objective function, the negative log-likelihood 
function, is given by

where parameter-independent terms are omitted. Equa-
tion (29) is a quadratic form for H(k) and has closed-form 
solutions. On the other hand, Eq. (29) has no closed-form 
solutions for a(c,  m) and b(c,  k) because the first and 
second terms are an inverse function and a logarithmic 
function of them, respectively.

Therefore, we apply the auxiliary function method to 
obtain the solutions for a(c, m) and b(c, k) (see Appen-
dix). We obtain the following update formulae:

(27)p(S(k ,m)) ∝ 1

r(k ,m)
exp

(

−|S(k ,m)|2
r(k ,m)

)

,

(28)r(k ,m) =
∑

c

a(c,m)b(c, k),

(29)

C(H(k), a(c,m), b(c, k))

=
∑

k

∑

m

|S(k ,m)|2
r(k ,m)

+ log |r(k ,m)|,

(30)

â(c,m) ← â(c,m)

√

√

√

√

√

√

∑

k
b̂(c,k)|X(k ,m)−Ô(k ,m;ǫo)Ĥ(k)|2

(
∑

c′ â(c′,m)b̂(c′,k))2

∑

k
b̂(c,k)

∑

c′ â(c′,m)b̂(c′,k)

,
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The estimated target signal is obtained by sufficiently 
updating Eqs. (30), (31), and (32).

4 � Experimental evaluations
4.1 � Experimental conditions
In this experiment, we created a dataset by simulation. 
Initially, we generated s[n] and o[n] ∗ h[n] . To make 
s[n] and o[n] ∗ h[n] , we used Pyroomacoustics  [30]. A 
4.1× 3.8× 2.8 m3 virtual room where T60 is 0.40  s was 
considered. The speech and acoustic object sources and 
a microphone were randomly positioned in the virtual 
room and impulse responses were made.

There were three types of target signals s[n]: (i) speech 
signal  convolved with the impulse response, (ii) envi-
ronmental sound signal, and (iii) a mixture of speech 
signal  convolved with the impulse response and envi-
ronmental sound signal at 5 dB. As the speech signal, 
we used utterances in the Japanese Newspaper Arti-
cle Sentences (JNAS) corpus  [31]. This corpus includes 
utterance signals of a sentence in Japanese. To obtain an 
utterance signal longer than the object signal, we concat-
enated the utterance signals of the same speaker. As the 
environmental sound, we used the TUT Acoustic scenes 
2016, Evaluation dataset [32]. This dataset includes a 10-s 
environmental sound signal. To obtain an environmental 
sound signal longer than the object signal, we concat-
enated the environmental sound signals of the sequential 
scene “Grocery store.” In target (i), S(k, m) is known to 
follow a super-Gaussian distribution [33]. For target (ii), 
S(k,  m) may follow a Gaussian distribution due to the 
presence of various sounds. In target (iii), S(k, m) is con-
sidered to follow a distribution closer to Gaussian than in 
target (i).

The acoustic object signals o[n] were the following four 
types of sound: Electronic Alarm, BGM, Broadcast, and 
Announce. We used a windows notification sound signal 
in the Electronic Alarm case. In the BGM case, we used 
the mixture signal of “ANiMAL-ClinicA” in DSD100 [34]. 
In the Broadcast case, we used an audio signal from a 
YouTube video 1. In the Announce case, we used a train 

(31)

b̂(c, k) ← b̂(c, k)

√

√

√

√

√

√

∑

m
â(c,m)|X(k ,m)−Ô(k ,m;ǫo)Ĥ(k)|2

(
∑

c′ â(c′,m)b̂(c′,k))2
∑

m
â(c,m)

∑

c′ â(c′,m)b̂(c′,k)

,

(32)Ĥ(k) ←

∑

m
X(k ,m)Ô∗(k ,m;ǫo)
∑

c â(c,m)b̂(c,k)

∑

m
|Ô(k ,m;ǫo)|2

∑

c â(c,m)b̂(c,k)

.

announcement signal of a JR East Yamanote Line in-
train automatic announcement [35]. The signal length of 
the Electronic Alarm was 6  s. We clipped other signals 
(BGM, Broadcast, Announce) to 30 s. Electronic Alarm, 
BGM, Broadcast, and Announcement assumed a short 
duration of music, a long duration of music, combine a 
long duration of speech and music, and a long duration 
of speech, respectively. The sampling frequency of all sig-
nals was unified at 16,000 Hz.

To to make a recorded signal x[n], we randomly deter-
mined a time difference td and mixed s[n] and o[n] ∗ h[n] 
at an input signal-to-noise ratio (SNR).

Here, the sum of n is taken for the period when either 
the target signal or the acoustic object signal is not silent. 
The sampling frequency mismatch was simulated by resa-
mpling the recorded signals. For each input SNR and mis-
match combination, we generated ten recorded signals 
with random time differences and source placements.

For evaluation, we used the SNR improvement is the 
difference between the input SNR SNRinput and output 
SNR SNRoutput in Section 4.2, Section 4.3 and Section 4.4. 
We define the output SNR:

where ŝ[n] is the estimated target signal.
For STFT, the fast Fourier transform was performed at 

8192 points with a 4096-length Hamming window, and 
a shift length was half the window length. The number 
of update iterations was 20 for the generalized Gaussian 
and multivariate Laplace distributions to attain sufficient 
enhancement. However, for the local Gaussian distribu-
tion based on NMF, 20 was insufficient, and we iterated 
the updates 200 times to obtain sufficient enhancement. 
We set the initial frequency response Hinit(k) = 1.

4.2 � Effectiveness of mismatch compensation
In this experiment, we evaluated the effectiveness of 
sampling frequency mismatch compensation from the 
following two perspectives: the difference in the acous-
tic object type and the difference in sampling frequency 
mismatch. We compared “w/o sync.” and “w/ sync.,” 
which indicate SNR improvement without and with blind 
synchronization, respectively. We used recorded signals 
x[n] where the target signal s[n] was target iii), and the 
acoustic object signals o[n] were Alarm, BGM, Broad-
cast, and Announce. We set SNRinput as 0 dB. The sam-
pling frequency mismatches ǫo were ±31.25 and ±62.5 
ppm. We assumed the multivariate Laplace distribution, 

(33)SNRinput = 10 log10

∑

n s[n]2
∑

n(o[n] ∗ h[n])2

(34)SNRoutput = 10 log10

∑

n s[n]2
∑

n(ŝ[n] − s[n])2 ,

1  https://​www.​youtu​be.​com/​watch?v=​FISSR​WuC7Y​0&​list=​PL8oG​xvf_​g9snQ​
dfDPr​MQb0k​zEmDR​O4oUi​&​index=​13

https://www.youtube.com/watch?v=FISSRWuC7Y0&list=PL8oGxvf_g9snQdfDPrMQb0kzEmDRO4oUi&index=13
https://www.youtube.com/watch?v=FISSRWuC7Y0&list=PL8oGxvf_g9snQdfDPrMQb0kzEmDRO4oUi&index=13
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which has no parameter dependence in the frequency 
response estimation because we investigated the parame-
ter dependence of models for three types of target signals 
in Section 4.3.

Figure  3 shows the SNR improvement for different 
acoustic object types (BGM, Broadcast, Announce, and 
Alarm). We focus on the results of recorded signals, 
where the sampling frequency mismatch was 62.5 ppm. 
In the the box-plots, the box extends from the first to 
the third quartile of the SNR improvements, with a line 
at the median. The whiskers extend from the box by 
1.5× the interquartile range. Outliers are those past the 
end of the whiskers. From Fig. 3, we have demonstrated 
that the performance was significantly improved by 
applying the blind synchronization technique. On the 
other hand, the difference in SNR improvement with 
and without blind synchronization was almost insignifi-
cant when the acoustic object was Alarm. It would be 
reasonable to infer that the shorter the signal length of 
the acoustic object signal, the less affected the perfor-
mance and the less susceptible the sampling frequency 
mismatch. Therefore, it suggests that when the signal 
length of the acoustic object signal was short, it had less 
impact on performance by time drift due to sampling 
frequency mismatch.

Figure  4 shows the removal performance for differ-
ent sampling frequency mismatches ( ±31.25 , ±62.5 
ppm), where positive and negative ppm correspond 
to upsampling and downsampling, respectively. We 
focused on the results where acoustic object signals were 

BGM, Broadcast, and Announce because these acoustic 
objects were significantly affected by sampling frequency 
mismatch. Figure  4 demonstrates the performance 
improvement upon applying the blind synchronization 
technique. In addition, we confirmed that the differ-
ence in SNR improvement between the absolute values 
of 62.5 ppm and 31.25 ppm of sampling frequency mis-
match is about 2 dB when the synchronization method is 
not applied.

We have demonstrated that in environments where 
mismatches occur, the removal performance is affected 
by the signal length of the acoustic object (see Fig. 3) and 
the amount of sampling frequency mismatch (see Fig. 4) 
and that the blind synchronization technique could 
reduce these effects. We also confirmed these findings 
where the target signal was targets (i) and (ii) in the pre-
liminary experiments.

Figure 5 shows examples of spectrograms. The upper 
left shows the recorded signal where we used target 
(iii), BGM, and set input SNR at 0 dB and sampling fre-
quency mismatch at 62.5 ppm. The upper right shows 
the target (iii). The lower left shows the estimated tar-
get signal without blind compensation for sampling fre-
quency mismatch. The lower right shows the estimated 
target signal with blind compensation for sampling fre-
quency mismatch.

From Fig. 5, we confirm that the acoustic object sig-
nal was almost completely removed by the proposed 
method with blind synchronization (lower right) com-
pared with that without synchronization (lower left).

Fig. 3  SNR improvement between four types of acoustic objects (BGM, Broadcast, Announce, and Alarm) where target signal was target (iii), input 
SNR was 0 dB and sampling frequency mismatch was 62.5 ppm
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4.3 � Performance with change in the model
We compared the SNR improvement of the models 
with various parameters for frequency response esti-
mation. We used recorded signals x[n] where the tar-
get signals s[n] were target (i), target (ii) and target (iii), 

and 30-s acoustic object signals o[n] (BGM, Broadcast, 
and Announce) that signal lengths are the same. We set 
SNRinput as −5, 0, 5, 10 dB. The sampling frequency mis-
matches ǫo were ±31.25 and ±62.5 ppm. Since we con-
firmed the effectiveness of sampling frequency mismatch 

Fig. 4  SNR improvement between four types of sampling frequency mismatches ( ±31.25 , ±62.5 ppm) where target signal is target (iii), input SNR 
was 0 dB and acoustic object signals were BGM, Broadcast, and Announce

Fig. 5  Examples of spectrograms. Upper left shows the recorded signal where we used target (iii), BGM, and set input SNR at 0 dB and sampling 
frequency mismatch at 62.5 ppm. Upper right shows the target (iii). Lower left shows the estimated target signal without blind compensation 
for sampling frequency mismatch. Lower right shows the estimated target signal with blind compensation for sampling frequency mismatch
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compensation in the previous experiment, this experi-
ment was focused only on the results with sampling 
frequency mismatch compensation. We set the shape 
parameter β in the generalized Gaussian distribution 
from 0.4 to 2.0 in 0.4 increments, and the basis numbers 
c in the local Gaussian distribution based on NMF to 1, 2, 
5, and 10.

Table 2 shows the SNR improvement averaged by each 
target for each model. Here, the generalized Gauss-
ian distribution is denoted as “L-GG,” the multivariate 
Laplace distribution as “M-Laplace,” and the local Gauss-
ian distribution based on NMF as “L-G-NMF.” Accord-
ing to Table  2, the averaged SNR improvement differed 
depending on the model and parameters.

First, we focused on the results for L-GG. For (i) speech 
signal, the highest performance was attained when β < 2 , 
which corresponds to a super-Gaussian distribution. For 
(ii) environmental sound signal, the peak of performance 
was obtained with β = 2 , which corresponds to a Gauss-
ian distribution. We have demonstrated that the param-
eters that maximized the SNR improvement changed 
depending on the target signal type.

Second, we focused on the results for L-G-NMF. In 
L-G-NMF, there was no significant difference in SNR 
improvement for a change in the number of bases c. In 
L-G-NMF, when the number of bases is small, the model 
might have insufficient capability to represent the target 
signal. On the other hand, when the number of bases is 
large, the model might represent the target signal but 
also represent the acoustic object signal than when the 

number of bases is small. It would be reasonable to infer 
that results were not significantly changed by this trade-
off relationship.

Finally, we focused on the results for M-Laplace. We 
have demonstrated that the SNR improvement with 
M-Laplace was greater than with other models when the 
target signal was target (i). It suggests that M-Laplace 
represented the co-occurrence relationship of spectra 
and that the speech signal fit the model.

4.4 � Comparison with amplitude‑based method
In this experiment, we compared the proposed method 
with the conventional amplitude-based method  [22] 
(see Appendix) from the following two perspectives: the 
difference in input SNR and the difference in the target 
type. We compared the SNR improvement among three 
approaches: “w/o sync.” (without blind synchroniza-
tion), “w/ sync.” (with blind synchronization), and “Amp.” 
(amplitude-based method). We utilized the recorded sig-
nals that were previously employed in Section  4.3. We 
assumed the multivariate Laplace distribution as the tar-
get model in the proposed method since Table  2 shows 
no significant performance differences, and multivariate 
Laplace distribution is parameter independent.

Figure 6 shows the SNR improvement for the four dif-
ferent types of input SNR ( −5, 0, 5, 10 dB). Figure 6 dem-
onstrates that the performance of the proposed method 
(“w/ sync.”) was the best. In the high input SNR case, 
o(t) is smaller than s(t). This may reduce the estimation 
accuracy of τ and h(t) and lead to a decrease in SNR 
improvement. We also confirmed that the conventional 
amplitude-based method showed little performance 
improvement when the input SNR was 10 dB.

Figure  7 shows the SNR improvement for each tar-
get type. According to Fig. 7, the SNR improvement of 
the conventional method is greater than that without 
synchronization. On the other hand, the results of the 
method with blind synchronization (proposed method) 
is higher than that of the conventional amplitude-based 
method. We have demonstrated the effectiveness of the 
proposed method with blind synchronization.

Figure 8 shows examples of spectrograms. The upper 
left shows the recorded signal where we used target 
(iii), BGM, and set input SNR at 0 dB and sampling fre-
quency mismatch at 62.5 ppm. The upper right shows 
the target (iii). The lower left shows the estimated tar-
get signal of the conventional amplitude-based method. 
The lower right shows the estimated target signal of the 
proposed method.

In Fig. 8, we can confirm that the conventional and 
proposed methods almost completely removed the 

Table 2  Average SNR improvement of different target models. 
The generalized Gaussian distribution is denoted as “L-GG,” the 
multivariate Laplace distribution as “M-Laplace,” and the local 
Gaussian distribution based on NMF as “L-G-NMF.” Parameters are 
the shape parameter β for L-GG and the basis number c for L-G-
NMF

Model Parameter Average SNR improvemnt (dB)

Target (i) Target (ii) Target (iii)

L-GG 0.4 10.66 9.75 10.36

0.8 11.00 10.29 10.80

1.2 11.19 10.61 11.00

1.6 11.23 10.82 11.07

2 11.01 10.94 10.96

M-Laplace N/A 11.28 10.88 11.06

L-G-NMF 1 11.03 10.81 10.90

2 11.02 10.79 10.94

5 11.03 10.73 10.96

10 10.97 10.67 10.91
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acoustic object signal. A small target signal compo-
nent was also removed in the conventional method, 
which may have contributed to the performance 
difference.

4.5 � Evaluation of sound quality
In this experiment, we evaluated the sound quality of 
the proposed method by employing two speech qual-
ity metrics: Perceptual Evaluation of Speech Quality 

Fig. 6  SNR improvement between four types of input SNR ( −5, 0, 5, 10 dB) where we use three types of target signals (targets i, ii, and iii), three 
types of acoustic object signals (BGM, Broadcast, and Announce), and four types of sampling frequency mismatches ( ±31.25 , ±62.5 ppm)

Fig. 7  SNR improvement between three types of target signal where we use three types of target signals (targets i, ii, and iii), three types of acoustic 
object signals (BGM, Broadcast, and Announce), four types of input SNR ( −5, 0, 5, 10 dB), and four types of sampling frequency mismatches ( ±31.25 , 
±62.5 ppm)
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(PESQ)  [23] and Short-Time Objective Intelligibility 
(STOI) [24]. The evaluation was conducted across dif-
ferent input SNRs to assess the robustness and per-
formance of the proposed method. We conducted a 
comparison of the PESQ and STOI metrics among the 
following five types of signals: “Obs.” (the recorded 
signal), “Amp.” (amplitude-based method), “L-GG,” 
“M-Laplace,” and “L-G-NMF.” We used recorded sig-
nals x[n] where the target signals s[n] was target (i), 
and 30-s acoustic object signals o[n] (BGM, Broadcast, 
and Announce) that signal lengths are the same. We 
set SNRinput as −5, 0, 5, 10 dB. The sampling frequency 
mismatches ǫo were ±31.25 and ±62.5 ppm. We set the 
shape parameter β in the generalized Gaussian distri-
bution to 1.6, and the number of basis elements c in 
the local Gaussian distribution based on NMF to 5, as 
this parameter showed the highest SNR improvement 
in Table 2.

Figure 9 shows the average PESQ for the four different 
types of input SNR ( −5, 0, 5, 10 dB). According to Fig. 9, 
the PESQ of the estimated target signals was higher than 
the recorded signal. We also confirmed that the PESQ 
of the estimated target signals of the amplitude-based 
method was lower than the proposed method. In particu-
lar, the larger the input SNR, the more significant the dif-
ference in PESQ between proposed and amplitude-based 
methods. It might be due to speech distortion in the 
amplitude-based method. We confirmed the effective-
ness of the proposed method.

Figure 10 shows the average STOI for the four different 
types of input SNR ( −5, 0, 5, 10 dB). According to Fig. 10, 
the STOI of the estimated target signals was higher than 
the recorded signal. We also confirmed that the STOI 
of the estimated target signals of the amplitude-based 
method was lower than the proposed method. In par-
ticular, the larger the input SNR, the more STOI dif-
ferences between the proposed and amplitude-based 
methods. When the input SNR was 10 dB, the STOI of 
the estimated target signal by amplitude-based method 
showed little change from the STOI of the recorded sig-
nal. It might be due to speech distortion in the ampli-
tude-based method. We confirmed the effectiveness of 
the proposed method.

5 � Conclusion
In this study, we proposed the acoustic object cancel-
ler, a framework for removing the acoustic object sig-
nal from the monaural recorded signal. In the acoustic 
object canceller, first, we synchronized the monaural 
recorded signal and the available acoustic object sig-
nal. Second, we estimated the frequency response of 
the acoustic object by the maximum likelihood estima-
tion assuming three model types: generalized Gauss-
ian distribution, multivariate Laplace distribution, 
and local Gaussian distribution based on NMF. In the 
experiments, we have demonstrated the effectiveness 
of applying the synchronization technique and investi-
gated the performance of the model types.

Fig. 8  Examples of spectrograms. Upper left shows the recorded signal where we used target (iii), BGM, and set input SNR at 0 dB and sampling 
frequency mismatch at 62.5 ppm. Upper right shows the target (iii). Lower left shows the target signal estimated by the conventional 
amplitude-based method. Lower right shows the target signal estimated by the proposed method
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Appendix
Frequency response estimation in multivariate Laplace 
distribution
In this appendix, we derive the frequency response H(k) 
from Eq.  (24) by the auxiliary function method. We use 
the properties of concave functions where the tangent 
line of concave functions always lies above the functions:

where the equality condition is x = x0.
From Eqs.  (24) and (35), the auxiliary function can be 

written as

(35)2
√
x ≤ 1

√
x1

x +√
x1,

Fig. 9  Average PESQ between four types of input SNR ( −5, 0, 5, 10 dB) where we use target (i) and three types of acoustic object signals (BGM, 
Broadcast, and Announce), and four types of sampling frequency mismatches ( ±31.25 , ±62.5 ppm)

Fig. 10  Average STOI between four types of input SNR ( −5, 0, 5, 10 dB) where we use target (i) and three types of acoustic object signals (BGM, 
Broadcast, and Announce), and four types of sampling frequency mismatches ( ±31.25 , ±62.5 ppm)
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where H1(k) is an auxiliary variable. Equation (36) has a 
closed-form solution because it is quadratic in form for 
H(k). We differentiate Eq.  (36) with respect to H(k) and 
set it to 0, and then substitute the frequency response 
before the update for H1(k) . Then, we obtain Eqs.  (25) 
and (26).

Frequency response estimation in local Gaussian 
distribution based on NMF
Here, we derive the three parameters H(k), a(c, m), and 
b(c, k) from Eq. (29) by the auxiliary function method. In 
the first term of Eq. (29), the inverse function is a convex 
function, so the auxiliary function is set from the follow-
ing Jensen’s inequality:

where �i satisfies the condition

Therefore, from Eqs. (38) and (39), the auxiliary function 
of the first term in Eq. (29) is derived as

where 
∑

c �(c, k ,m) = 1 and parameter-independent 
terms are omitted.

The second term in Eq.  (29) cannot be solved in 
closed form for a(c, m), b(c, k) because the sum of the 
products of a(c, m), b(c,  k) is in the logarithmic func-
tion. Therefore, to set the auxiliary function of the 
second term, we use inequalities characteristic of a 
concave function:

(36)

Q(H(k),H1(k))

= 1

2σ

∑

m

1

S1(m)

∑

k

|S(k ,m)|2 + 1

2σ

∑

m

S1(m),

(37)S1(m) =
√

∑

k

|X(k ,m)− Ô(k ,m; ǫo)H1(k)|2,

(38)
1

∑

i �ixi
≤

∑

i

�i
1

xi
,

(39)
∑

i

�i = 1.

(40)

Q1(H(k), a(c,m), b(c, k), �(c, k ,m))

=
∑

c

�(c, k ,m)|S(k ,m)|2
a(c,m)b(c, k)/�(c, k ,m)

,

(41)�(c, k ,m) = a(c,m)b(c, k)
∑

c′ a(c
′,m)b(c′, k)

,

(42)log x ≤ 1

x0
(x − x0)+ log x0.

From Eq.  (42), the auxiliary function of the second 
term in Eq. (29) is derived as

where the equality condition for the inequality is

From Eqs.  (40) and (43), the auxiliary function of 
Eq. (29) is expressed as

Equation  (45) has closed-form solutions for a(c,  m) 
and b(c,  k). We differentiate Eq.  (45) with respect to 
H(k), a(c, m), and b(c, k) and set it to 0 and then substi-
tute the values before the update into the auxiliary vari-
ables �(c, k ,m) and β(k ,m) . Then, we obtain Eqs.  (30), 
(31), and (32).

Derivation for amplitude‑based method
Noise reduction algorithms use two different SNRs, the 
a posteriori and the a priori SNRs [22]. In Eq. (11), the a 
posteriori SNR is defined as

where G(k) is |H(k)|2 and an unknown factor. The a priori 
SNR is defined as

We consider the Wiener filter as a noise reduction 
algorithm described as

To calculate filter coefficients, we estimate G(k) 
that minimizes the difference between the power of 
recorded signal σx(k) and that of the premix acoustic 
object signal σo(k) . The G(k) is derived as

(43)

Q2(H(k), a(c,m), b(c, k),β(k ,m))

= 1

β(k ,m)

(

∑

c

a(c,m)b(c, k)− β(k ,m)

)

+ log β(k ,m),

(44)β(k ,m) =
∑

c

a(c,m)b(c, k).

(45)

Q(H(k), a(c,m), b(c, k), �(c, k ,m),β(k ,m))

=
∑

k

∑

m

∑

c

�(c, k ,m)|S(k ,m)|2
a(c,m)b(c,k)
�(c,k ,m)

+ 1

β(k ,m)

(

∑

c

a(c,m)b(c, k)− β(k ,m)

)

+ log β(k ,m).

(46)γ (k ,m) = |X(k ,m)|2
|O(k ,m)H(k)|2 = |X(k ,m)|2

|O(k ,m)|2G(k)
,

(47)ξ(k ,m) = |S(k ,m)|2
|O(k ,m)H(k)|2 = |S(k ,m)|2

|O(k ,m)|2G(k)
.

(48)Ŝ(k ,m) = ξ(k ,m)

1+ ξ(k ,m)
X(k ,m).
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We estimate a priori SNR as
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