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Abstract 

In many signal processing applications, metadata may be advantageously used in conjunction with a high dimen-
sional signal to produce a desired output. In the case of classical Sound Source Localization (SSL) algorithms, informa-
tion from a high dimensional, multichannel audio signals received by many distributed microphones is combined 
with information describing acoustic properties of the scene, such as the microphones’ coordinates in space, to esti-
mate the position of a sound source. We introduce Dual Input Neural Networks (DI-NNs) as a simple and effective way 
to model these two data types in a neural network. We train and evaluate our proposed DI-NN on scenarios of vary-
ing difficulty and realism and compare it against an alternative architecture, a classical Least-Squares (LS) method 
as well as a classical Convolutional Recurrent Neural Network (CRNN). Our results show that the DI-NN significantly 
outperforms the baselines, achieving a five times lower localization error than the LS method and two times lower 
than the CRNN in a test dataset of real recordings.

Keywords Sound source localization, Multichannel audio processing, Multimodal machine learning, Convolutional 
recurrent neural networks

1 Introduction
Most signals, such as audio and images, contain meta-
data. Metadata can be signal-based, which describes 
quantitative properties of the signal, such as its sampling 
rate, as well as semantic, which describes, for example, 
contextual properties. In speech processing, semantic 
metadata could consist of the speaker’s language or gen-
der. Whether signal-based or semantic, including meta-
data as a secondary input into neural network models 
may provide relevant information which would translate 
into an economy of training time, model parameters and 
flexibility. However, metadata typically has a different 
dimensionality than the input signals, making its incor-
poration into those models not trivial.

The main focus of this paper is to study the effective-
ness of schemes to process signals and exploit metadata 
jointly using neural network models. We focus on the 
task of Sound Source Localization (SSL) [1] using distrib-
uted microphone arrays to demonstrate the effectiveness 
of our proposed approach. In the context of SSL, relevant 
metadata which is exploited by classical methods is the 
microphone positions, which can be acquired by man-
ual measurement or using self-calibration [2] methods. 
Other relevant metadata is the room dimensions and its 
reverberation time.

SSL refers to the task of estimating the spatial loca-
tion of a sound source, such as a human talker or a loud-
speaker. In this scenario, metadata refers to properties 
of the acoustic scene such as the coordinates of micro-
phones, dimensions of the room and, the reflection coef-
ficient of the walls. SSL has many applications, including 
noise reduction and speech enhancement [3], camera 
steering [4] and acoustic Simultaneous Localization 
and Mapping (SLAM) [5]. In turn, distributed micro-
phone arrays have become an active research topic in the 
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signal processing community due to their versatility. Such 
arrays may be composed of multiple network-connected 
devices, including everyday devices such as cell phones, 
smart assistants, and laptops, for example. The array and 
the constituent devices may be configured as a Wireless 
Acoustic Sensor Network (WASN) [6].

SSL approaches may be divided into classical signal 
processing-based and data-driven neural network-based 
methods. By explicitly exploiting metadata describ-
ing microphone positions and room dimensions, clas-
sical approaches may be applied to different rooms and 
microphone configurations. Conversely, neural network 
approaches have recently achieved state of the art results 
for source localization [7–9], at the expense of requiring 
one network to be trained for every microphone topol-
ogy. One reason current neural approaches do not incor-
porate the microphones’ positional information is that 
the microphones’ signal and positional data are very dif-
ferent from one another in nature and dimension.

Previous work which discusses the joint processing of 
signals and metadata is [10], where a single input neu-
ral network is used to process metadata in conjunction 
with a low-dimensional physical signal. However, unlike 
our work, the method of [10] is restricted to multilayer 
perceptron architectures and one-dimensional input and 
metadata, limiting its application in practical scenarios.

Another related field is multimodal fusion [11, 12], 
although this is usually concerned with learning repre-
sentations using two types of signals, such as audio-visual 
data. Simultaneously processing signals and metadata 
have also been explored using non-neural models for 
sound source separation [13], where metadata consists 
of information about the type of sound (speech, music) 
and how the sources were mixed. However, none of the 
existing work discusses effective schemes for incorpo-
rating and evaluating signals and metadata of different 
dimensionality.

Our main contribution is the DI-NN neural network 
architecture, which is capable of processing high-dimen-
sional signals, namely spectrograms, along with a relevant 

metadata vector of lower dimensionality. An overview 
diagram of our approach is shown in Fig.  1, which will 
be discussed in Section  3.2. We compare our method 
against three baselines for the task of Positional Sound 
Source Localization (PSSL), namely, a metadata-unaware 
Convolutional Recurrent Neural Network (CRNN), a 
metadata-aware classical signal processing approach, as 
well as an alternate metadata-aware neural network. Our 
proposed method is able to outperform all baselines by a 
large margin in realistic scenarios. In contrast to previous 
approaches [9, 14], our network dispenses with the need 
for training a network for each scenario, broadening our 
method’s applicability.

This work continues as follows. In Section 2, an over-
view of neural and non-neural SSL methods will be dis-
cussed. The approach for training our proposed DI-NN 
for SSL is described together with several baseline meth-
ods in Section 3. In Section 4, the experiments comparing 
our approach with the baselines using multiple datasets 
are described. Finally, results and conclusions are drawn 
in Section 5.

2  Prior art on sound source localization
2.1  Neural‑based methods
In recent years, deep neural networks have been widely 
adopted for the task of sound source localization. The 
various approaches differ in the input features used, the 
network architectures and output strategies. Most studies 
focus on the task of Direction-of-Arrival (DOA) estima-
tion, i.e., estimating the angle between the propagation 
direction of the acoustic wavefront due to the source and 
a reference axis of the array.

Practicioners have experimented with many types of 
neural input features, such as the raw audio samples of 
the microphone signals [9], their frequency-domain rep-
resentation through the Short Time Fourier Transform 
(STFT) [15], their cross-spectra [16] or cross-correlation 
[8]. Multiple architectures have been also tested, includ-
ing the Multi-layer Perceptron (MLP) [8], Convolutional 
Neural Networks (CNNs) [17] and residual networks 

Fig. 1 Overview of the Dual-Input Neural Network (DI-NN) approach
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[18]. In this work, we focus on the Convolutional Recur-
rent Neural Network (CRNN) architecture, which has 
received widespread adoption in the field [7, 19, 20]. 
Finally, approaches differ in terms of the network’s out-
put strategy. While regression-based approaches directly 
estimate the source’s coordinates, classification based-
approaches discretize the source locations to a grid of 
available positions. We refer to [21] for a discussion on 
the merits of both approaches. We also refer the reader to 
a substantial survey of neural SSL papers [22].

In this paper, we focus on the task of estimating the 
absolute Cartesian coordinates of the source, which we 
shall refer to as Positional Sound Source Localization 
(PSSL), and has applications in robot navigation [5] and 
noise reduction [23]. The PSSL task has been much less 
studied using neural methods. To the best of our knowl-
edge, only [14] and [9] focus on PSSL. However, both 
these approaches only work for the same room with fixed 
relative microphone positions. We believe this shortage 
of studies to be at least in part due to the lack of an archi-
tecture capable of incorporating the scene’s metadata, 
which is addressed by our proposed DI-NN. We also 
refer to the recent L3DAS22 challenge [24], where prac-
titioners were invited to develop 3D PSSL algorithms for 
a realistic office environment containing a pair of micro-
phone arrays.

2.2  Classical signal processing methods
Classical approaches to SSL have been widely stud-
ied within the signal processing community. In PSSL 
approaches, the source’s coordinates are estimated using 
a model involving signal processing, physics and geom-
etry. By measuring differences in the microphone signals’ 
amplitudes and phases, distance metrics between the 
microphones and source can be estimated. These esti-
mates can in turn be combined to estimate the source’s 
coordinates [1]. Besides the microphones’ signals, the 
positions of microphones are usually needed for the posi-
tion of the source to be estimated. Available approaches 
for SSL may be classified as delay-based [1, 25], energy-
based [26, 27], subspace-based [28] and beamforming-
based [29, 30] approaches. We shall focus on delay-based 
approaches and will provide background for our baseline 
method.

Delay-based SSL methods usually rely on computing 
the Time-Difference-of-Arrival (TDOA) between each 
microphone pair within the system, which corresponds 
to the difference in time taken for the source signal to 
propagate to different microphones. The locus of candi-
date source positions with the same TDOA with respect 
to a microphone pair is, when considering planar coor-
dinates, a hyperbola [1, 25]. The source is located at the 
intersection of the hyperbolae defined by all microphone 

pairs. The multiple TDOAs can be combined using a 
Least-Squares (LS) framework [31], or using a Maximum 
Likelihood (ML) approach if some noise properties of the 
system are known [1]. In general, TDOAs are estimated 
using cross-correlation based methods such as Gener-
alized Cross-Correlation with Phase Transform (GCC-
PHAT) [32], which are shown to be somewhat robust to 
reflections produced in the room due to, for example, the 
walls, ceiling and furniture, i.e. reverberation [33].

3  Method
3.1  Signal model and scope of this work
Our scope is restricted to the localization of a static 
source at the planar coordinates ps = [pxs , p

y
s ]
T . The 

source emits an intermittent signal s(t) at time t. In our 
experiments, s(t) may consist of White Gaussian Noise 
(WGN) as well as of speech utterances. Also, M static 
microphones with known positions are present in the 
room, each placed at coordinates mi = [mx

i ,m
y
i ]
T . Both 

source and microphones are enclosed in a room of pla-
nar dimensions d = [dx, dy]T . The amount of reverbera-
tion in the room is modeled by its reverberation time 
r, a measure of the amount of time it takes for a sound 
to decay by 60  dB from its original level. The signal yi 
received at microphone i is

In (1), ai is a scaling factor representing the attenu-
ation suffered by the wave propagating from ps to mi . 
We assume that the gains between the microphones 
are approximately calibrated, although we show in Sec-
tion 4.3 that our method is robust to uncalibrated micro-
phones of the same kind. τi is the time taken for a sound 
wave to propagate from the source to microphone i, 
and ǫi(t) models the noise. We assume τi to be equal to 
�mi − ps�2/c , where �mi − ps�2 is the Euclidean distance 
between the source and the microphone located at mi , c 
is the speed of sound and � · �2 represents the L2-norm.

We also define y(t) = [y1(t), . . . , yM(t)]T as the vec-
tor containing all microphone signals at discrete time 
index t. The Short Time Fourier Transform (STFT) of 
yi(t) is Yi(ℓ, f ) , for frequency f and time frame ℓ , and 
Y (ℓ, f ) = [Y1(ℓ, f ), . . . ,YM(ℓ, f )]T . The STFT [34] repre-
sents the frequency content of a signal over time, and is 
a widely used feature for source localization using neural 
networks [15, 19]. Figure 2 shows the magnitude repre-
sentation of Y  at the input.

Finally, the metadata vector φ ∈ R
Nφ is the concatena-

tion of the coordinates of the microphones, the room 
dimensions and reverberation time, as shown in Fig.  2. 
We chose the three aforementioned types of metadata 
as the room dimensions and microphone coordinates 
are explicitly exploited in classical localization methods 

(1)yi(t) = ais(t − τi)+ ǫi(t) .
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such as the LS. Furthermore, we included the reverbera-
tion time as an additional metadata to verify whether its 
knowledge can reduce the detrimental effect of rever-
beration in localization methods. However, other meta-
data could have been exploited such as the energy ratio 
between the microphone signals, or the absoption coef-
ficients of the walls.

3.2  Proposed method: dual input neural network
Our proposed DI-NN architecture is comprised of two 
neural networks, a feature extraction network and 
a metadata fusion network as can be seen in Fig.  1. 
An additional third network, called the metadata 
embedding network is also used in the alternative DI-
NN-Embedding network, which will be presented in Sec-
tion 3.3 .

The input of the network consists of the STFTof the 
microphone signals as defined in Section 3.1. Instead of 
using the complex representation generated by the STFT, 
we split the real and imaginary parts of the STFT Y  use 
them as separate channels as in [19], giving rise to 2 ∗M 
input channels. The role of the feature extraction network 
is to transform this high dimensional tensor into a one 
dimensional feature vector which compactly represents 
relevant information for the task in hand. In our experi-
ments, we adopt a CRNN [35] as our feature extraction 
network, due to its wide adoption for SSL [7, 20, 36].

This metadata-unaware vector is then concatenated to 
the available metadata, thus creating a metadata-aware 
feature vector. For our application, the metadata is a 
one-dimensional vector consisting of the positions of the 
microphones, the dimensions of the room, and its rever-
beration time. This metadata-aware feature vector is then 
fed to a metadata fusion network, whose role is to merge 
the metadata and feature vector to produce the result. In 

our experiments, we adopt a two-layer Fully Connected 
Neural Network (FC-NN) which maps the metadata-
aware features to a two dimensional vector correspond-
ing to the estimated coordinates of the source.

Our feature extractor CRNN is divided into two 
sequential sub-networks: a CNN block, responsible for 
extracting local patterns from the input data and a Recur-
rent Neural Network (RNN), responsible for combining 
these pattens into global, time-independent features. A 
diagram representing the components of the DI-NN net-
work is shown in Fig. 2.

The convolutional block receives a tensor of shape 
(M,  L,  F) representing a multi-channel complex STFT, 
where M represents the number of audio channels, L 
represents the number of time frames generated by the 
STFT, and F is the number of frequency bins used. The 
role of this block is two-fold: firstly, to combine local 
information across all microphone channels, and sec-
ondly to reduce the dimensionality of the data to make it 
more tractable for the RNN layer.

The convolutional block consists of four sequential lay-
ers, where each performs three sequential operations. 
Firstly, a set of K convolutional filters is applied to the 
input signal, resulting in K output channels. Secondly, 
a non-linear activation function is applied to the result. 
Finally, an average pooling operation is applied to the 
width and height of the activations, generating an output 
of reduced size. After passing the input through the four 
convolutional layers, we perform a global average pooling 
operation across all frequencies, generating a two-dimen-
sional output matrix.

After the convolutional block, the resulting matrix 
serves as input to a bidirectional, gated recurrent unit 
neural network (GRU-RNN) [37]. As sound may not 
be present throughout the whole duration of the audio 

Fig. 2 Detailed DI-NN architecture for the task of PSSL
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signal, such as during speech pauses, the RNN is impor-
tant for propagating location information to silent time-
steps. After this network, we reduce the dimensions of 
the features once again by performing average pooling 
on the time dimension, resulting in a vector of time-inde-
pendent features.

The output of the feature extraction network are then 
concatenated to the available metadata and serve as input 
to the metadata fusion network. This network consists of 
a set of two fully connected layers which map the meta-
data-aware features to a two-dimensional vector corre-
sponding to the estimated cartesian coordinates of the 
active source. We jointly train both networks using the 
same loss function, defined as the L1-norm or the sum of 
the absolute error between the network’s estimate of the 
source coordinates p̂s and the target ps , given by

We also considered using the more common squared 
error loss. Although both losses yielded similar results in 
our experiments, we chose the absolute error for its eas-
ier interpretability, since it corresponds to the distance in 
metres between target and estimated coordinates.

3.3  DI‑NN‑Embedding
To test whether it is advantageous to process the meta-
data before combining it with the microphone features, 
we also propose a variant of the DI-NN model, where 
the metadata φ is processed by a metadata embedding 
network to produce an embedding, which is then con-
catenated to the microphone features. This network is 
represented by the metadata embedding network block in 
Fig. 1.

3.4  Baseline: least‑squares based source localization
Our final comparative baseline is the Least-Squares (LS) 
algorithm [1] which uses the signal model defined in Sec-
tion 3.1. We provide an overview of the algorithm below. 

(2)L(ps, p̂s) = |ps − p̂s| .

We define the theoretical TDOA between microphones i 
and j with respect to the source coordinates ps as

where c is the speed of sound. Next, the measured TDOA 
between microphones τ̂ij is estimated from the cross-cor-
relation peak between the received signals according to

where C denotes the cross-correlation operator, usu-
ally computed in the frequency domain using the GCC-
PHAT algorithm [32]. We then aggregate the total error 
for all microphone pairs using

where Eij(ps) � |τij(ps)− τ̂ij|
2 is the squared difference 

between the theoretical and measured TDOA of each 
microphone pair in (3) and (4), respectively. To estimate 
the source’s location, we compute the values of E for a set 
of candidate locations ps within the room. In the absence 
of noise and reverberation, the location with the mini-
mum error corresponds to the true position of the source 
[1]. Figure 3 shows the heatmaps or error grids generated 
using the LS algorithm in an anechoic and a reverberant 
room. The position of the source is estimated by selecting 
the positions that minimize the total error,

Figure  3 illustrates the limitations of the LS algo-
rithm when the reverberation time is large. The two 
figures show the results of our algorithm for two simu-
lations, where one source and four microphones are 
placed in a room with the same dimensions. When the 

(3)τij(ps) �
�mi − ps�2 − �mj − ps�2

c
,

(4)τ̂ij � argmax
t

(C(t; yi, yj)) ,

(5)E(ps) �

m

i=1 j �=i

Eij(ps) ,

(6)p̂s = argmin
ps

E(ps) .

Fig. 3 Error grid produced by the LS algorithm for an anechoic and a reverberant room of the same dimensions and microphone coordinates
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room is simulated to be anechoic, i.e., all the reflections 
are absorbed, the algorithm produces a sharp blue peak 
in the heatmap. Conversely, when the simulated room 
is reverberant, the peak becomes much more dispersed. 
An explanation for this is that the model used by the 
LS method assumes anechoic propagation between the 
source and microphones, i.e., no reflections are assumed. 
Conversely, we will show that the DI-NN model is able 
to localize sources in reverberant environments, as it is 
trained using a reverberant dataset. A study conducted 
in [38] shows that speech inteligibility is maximized in 
rooms with a reverberation time between 0.4 and 0.5 ms, 
therefore limiting the practical application of the LS 
method on those environments.

4  Experimentation
This section describes our experiments with DI-NNs 
with three SSL datasets representing scenarios of varying 
difficulties. For each dataset, our approach is compared 
to two other methods. The first method is a CRNN with 
the same architecture but without using the available 
metadata, i.e., without the “Concatenate" block in Fig. 2. 
By comparing this network’s performance to the DI-NN, 
we can see the performance gains of our proposed 
method. The second comparative method is the classical 
LS source localization method described in Section 3.4. 
The experiments will be described below.

All of our experiments consisted of randomly placing 
one source and four microphones within a room. The 
height of the microphones, source and room were fixed 
for all experiments. For each experiment, the goal of the 
proposed method and baselines was to estimate the pla-
nar coordinates of the source within the room using a 
one-second multichannel audio signal as well as the posi-
tions of the microphones. We emphasize that the training 
and testing samples do not overlap, and hence demon-
strate our method’s effectiveness for handling unseen 
scenes and metadata. We refer the reader to Appendix A 
for a discussion on the independence of our datasets.

To simulate sound propagation in a reverberant room, 
we used the image source method [39] implemented by 
the Pyroomacoustics Python library (MIT license) [40]. 
We trained our neural networks using PyTorch (BSD 
license) [41] along with the PyTorch Lightning (Apache 2.0 
license) library [42]. The models were trained using a single 
NVIDIA P100 GPU with 16 GB of RAM memory. The con-
figuration of our experiments is managed using the Hydra  
(MIT license) library [43]. We release the code used for 
generating the data and training the networks on GitHub1, 

as well as a Kaggle notebook 2 to allow reproduction of the 
experiments without the need for any local software instal-
lation. The hyperparameters used for training the proposed 
method and baselines are shown in Table 1.

4.1  Simulated anechoic rooms
The goal of this experiment is to evaluate the perfor-
mance of the DI-NN and baselines in multiple rooms and 
microphone positions in the absence of reverberation. 
Our dataset generation procedure is shown in Fig.  4a. 
For each dataset sample, we randomly select two num-
bers from a uniform distribution in the interval [3, 6] m 
representing the room’s width and length. The height of 
the rooms is fixed at 3 m. Next, we randomly place one 
microphone along a line segment 0.5 m away and parallel 
to each room’s walls. We chose to place the microphones 
close to the wall as a simplified localization scenario, as 
our main goal is to test the effectiveness of our metadata 
fusion procedure. Nonetheless, this scenario is realistic in 
the context of smart rooms, where the microphones are 
usually placed in or near the room’s walls.

Finally, the source is randomly placed in the room, 
following a uniform distribution while respecting 
a minimum margin of 0.5  m from the walls. In this 

Table 1 Hyperparameters

Parameter Value

Num. parameters (DI-NN) 3.5M

Num. conv. kernels 64, 128, 256, 512

Conv. kernel size 2x2

Conv. layer pooling size 2x2

GRU output size 256

Metadata fusion net. layer out. sizes 512+ Nφ , 2

Metadata embedding layer out. sizes 2Nφ , Nφ

Activation func. last layer None

Activation func. other layers Rectified Linear Unit (ReLU)

Num. Discrete Fourier Transform (DFT) bins 
(for STFT)

1024

DFT hop length (for STFT) 512

Input duration 0.5 secs.

Sampling rate 16kHz

Grid resolution of LS method 2 cm

Learning rate 0.0005

Batch size 32

Num. epochs 40

Batch normalization [44] Only after conv. layers

Optimizer Adam [45]

1 Code: https:// github. com/ egrin stein/ di_ nn
2 Demo notebook: https:// kaggle. com/ code/ egrin stein/ di- nn- train ing- noteb 
ook

https://github.com/egrinstein/di_nn
https://kaggle.com/code/egrinstein/di-nn-training-notebook
https://kaggle.com/code/egrinstein/di-nn-training-notebook
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experiment, the source signal is WGN, and 30 dB Sig-
nal-to-Noise Ratio (SNR) sensor noise, simulated using 
WGN, is also added to each microphone. A dataset of 
15,000 samples is generated, from which 10,000 sam-
ples are used for training, 2,500 for validation, and 
2,500 for testing.

4.2  Simulated reverberant rooms
The data for the simulated reverberant rooms experi-
ment is generated similarly to the anechoic experiment. 
However, instead of simulating sound propagation in an 
anechoic environment, each dataset sample is randomly 
assigned a reverberation time value for its correspond-
ing room from a uniform distribution within the range 
of [0.3 – 0.6] s. This value is used to simulate reverbera-
tion using the image source method [39]. For the source 
signal, we use speech recordings from the VCTK corpus 
[46]. The number of training, testing and validation sam-
ples is same as in the above section.

4.3  Real recordings
For this experiment, instead of simulations, we use meas-
urements from the LibriAdhoc40 dataset [47] (GPL3 
license). The signals were recorded in a highly reverber-
ant room containing a grid of forty microphones and a 
single loudspeaker, which was placed in one of four avail-
able locations. The microphones recorded speech sen-
tences taken from the Librispeech [48] corpus, which 
were played back through the loudspeaker. The rever-
beration time measured by the dataset authors was of 
approximately 900 ms.

To generate each dataset sample, we subselect four of 
the forty available microphones. We restrict our micro-
phone selection to the outermost microphones of the 
grid, where one microphone per side is selected. A visual 
explanation of our microphone selection procedure is 

provided in Fig. 4b. There are four available positions for 
the microphones near each of the west and east walls and 
seven positions near each of the north and south walls. 
Furthermore, there are four available source positions. 
There are, therefore, 4 × 4 × 7× 7× 4 =  3,136 source/
microphone combinations available for selection. Finally, 
we randomly select four speech utterances for each com-
bination, resulting in a dataset of 12,544 samples. We use 
50% of those combinations for training, 25% for valida-
tion and 25% for testing. To create the training dataset for 
this experiment, we augment the aforementioned train-
ing split with the training data of the reverberant dataset 
described in Section 4.2, resulting in a dataset consisting 
of 10,000 + 6,272 = 16,272 signals.

4.4  Metadata sensitivity study
In practical scenarios, the metadata, e.g., microphone 
coordinates and room reverberation time in PSSL, are 
uncertain because they are typically estimated or meas-
ured. To investigate the robustness of our approach to 
such uncertainties, we conducted a sensitivity study 
using the test dataset in Section 4.2. We modify the data-
set by introducing different levels of perturbations to the 
input metadata, followed by a computation of the mean 
localization error for each level using the model trained 
on Section 4.2.

Our first three studies consist of perturbing the micro-
phone coordinates of the testing dataset with increasing 
levels of random Gaussian noise. The reported precision 
of microphone coordinates measured optically is under 
a millimeter [49]. Conversely, when these are estimated 
using self-localization algorithms, the reported errors 
are under 7 cm [50, 51]. We therefore choose the stand-
ard deviation levels of the introduced noise to 1, 10 
and 50  cm. In our fourth study, we introduced random 
Gaussian noise to the reverberation time with a standard 

Fig. 4 Experimental setup. a For the anechoic and reverberant simulations, each of the four microphones mi is placed on a random point 
along the the coloured arrows, while the source s is randomly placed on a point within the rectangle defined by them. b The sampling procedure 
for Section 4.3, where positions of the microphones and source are randomly drawn from each differently coloured set of points
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deviation of 200  ms, based on reported errors obtained 
on reverberation estimation procedures [52, 53].

4.5  Metadata relevance study
To quantify the contribution of each metadata category 
to the improvement in localization performance, we con-
ducted a metadata relevance study where we trained the 
DI-NN network using six different combinations of the 
microphone positions, room dimensions and reverbera-
tion time. The results are summarized in Table 3.

5  Results and discussions
5.1  Results
Figure  5a compares the average error of our proposed 
DI-NN and DI-NN-Embedding methods to the CRNN 
and LS baselines. To obtain statistically significant 
results, we train the DI-NN, DI-NN-Embedding and 
CRNN models four times independently for each experi-
ment using random initial network parameters. The 
results shown in Fig. 5 are averaged across the four times, 

with error bars showing the standard deviation across the 
runs. Conversely, as the LS method is deterministic, it 
does not require multiple runs.

A first remark is that although the LS approach is 
very effective in the anechoic scenario, its performance 
is degraded on the other datasets, indicating its sensi-
tivity to reverberation. The CRNN outperforms the LS 
method in reverberant scenarios without knowledge of 
the microphone’s coordinates. Interestingly, the CRNN 
baseline is also obtains good localization performance on 
the recorded dataset, indicating that the network is able 
to infer the metadata to an extent when trained on a sin-
gle room.

However, by exploiting the microphone coordinates, 
the DI-NN is shown to significantly improve the per-
formance compared to the CRNN. The most significant 
difference is observed in the anechoic case, where an 
improvement close to three times is obtained. In this 
case, the microphone coordinates are more useful as 
this information cannot be derived from the signals. 

Fig. 5 a Mean localization error for DI-NNs and baselines on different datasets. b Normalized histogram comparison between the DI-NN 
and the CRNN baseline on the recorded dataset. c Cumulative version of (b)
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In a reverberant room, however, the network might be 
able to use reflections to its advantage, as discussed in 
[54], to infer the microphone coordinates and making 
the metadata less useful. Figure 5a also shows the errors 
obtained using the alternative DI-NN-Embedding 
architecture were similar to the DI-NN in all scenar-
ios, indicating no advantage in the proposed embed-
ding, although it still allows the network to exploit the 
metadata.

In turn, Fig. 5b compares the normalized error histo-
grams between our approach and the CRNN baseline 
on the real recordings test dataset. The mode of the 
DI-NN’s error is centred on the 0-15 cm bin compared 
to the 15-30 cm bin for CRNN’s error. In other words, 
only the DI-NN is median-unbiased. The cumulative 
distribution for the same data is shown in Fig. 5c. While 
the DI-NN is shown to locate over 50% and 80% of the 
dataset samples with less than 15 and 45 cm error, the 
CRNN achieves the same errors for less than 20% and 
60% of the data, respectively.

The results of the sensitivity study conducted in Sec-
tion 4.4 are displayed in Table 2. The last column refers 
to the relative error increase between the perturbed 
case and the noiseless experiment conducted in Sec-
tion  4.2. The results show that our approach is robust 
to the uncertainty inherent in practical measurements 
of the microphone coordinates and reverberation time 
estimates. The case where the microphone coordi-
nates are disturbed by an extreme error of 0.5 m (more 
than five times above typical errors) has been included 
to demonstrate the impact of including microphone 

coordinates for PSSL, reiterating the importance and 
improved performance of metadata in our proposed 
fusion approach.

Finally, the results of the metadata relevance analysis 
study described in Section  4.5 are displayed in Table  3. 
Each line represents a version of the DI-NN model 
trained on the reverberant dataset. The first three col-
umns describe which metadata types are used in the 
model, and the last column shows the model performance 
relative to the model using all metadata, represented in 
the first line. The results show that the microphone coor-
dinates are the most relevant for the model. In fact, using 
the microphone coordinates alone provides the best 
results. The results also indicate that the room dimen-
sions are more relevant than the reverberation time in 
the absence of the microphone coordinates.

5.2  Limitations and extensions
Our approach exploits the metadata, such as the micro-
phone coordinates and reverberation time and therefore 
this data must be known a priori or somehow measured. 
We have, however, shown that using this additional infor-
mation is justified by a significant improvement in per-
formance. While we have also assumed that the gains 
of the microphones are calibrated in our experiments, 
which may not be verifiable in practical scenarios, we 
have shown in Section  4.3 that our model can perform 
well even when using uncalibrated microphones of the 
same kind. If calibration cannot be ensured, extracting 
gain invariant features from the signal pairs such as the 
cross spectra [16] may be used as a preprocessing step.

We have also limited our scope to the localization of 
one static sound source using static microphones to 
focus on metadata fusion. However, extensions to mov-
ing sources and microphones could be possible by using 
smaller processing frames, for example. Another exten-
sion would be to estimate the three dimensional coor-
dinates of the source. Finally, a possible extension for 
multiple source localization is expanding the output of 
DI-NN to a vector of size 2N, where N is the number of 
maximum sources, and performing Permutation Invari-
ant Training (PIT) [55].

6  Conclusion
In this work, we proposed DI-NN, a simple yet effec-
tive way of jointly processing signals and relevant meta-
data using neural networks. Our results for the task of 
SSL on multiple simulated and recorded scenarios indi-
cate that the DI-NN is able to exploit successfully the 
metadata, as its inclusion reduced the mean localization 
error by a factor of at least two compared to the CRNN 
baseline, as well as significantly improving localization 
results in comparison with the classical LS algorithm in 

Table 2 Metadata sensitivity analysis

Coord. std. (m) Reverb. std. (ms) Err. increase (%)

0.01 0 0.05

0.1 0 1.02

0.5 0 32.9

0 200 0.4

Table 3 Metadata relevance analysis

Mic. coords. Room dims. RT60 % performance

✓ ✓ ✓ 100

✓ ✓ ✗ 102

✓ ✗ ✓ 100

✗ ✓ ✓ 61

✓ ✗ ✗ 104

✗ ✓ ✗ 60

✗ ✗ ✓ 47
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reverberant environments. Additional relevance and sen-
sitivity studies revealed that the microphone coordinates 
the most important metadata, and that the DI-NN is 
robust to realistic noise in the metadata.

Appendix
Validation of metadata independence between training 
and testing datasets
The datasets used in Sections  4.1 and  4.2 are created 
entirely synthetically by generating random training, 
validation and testing samples. The attributes gener-
ated for each sample are the room’s width and length, 
the coordinates of the four microphones, and the 
source coordinates. Additionally, in Section  4.2, the 
room reverberation time is also randomly sampled. 
These values are then used to simulate the microphone 
recordings using the image source method. The only 
difference in the procedure for generating the train-
ing and testing sets is the random seed used for sam-
pling values. Although highly unlikely, generating a test 
sample with the exact room dimensions, reverberation 
time, microphone and source coordinates as a sample 
in the training set could be possible and would violate 
the machine learning principle of having independent 
training and testing sets.

To assure the reader that this has not occurred in our 
experiments, we compute a distance metric D between 
each testing sample and the entire training dataset. 
We focus on comparing the microphone coordinates 

between the training and testing sets and show that 
our approach has been validated against unseen meta-
data. Each sample comprises four microphone coor-
dinates, each placed near one of the room’s walls. We 
define the distance d(i, j) between the i-th testing sam-
ple and j-th training sample as the sum of the distances 
of the microphone coordinates between the samples 
given by

where m1
i  , m

2
i  , m

3
i  and m4

i  refer to the coordinates of the 
microphones located near the north, south, east and 
western walls of the room from the i-th sample and � · � 
denotes the L2-norm.

To measure the distance between the i-th testing sam-
ple and the entire training dataset, we compute (7) for 
every training sample j. We define the smallest distance 
D(i) between the i-th testing sample and the entire train-
ing set as the minimum distance between i and all train-
ing samples j, expressed as

This measure quantifies the worst-case similarity 
between the i-th testing sample and the most similar 
sample in the entire training set. By plotting a histo-
gram of D(i) for every i-th sample in the testing set, we 
observe in Fig. 6 that no training microphone configura-
tion appeared in the testing set. Moreover, the average 

(7)d(i, j) =

4∑

k=1

�mk
i −mk

j �2 ,

(8)D(i) = min
j

{d(i, j)} .

Fig. 6 Distance between test dataset’s microphone coordinates and training dataset
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minimum distance between the testing and training sets 
is around 30  cm. Besides having different microphone 
coordinates, we like to emphasize that the room dimen-
sions and reverberation time also vary from sample to 
sample, increasing the differences between training and 
testing sets even further.

Abbreviations
DINN  Dual Input Neural Network
CRNN  Convolutional recurrent neural network
SSL  Sound source localization
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