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Abstract 

Currently, Graph Neural Networks have been extended to the field of speech signal processing. It is the more compact 
and flexible way to represent speech sequences by graphs. However, the structures of the relationships in recent stud‑
ies are tend to be relatively uncomplicated. Moreover, the graph convolution module exhibits limitations that impede 
its adaptability to intricate application scenarios. In this study, we establish the speech‑graph using feature similar‑
ity and introduce a novel architecture for graph neural network that leverages an LSTM aggregator and weighted 
pooling. The unweighted accuracy of 65.39% and the weighted accuracy of 71.83% are obtained on the IEMOCAP 
dataset, achieving the performance comparable to or better than existing graph baselines. This method can improve 
the interpretability of the model to some extent, and identify speech emotion features effectively.
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1 Introduction
Speech emotion recognition (SER) is a branch of auto-
matic emotion recognition and automatic speech recog-
nition [1]. It recognizes the emotional state of speech by 
analyzing the acoustic features and linguistic content of 
the speech. It can currently be applied to multimodality 
generation tasks [2], assisted psychotherapy [3], video 
games [4] and telephone services [5]. The speech emotion 
recognition task is divided into two main phases: feature 
extraction and emotion classification. The speech signal 
is first processed based on time-domain and frequency-
domain characteristics to quantize the raw speech. Sub-
sequently, the processed data is fed into deep learning 
models for the purpose of emotion classification. The 
most popular models are convolutional neural network 
(CNN) [6], recurrent neural network (RNN) [7], long 
short-term memory network (LSTM) [8], as well as large-
scale speech recognition models [9]. However, the voice 

state and emotional expression are variable at any time. 
It is still a great challenge to accurately identify the emo-
tional state in short time.

Graph neural network (GNN) is an extension of con-
volutional networks on non-Euclidean data space, with 
the core idea being to construct good feature interpret-
ability based on data association [10]. It has been suc-
cessfully applied to computer vision and natural language 
processing tasks. Because speech is the combination 
of linear sequences, it is difficult to be converted into 
irregular non-Euclidean data. Therefore, the application 
of graph neural networks in speech signal processing is 
limited. In recent years, researchers have considered 
linear sequences as a special case of graph and applied 
graph convolution as encoder by transformations like 
line graphs, cycle graphs [11, 12], and complete graphs 
[13], building lightweight architectures with excellent 
performance. However, the relational structures of these 
compositions are single. The graph convolution is limited 
by the graph topology, which is not flexible, resulting in 
poor generalization ability in complex scenes.

This paper focuses on the task of the sentence-level 
speech emotion classification. To facilitate this task, 
individual frames are considered as nodes within the 
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framework. The backbone of the model is constructed 
using a cycle graph, while the feature similarity between 
speech frames is computed to determine the connec-
tions between nodes. Specifically, the K edges with the 
highest weights are selected to establish these connec-
tions. For complex topological graphs, we choose the 
Message Passing Neural Network (MPNN) based on 
spatial-domain convolution to design a more flexible 
classification model.

Our contributions are as follows.

1) The development of a more adaptable directed graph 
of speech by leveraging feature similarity allows  for 
greater flexibility in representing speech.

2) The introduction of a graph neural network architec-
ture based on an LSTM Aggregator employs a message 
passing mechanism to capture input dependencies and 
facilitates accurate recognition of speech emotions, par-
ticularly in graphs with higher complexity.

3) The proposal of a weighted graph pooling operation 
for graph-level classification tasks enables the extrac-
tion of global features. The experimental results show 
that the weighted pooling can effectively remove 
redundant information and lead to a more stable 
convergence trend.

2  Related work
2.1  SER based on deep learning
Currently, classifiers of SER can be categorized into two 
types, traditional classifiers and deep learning classifiers. 
Traditional classifiers include Gaussian Mixture Models 
(GMMs), Hidden Markov Models (HMMs) and Support 
Vector Machines (SVMs), etc. [14], which rely on a lot 
of preprocessing and precision feature engineering [15]. 
With the development of deep learning technology, the 
performance of SER has gained significant improvement. 
Some studies have combined Deep Neural Networks 
(DNNs) and traditional classifiers, e.g., [16] proposes a 
DNN-decision tree SVM model based on DNN, which 
can capture more distinctive emotion features compared 
with traditional SVM and DNN-SVM.

Most of recognition frameworks based on neural net-
works utilize CNNs, LSTMs, and combinitions [17, 18]. 
For example, [19] modifies the initial model with an incre-
mental approach, and inputs multiple acoustic features 
to a 1D CNN, which improves the accuracy. [20] con-
structs a robust and effective recognition model based on 
key sequence fragments, combining CNN and BiLSTM. 
Attention mechanism is another key for recognizer based 
on deep learning to deal with hidden information. Atten-
tion-based DNN can mine unevenly distributed features 
in speech and emphasize saliently emotional information, 
which better adapts to changes in speech emotion [21]. By 

directing self-attention to deal with missing and hidden 
information, the more robust structure [22] obtains the 
satisfactory performance. Furthermore, the challenge of 
building SER systems based on neural networks lies in the 
poor generalization due to data mismatch. To address this 
problem, [23, 24] make significant progress on generaliza-
tion by sharing feature representations among auxiliary 
tasks through multi-task learning. However, the tradi-
tional recognition system based on deep learning has the 
complex structure and weak interpretability of speech fea-
tures. The graph has been introduced into speech tasks as 
a compact and efficient representation. And the superior-
ity of GNNs in graph processing has received widespread 
attention.

2.2  SER based on GNNs
At present, the application of graph neural networks in 
the field of speech technology still has some limitations 
[25], but some scholars have verified the advantages of 
graph convolution in the field of speech technology and 
the possibility of being widely used through research, 
such as conversational speech recognition [26], sen-
tence-level [27] / conversation-level speech emotion 
recognition [28], speech enhancement [29], and Q &A 
rewriting [30]. The methods of graph construction 
can be divided into sample point-based, frame-based, 
speech channel-based, and historical dialogue-based 
approaches, as shown in Fig. 1. In addition, graph neu-
ral network has good performance in low-resource 
speech emotion recognition, such as [31] using trans-
duction integrated learning algorithms based on graph 
neural networks to accomplish the challenge of Portu-
guese speech emotion classification.

In current studies, researchers mostly use frame-based 
composition. Each frame is considered as one node. 
Additionally down-sampling is used to reduce the num-
ber of frames and simplify the structure. For example, 
the study [11] modeled the speech signal as a frame-
based recurrent graph and constructed a lightweight 
and precise graph convolution architecture, achieving 
comparable performance with existing techniques. The 
studies [10, 12, 25] extend the context acceptance range 
by constructing neighbors within the specific times on 
the deep frame-level features obtained by recurrent neu-
ral networks. Similarly, the study [32] extends to dialogue 
speech emotion recognition by introducing CNN-BiL-
STM to extract conversation features and constructing 
edges through a fixed past context window. These stud-
ies have a high dependence on the feature processing 
capability of sequence models, and the connections are 
relatively fixed. The study [33] proposes an ideal graph 
structure based on cosine similarity and constructs a 
graph convolutional network with better robustness. 
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However, in practical applications, speech sequences are 
prone to problems of high feature similarity and feature 
instability. The threshold approach is not applicable to 
realistic scenarios.

To address the problems of inflexible graph structure 
and poor generalization ability in the above studies, this 
paper proposes a graph neural network based on LSTM 
aggregator and weighted pooling to transform the speech 
emotion recognition task into the graph classification 
task.

3  Proposed approach
In this part, we will discuss each component of Graph-
LSTM neural network (GLNN) in detail.

3.1  Graph construction
Inspired by studies [11, 12], the speech signal is processed 
into frames, and each frame is considered as a node. To 
preserve feature integrity and build the scalable graph, 
the processing of downsampling and fixed-length cut is 
discarded. The speech with variable number of frames is 
transformed into the graph based on the temporal rela-
tionship and feature similarity. Thus, the speech graph is 
heterogeneous.

The graph dataset is represented as G = (V ,E) . V is the 
set of nodes, and E is the set of edges. The feature matrix 
of nodes in the figure is represented as X, X ∈ Rn×D , 
where n represents the number of nodes, and D repre-
sents the feature dimension, and xi represents the feature 
vector of the i-th node. x, the feature vector of the node, 
is composed of a set of low-level descriptors extracted by 
openSMILE 3.0. The edges are constructed in two cate-
gories, one is the directed edges constructed by the tem-
poral relationship. The one-way edges vi → vi+1}

n−1
i=1

 are 
constructed only depending on the time, and finally the 
loop is established by vn → v1 . The directed cycle graph 
is used as backbone to improve the stability of the graph 
structure. The other category is the directed edges 

obtained from the feature similarity calculation. In order 
to reduce the computational complexity, the dot product 
similarity operation is used as follows:

where X ∈ Rn×D is the feature matrix of nodes on the 
graph, and n represents the number of nodes, and D rep-
resents the feature dimension; X is standardized, and the 
dot product similarity between nodes is calculated to 
obtain the similarity weights. edges represent the set of 
constructed edges. j represents the index of the adjacent 
node of the i-th node selected by the TopK function. eji 
means the edge built between the i-th and the j-th nodes, 
pointing from the j-th node to the i-th node.

The heat map of the weights is shown in Fig. 2. Accord-
ing to the heat map, it is observed that the feature simi-
larity between nodes is greatest in the region centered 
on the diagonal. And the feature similarity is higher in a 
small range of neighborhoods, which is consistent with 
the characteristics of speech temporal changes. In order 
to screen out redundant information and select the edges 
with the highest correlation, the TopK algorithm [34] is 
used to select the k nodes with the highest similarity to 
the target node vi . By conducting experimental verifica-
tion, the value of k is set to 10, resulting in improved sta-
bility of the model’s convergence.

3.2  Graph‑LSTM neural network
The structure of Graph-LSTM neural network (GLNN) is 
shown in Fig. 3. The architecture based on speech-graph 
consists of three graph convolution layers, a pooling 
layer and a classifier. In Fig.  3, A is the overall struc-
ture of GLNN; B is the structure of graph convolution, 

(1)X =
X

�X�2
,weights = X · XT

(2)edges =
{

eji|j ∈ TopK (weights, k)}ni=1

Fig. 1 It provides four examples of graph construction used in the above studies. The nodes of these graphs are frames, sample points, speech 
channels and dialogues
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consisting of LSTM aggregator and linear updater; C is 
the structure of weighted pooling layer.

The model construction is based on the message pass-
ing network with two phases of forward passing, message 
aggregation and readout operation [35]. The convolution 
layers of Graph-LSTM model consist of aggregator and 
updater.

(3)x
′

i = ϕα(xi)

(4)xaggr = AggregatorLSTM
j∈N (i)

(

⊕xj
)

where ϕα and ϕβ represent the linear transformation; N(i) 
represents the neighborhood of the target node; xaggr rep-
resents the neighborhood features obtained by aggrega-
tion, and xi represents the feature vector of the i-th node, 
and xj represents the features vector of adjacent points.

Based on the graph structure of 3.1, considering the 
continuity and complexity of speech features, the sim-
ple aggregation operation [36] is no longer applicable to 
this application scenario. As a result, the LSTM aggre-
gation operator [37] is chosen to accomplish inductive 

(5)xup = ϕβ

(

x
′

i ⊕ xaggr

)

+ γ

Fig. 2 Similarity weighting heat map

Fig. 3 The structure of GLNN. A is the overall structure of GLNN; B is the structure of graph convolution, consisting of LSTM aggregator and linear 
updater; C is the structure of weighted pooling layer. In addition, the solid line represents the backbone, and the dashed line represents the possible 
edges constructed by similarity in Graph of A
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representation learning of adjacent features. The flow is 
from the source nodes to the target nodes. The neigh-
bors are combined into time series and fed into LSTM for 
inference, obtaining deep aggregated features.

The Graph-LSTM neural network consists of the 3-lay-
ers graph convolution module, which realizes the feature 
aggregation and update. Then it performs the read-out 
operation through the pooling layer to obtain graph-level 
features, which are input to the classifier.

3.3  Weighted pooling
The construction of the speech graph establishes con-
nection relationships based on time sequence and simi-
larity. There are a large number of overlapping regions 
and redundant features between neighbors. Conven-
tional pooling operation is difficult to filter out repre-
sentative features from dense connections, while the 
time sequence of speech needs to preserve the integrity 
of node features. Therefore, weighted pooling is con-
structed based on global pooling operations of sum, max 
and mean, which is calculated as shown in Eq. 6.

where max, mean and sum represent the three types of 
global pooling operations; xi represents the feature vec-
tor of the i-th node; xpooling represents the global feature 
vector; α , β and � represent the weights of the three pool-
ing operations respectively, which are set to {0.3, 0.3, 0.3} 
in the experiment. Through the weighted pooling opera-
tions, the feature integrity is retained while removing 
redundant information.

4  Experiments
4.1  Dataset and features
The dataset used for the study is the Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) database 
[38], containing 12 hours of audiovisual data. The data 
were collected from two-person situational dialogues 
which the actors performed in a scripted or improvised 
manner. The actors’ facial expressions and hand move-
ments were recorded simultaneously during the com-
munication. The speech emotion recognition task in this 
study uses only speech data, for five binary dialogues 
divided into multiple sentences. IEMOCAP uses the 
multi-annotator to annotate these data with 11 emo-
tion labels. For objective experimental analysis and per-
formance comparison, we used four classes of data in 
our experiments, namely angry, happy, sad, and neutral, 
totaling 4490 utterances.

The extraction of audio features is done with the open 
source tool called openSMILE 3.0 [39]. openSMILE is a 
large-space audio feature interpreter that is widely used 

(6)xpooling = α ·
n

max
i=1

(xi)+ β ·meanni=1(xi)+ � · sumn
i=1(xi)

for sentiment computing tasks. Audio feature extraction 
can be achieved through command line and configura-
tion files. The experiment uses the INTERSPEECH 2010 
Paralinguistic Challenge feature set to extract a set of 
low-level descriptors (LLDs) consisting of mfcc, maxPos, 
amean, skewness, and smoothing using the correspond-
ing first-order delta coefficients. The speech is framed by 
a fixed-size sliding window, with the frame length set to 
25 ms and the shift set to 10 ms. In addition, spontane-
ous binary features are added to each frame, inspired by 
spontaneous learning [40]. As a result, 77-dimensional 
features are generated for speech frames.

4.2  Experimental setup
The dataset is divided into training set and test set by 
stratify to equalize the data categories, and the division 
ratio is 8:2. Training is performed using Adam optimizer. 
The learning rate is set to 1e-5. The decay weight is set to 
1e-4, and the batch size is set to 8. All experiments are 
performed on NVIDIA Tesla V100 GPU. The model per-
formance is evaluated using weighted accuracy (WA) and 
unweighted accuracy (UA) metrics.

4.3  Comparison model
We compare the proposed method with the sequence-
based SER model and the graph-based SER model 
respectively.

4.3.1  SER models
We selected three SER models as baselines.

DCNN [41]: a 1-D convolutional neural network uses 
hybrid features as input and modifies the initial model 
using incremental methods to improve the classification 
accuracy. The model has good generalization.

ResNet34 [42]: a transfer learning method combines with 
acoustic spectrogram enhancement that can efficiently 
handle variable-length inputs using a pre-trained residual 
network. The method alleviates the over-fitting problem 
and improves the generalization ability of the model.

ADAN + SVM [43]: an adversarial data augmenta-
tion network generates augmented data and makes SVM 
classifiers outperform RNN classifiers in terms of local 
attention.

4.3.2  GNN baselines
Compact SER [11]: a lightweight graph convolutional 
network based on recurrent or linear graphs maintains 
comparable performance to existing techniques under 
reduced learning parameters.

PATCHY-SAN [44]: a general framework for extract-
ing locally connected regions is based on convolutional 
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networks to learn the arbitrary graph, which is computa-
tionally efficient.

PATCHY-Diff [45]: a microscopic graph pooling 
module generates hierarchical representations to be 
combined with multiple graph neural networks in an 
end-to-end mode for graph classification tasks.

For the above methods, the four classes of data totaling 
4490 utterances, angry, happy, sad and neutral, were used 
for analysis.

GA-GRU [25]: a speech emotion recognition frame-
work applies graph attention mechanism to gating 
units, combining long time sequences and graph data to 
enhance feature saliency.

CoGCN [33]: a graph convolutional network is based 
on cosine similarity with good noise immunity.

LSTM-GIN [46]: a speech emotion recognition net-
work based on LSTM and GIN applies Graph Isomor-
phism Network to extract global feature representations.

The above approaches merge the happy and excited 
categories when validating the model performance, and 
extend the happy category data to 1636 utterances, for a 
total of 5531 utterances.

4.4  Results and analysis
4.4.1  Performance comparison
Table  1 shows the results of GLNN compared with 
baselines. First, the basic architecture of GLNN, using 
global average pooling, obtains the WA of 68.15% on 
IEMOCAP, which exceeds the baseline methods. How-
ever, we found that the UA was only 59.16%, which was 
lower than ResNet34 [42] and compact SER [11]. The 
possible reason is category imbalance. The happy class 

with only 595 utterances is much lower than others, 
which might lead to lower UA values. For validation, 
the happy category is combined with the excited cat-
egory, and the results are compared with the methods 
[25, 33, 46].

With more balanced categories, the difference between 
GLNN on WA and UA metrics reduces. Especially the 
UA has a significant improvement of 9.49%. It indicates 
that the number of training data in each categories has 
a large impact on the model performance, and GLNN is 
not accurate enough when training with the small and 
unbalanced dataset. Because the graph structure and 
graph convolution used by GLNN may lead to the prob-
lem of feature redundancy and unstable feature extrac-
tion for small training samples. To solve this problem, the 
weighted pooling layer is constructed.

After adopting the weighted pooling method, GLNN 
exhibits notable enhancement, achieving WA of 71.83% 
and UA of 65.39%. These results surpass the performance 
of the baseline models, indicating superior effectiveness. 
Furthermore, a reduction in the disparity between the 
two metrics is observed. In practical application, the cat-
egory equalization problem is a common data problem. It 
is difficult to equalize the data. Therefore, it is more fea-
sible to use weighted pooling to optimize the model per-
formance and mitigate the oversmoothing problem.

4.4.2  Ablation
We set up three groups of ablation experiments to verify 
the rationality of the proposed method. Table 2 analyzes 
the effect of the number of layers of graph convolution 
and calculates the corresponding parameters. From the 
experimental results, it is clear that the best performance 
is obtained by the 3-layer convolution module, which has 
the large improvement compared with the 2-layer con-
volution. However, the model performance decreases 
by continuing to add the graph convolution layers. 

Table 1 Comparison between SER baselines and proposed 
model

The Bold represents the best results. ’-’ means that the result is not recorded in 
the report

Model UA (%) WA (%) Condition

DCNN 2020 [41] ‑ 64.3 4490 utterances

ResNet34 2021 [42] 61.61 66.02

ADNN + SVM 2019 [43] ‑ 65.01

Graph baselines

PATCHY‑SAN 2016 [11] 56.27 60.34

PATCHY‑Diff 2018 [11] 58.71 63.23

Compact SER 2021 (cycle) [11] 62.27 65.29

Ours (Mean pooling) 59.16 68.15
Ours (Weighted pooling) 65.39 71.83
LSTM‑GIN 2022 [46] 65.53 64.65 5531 utterances

CoGCN 2022 [33] 63.67 62.64

GA‑GRU 2020 [25] 63.8 62.27

Ours (Mean pooling) 68.65 68.11

Table 2 Comparison between different layers

Layers Params (KB) UA (%) WA (%)

2 361 55.93 63.81

3 409 59.16 68.15
4 591 58.62 67.82

Table 3 Comparison of number of K

K UA (%) WA (%)

5 57.97 58.55

10 59.16 68.15
15 59.91 68.04
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Meanwhile, the complexity of the graph convolution is 
analyzed. The space complexity determines the num-
ber of parameters, and Table 2 records the parameter of 
the graph convolution. The parameter of the three-layer 
convolution is 409K with moderate training, which can 

fit well. And the time complexity is calculated from three 
links: feature mapping, feature aggregation and feature 
updating. n denotes the number of nodes. D denotes the 
original dimension of inputs, and D′

1
 denotes the map-

ping dimension, and D′
2
 denotes the feature dimension of 

outputs. Firstly, the features of all nodes are mapped with 
the time complexity of O(n ∗ D ∗ D′

1
) . Then the feature 

aggregation is performed by the LSTM aggregator with 
the complexity approximately equal to O(n ∗ D′2

1
) . Finally, 

the feature updating is completed by the linear layer with 
the time complexity of O(n ∗ D′

1
∗ D′

2
) . In summary, the 

time complexity is O(n(D′
1
∗ D′

2
+ D

′2
1
)).

Table 4 Comparison between different pooling methods

Pooling Max Sum Mean TopK Weighted

UA (%) 57.97 58.55 59.16 61.88 65.39
WA (%) 66.15 67.71 68.15 68.49 71.83

Fig. 4 The convergence curves of five pooling methods. The blue, orange, green, red and purple curves represent max‑pooling, mean‑pooling, 
sum‑pooling, topk‑pooling and weighted‑pooling repectively. Two types of curves, WA curve and UA curve, are drawn separately
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Table 3 analyzes the effect of k values when constructing 
edges by the TopK algorithm, i.e., the effect of the number 
of edges. The results in Table 3 show that the k value of 10 
obtains the large improvement compared with the value 
of 5, with an improvement of 9.6% on WA. However, the 
gain of model performance is very small when the k value 
is taken as 15, indicating that the information obtained by 
adjacent nodes is saturated. Increasing the number of edges 
cannot bring extra information gain.

Table 4 compares the effects of different pooling meth-
ods on the accuracy. It should be noted that, in addition 
to three simple read-out operations of maximum, mean 
and summation, we also try to use topk pooling to filter 
out 50% of the nodes before performing mean pooling. 
From Table  4, the mean-pooling performs better than 
max-pooling and sum-pooling, but worse than topk-
pooling. It indicates that filtering the nodes to remove 
redundant features helps to improve the performance. 
And weighted pooling maximally preserves the integrity 
of node features and effectively filters out representative 
features. Compared with other pooling methods, it has 
the better performance. Figure  4 shows the test curves 
of different pooling methods. As shown in Fig.  4, the 
weighted pooling can effectively mitigate oversmoothing 
and converge more stably.

5  Conclusion
In this paper, we explore a graph neural network based 
on LSTM aggregator and weighted pooling applied 
to speech emotion recognition task. The specific pro-
cess is as follows. First, speech features are extracted 
by the openSMILE. Then, the connection relationship 
is selected for speech graph construction based on the 
feature similarity and TopK algorithm. Finally, a classifi-
cation model is designed based on the message passing 
architecture to convert speech classification into a graph 
classification task. Our evaluation on the IEMOCAP 
dataset demonstrates superior performance compared to 
the baseline models. However, there are some shortcom-
ings in the current stage, including 1) complex connec-
tions and a large number of redundant features in graph; 
2) unstable processing and analysis of small datasets; 
3) neglecting the speaker’s information. The research 
focuses on adult speech, which is a lack of exploration of 
children’s speech emotion recognition [47, 48].

In order to address the aforementioned challenges, 
we will adopt the following stategies in the next stage. 
1) To address the issue of redundant features, we will 
consider more versatile approaches for graph construc-
tion to further reduce the requirement for data size 
and optimize the model framework. 2) Faced with the 
problem of data scarcity, the Transfer Learning strat-
egy [49] is adopted to design a multi-task framework 

for speech recognition and emotion recognition, 
which improves the adaptability to small sample data 
through feature sharing. 3) To address the issue of dif-
ferences in acoustic and linguistic features of speak-
ers, a speaker converter is introduced to learn adaptive 
transformation, which enables the model to eliminate 
feature differences.
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