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Abstract

ther development.

Acoustic echo cancelation (AEC) is a system identification problem that has been addressed by various techniques
and most commonly by normalized least mean square (NLMS) adaptive algorithms. However, performing a successful
AEC in large commercial vehicles has proved complicated due to the size and challenging variations in the acous-

tic characteristics of their cabins. Here, we present a wideband fully linear time domain NLMS algorithm for AEC

that is enhanced by a statistical double-talk detector (DTD) and a voice activity detector (VAD). The proposed solution
was tested in four main Volvo truck models, with various cabin geometries, using standard Swedish hearing-in-noise
(HINT) sentences in the presence and absence of engine noise. The results show that the proposed solution achieves
a high echo return loss enhancement (ERLE) of at least 25 dB with a fast convergence time, fulfilling ITU G.168
requirements. The presented solution was particularly developed to provide a practical compromise between accu-
racy and computational cost to allow its real-time implementation on commercial digital signal processors (DSPs).

A real-time implementation of the solution was coded in C on an ARM Cortex M-7 DSP. The algorithmic latency

was measured at less than 26 ms for processing each 50-ms buffer indicating the computational feasibility of the pro-
posed solution for real-time implementation on common DSPs and embedded systems with limited computational
and memory resources. MATLAB source codes and related audio files are made available online for reference and fur-

Keywords Speech signal enhancement, Automotive speech processing, Acoustic echo cancelation, Adaptive filters,
NLMS, Keyword spotting, Hands-free telephony, Automotive voice assistant

1 Introduction
1.1 Background
Acoustic echoes are generated in speech telecommu-
nication networks due to acoustic feedback from loud-
speakers to microphones. This phenomenon deteriorates
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the perception of sound by causing the users to hear a
delayed replica of their own voice being reflected from
the other side of the network. To remove acoustic ech-
oes in earlier speech telecommunication systems, micro-
phones were completely muted while the far end was
talking over the loudspeaker. This simple method was
efficient; however, it reduced a natural full-duplex dialog
(i.e., simultaneous transmission in both directions) into
a half-duplex (one direction) [1, 2]. Today, a less aggres-
sive version of this technique, known as acoustic echo
suppression (AES), is still used. This technique works by
automatically reducing the gain on the microphone sig-
nal whenever the far end is talking to suppress the echo.
The side effect of AES is, however, the nonlinearity in the
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system due to the automatic gain control. Another type
of solution, categorized as acoustic echo cancelation
(AEC), has been developed which dynamically estimates
the acoustic echo path between the loudspeaker and the
microphone in real time and subtract its effect from the
captured signal so that only the desired near-end speech
components remain [1-4]. AEC, unlike AES, is a fully lin-
ear solution, and it also conserves the full-duplex nature
of the communication.

Although AEC might appear like a straightforward
“system identification” problem, it bears several intrin-
sic challenges. Most of these challenges are because the
acoustic echo path from the loudspeaker to the micro-
phone is very dependent on the acoustical characteris-
tics of the specific room where the near end is located. In
many applications, the room’s acoustic characteristics are
either totally unknown or solely partially known. Moreo-
ver, these characteristics alter significantly due to object
movements, temperature differences, and any relocation
of the loudspeaker or the microphone. This means that
there is generally not a generic time-invariant estimation
of the acoustic echo path but rather a room-specific esti-
mation that should be adaptively adjusted continuously
[1-4]. Because of this, AEC algorithms need to impose
a constant computational load on the embedded sys-
tem that they run on. In many cases, the computational
cost might become infeasible demanding a compromise
between accuracy and computational efficiency [2—4].

Various model-based adaptive techniques have
emerged to address the AEC problem: Least mean square
(LMS) adaptive filter was used even in the early genera-
tion of the AECs [1], and several of its variants such as
normalized LMS (NLMS) have been developed since
then [2-4]. Other adaptive filtering approaches have
been developed based on the recursive least square (RLS)
method [2] and Kalman filters [5]. The RLS method con-
stitutes a similar adaptive approach to LMS. However,
the major distinction is that the RLS includes a “forget-
ting factor” (usually denoted by A) which gives expo-
nentially less weight to older error samples. The Kalman
method is based on defining time-varying states for the
filter properties which enable the system to adapt quickly
to fast-varying changes in the echo path.

Besides the fourth mentioned model-based adaptive
filters, probabilistic clustering techniques have been suc-
cessfully used for blind source separation (BSS) of the
echo components from the near-end speech signal [6].
However, BSS methods rely on the existence of multiple
microphones (usually 4 microphones) for successfully
estimating the location cues for source separation. There-
fore, BSS methods are not applicable to most vehicles
which are typically equipped with either single or dual
microphones only.
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Moreover, deep neural networks (DNNs) have also
been deployed successfully to directly address acoustic
echoes [7]. Some DNNs are also used for improving the
parameterization of the existing model-based adaptive
methods such as the step-size parameter in RLS [8] or
the covariance of the state noise and observation noise
in the Kalman filtering technique [9]. DNNs can only be
used effectively in less time-critical applications that run
on much larger computers. Consecutively, for real-time
implementation on local embedded systems (DSPs) with
limited computational and memory resources, adap-
tive filtering approaches (specifically NLMS) are still the
most commonly used solutions due to their good balance
between computational efficiency and accuracy [3, 4].

The performance of an AEC system is often assessed in
accordance with the technical requirements announced
by the International Telecommunication Union (ITU)
G.168 standards for AECs [10]. These standards mainly
focus on two metrics: (1) the echo loss achieved by the
AEC which determines how much the acoustic echo
is attenuated and (2) convergence time which deter-
mines how quickly the AEC addresses the acoustic echo.
Besides ITU standards, word error rate (WER) during
double-talk periods is also used as a benchmarking met-
ric to evaluate the success of the AEC system. This metric
is specifically more interesting if the AEC system is sup-
posed to be used as a front end for automatic speech rec-
ognition (ASR) applications [8, 11].

1.2 AECin the automotive context

The main application of AEC in the automotive industry
is related to Bluetooth-based hands-free telephony. Blue-
tooth-based hands-free telephony systems were intro-
duced into the vehicle’s infotainment systems in the 1990s
enabling drivers to make phone calls wirelessly using the
vehicle’s embedded microphone and loudspeaker while
driving [12]. The common practice for echo cancelation
in vehicles is to use an NLMS-based adaptive AEC com-
bined with a nonlinear AES as a post-processor to further
attenuate the residual echoes [2, 12, 13].

Although echo cancelation has become relatively suc-
cessful in personal cars despite some common failures
[14], it has proved very challenging in large commercial
vehicles. One main reason is the physical attributes of
these vehicles, e.g., a truck cabin could be three to five
times larger than a personal vehicle’s cabin leading to
much longer reverberation times. Furthermore, rela-
tive to personal cars, the geometry and the furnishing
in truck cabins can hugely vary across manufacturers
and from one model to another. As a result, creating a
generic model of the acoustic echo path in truck cabins
is challenging and typically requires longer adaptive fil-
ters which usually impose an unaffordable computational
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load on the vehicle’s embedded system. Consequently,
truck producers often receive a large number of customer
complaints about low audio quality due to echo issues.
These complaints are important given that a typical
commercial truck driver might make several telephone
conversations a day to arrange the logistics of their deliv-
eries. Moreover, truck drivers could cause serious safety
risks for themselves and other road users if they resort to
using their phones while driving due to frustration with
the audio quality of the hands-free telephony system.

Besides hands-free telephony, the speech dialog system
is the other major application that requires echo cancela-
tion. Mercedes-Benz launched the first speech dialog sys-
tem in 1996 which allowed the driver to interact with the
vehicle functions using their voice [13, 15]. Since then,
many automotive brands have adopted similar systems
in their products [13]. All of these conventional speech
dialog systems are half-duplex because the user needs
to push a specific physical button on the steering wheel
(known as the push-to-talk (PTT) button) each time they
want to talk to the system [13, 15]. When the user pushes
the PTT button, the loudspeakers are immediately muted
and thus no echo is generated.

In contrast, voice assistant systems (such as Google
Assistant, Siri, and Amazon Alexa) have been developed
in recent years that are independent of the PTT button
and rather rely on specific words (known as keywords)
to trigger the application [16, 17]. These are for instance
“OK Google!” for Google Assistant, “Alexa!” for Ama-
zon Alexa, and “Hey Siri” for Siri. These voice assistants
aim to provide full-duplex natural communication in
the sense that they allow users to interrupt (“barge in”)
using the keyword while the system is reading informa-
tion over the loudspeakers. This is a vital ingredient in
the desired user experience and, to achieve that, acoustic
echoes need to be constantly canceled during the entire
operation of these voice assistants. Google and Amazon
publicly announced that they will introduce their voice
assistants in vehicles with the first products launched in
2020 [16, 17].

The key difference between a hands-free telephony sys-
tem and a speech dialog system is that the far-end party
in the former is a human, whereas in the latter, the far
end is a neural network performing the speech recogni-
tion task. A major requirement for speech recognition is
that the input audio stream provided is free of nonlinear-
ity [8, 18]. As a result, unlike for hands-free telephony,
the echo cancelation for such systems can solely rely on
AEC, and no AES post-processing is allowed. This limi-
tation places a higher burden on echo canceling systems
that are designed to work for both hands-free telephony
and speech dialog systems.
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1.3 Our contribution

1) AEC in large vehicle cabins is challenging which
leads to substantial customer complaints reported to
truck manufacturers. We provide an adaptive time-
domain AEC solution tailored for large vehicle cabins
and tested it on four main Volvo truck models. The
solution achieves and surpasses the quality standards
required by ITU G.168 standards.

2) Our AEC solution provides a good balance between
accuracy and computational feasibility. The AEC
algorithm runs only when it is deemed needed. A
real-time version of the solution was coded in C and
implemented on a very low-cost commercial DSP
platform with limited computational and memory
resources.

3) The proposed AEC solution is fully linear which
makes it a good lightweight frontend for ASR systems
and more specifically keyword spotting algorithms,
which typically need to run locally on the host device,
i.e, an embedded system with limited memory and
computational resources.

4) The successful features mentioned above are only
achievable by means of carefully optimizing four key
parameters, namely (1) the length of the Wiener fil-
ter, (2) the regularization parameter of the step size
(B), (3) the correlation threshold of the statistical
double-talk detector (1), and (4) the energy thresh-
old for voice activity detection (Ep). In this work, we
describe how these four parameters could be suc-
cessfully optimized. To our knowledge, our work is
unique in explicitly describing and presenting these
tailored optimizations for AEC inside large vehicle
cabins.

The paper provides information on the used methods,
the performance, the computational efficiency, and the
DSP implementation of the proposed solution, in the fol-
lowing sections.

2 Methods

The proposed AEC solution was implemented and evalu-
ated in MATLAB v.2019b. The real-time implementation
of the AEC solution was performed in C language using
uVision Keil environment on a common ARM Cortex M7
DSP. All participants in the tests consented to the anony-
mous use of their voices, in compliance with applicable
ethical regulations.

2.1 NLMS adaptive filtering

Figure 1A shows an overview of the AEC setup. The sig-
nal received from the far-end party over the communica-
tion “downlink” port is denoted by x/n/. This signal is also
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Fig. 1 A An overview of the proposed AEC algorithm which consists of the main “NLMS-based adaptive AEC"block accompanied by two decision
circuits, i.e, “far-end voice activity detector” (VAD) and “double-talk detector” (DTD). The AEC algorithm runs only whenever the far end is active (i.e,,
"YES” switch is activated). The double-talk detector stops the AEC adaptation (sets u =0 in Eq. 2.b) if double talk is detected. B A driver in the FM928
Volvo truck serving as the near-end party during a hands-free phone conversation
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called “the reference signal” since it is used as the refer-
ence for the adaptive algorithm. After this signal propa-
gates through the near-end acoustic environment (i.e.,
the truck cabin), the microphone receives y/n] which is
an echo of x/n/ that has been filtered by the correspond-
ing echo path impulse response. The microphone also
receives s[n], i.e., components of the speech signal pro-
duced by the near-end talker as well as some ambient
noise components represented by r/n/ in Fig. 1A. The
signal captured by the microphone (d[#n]) is then an addi-
tion of these three signals (i.e., d[n] = y[n] + s[n] + r[n]).
All these signals are considered to be zero-mean, real,
statistically independent of each other, and wideband
(i.e., convey frequencies from 0.1 to 8 kHz). In this sec-
tion, we begin by presenting the AEC concept based on
the assumption that the near-end talker is silent (s/n/=0)
and the ambient noise is absent (r/n/=0). Therefore,
y[n] is the sole signal received by the microphone, i.e.,
dfn]=y[n]. The effects of the near-end speech (s/n/), and
ambient noise (r/n]) are added to the model and analyzed
in subsequent sections.

Figure 1B shows a driver in an FM928 truck during a
hands-free phone conversation serving the role of the
near-end talker in Fig. 1A. The microphone and the front
loudspeaker are marked by red circles while the dashed
line represents the corresponding acoustic echo path.
The AEC algorithm assumes that the acoustic echo path
between the loudspeaker and the microphone is a lin-
ear system that could be simulated by a finite impulse
response (FIR) filter, with its impulse response denoted
by hfn], at any given time. This impulse response consists
of L coefficients which corresponds to Fs/L seconds in
time, where Fs is the sampling rate.

The true impulse response of the acoustic echo path
(i.e., hfn] in Fig. 1A) is unknown, and the task of an
AEC solution is to estimate it. To do so, the NLMS
algorithm is an iterative process that tries to find an
impulse response (represented by A[x] in Fig. 1A) that
ideally matches the true impulse response of the acous-
tic path (i.e.h[n] = h[n]). As a result, once the algorithm
finds this impulse response, the output of the adap-
tive filter (3[n]) approaches the received signal by the
microphone. In other words, the error signal (denoted
by e/n] in Fig. 1A), which is the difference between y[n]
and y[n], approaches zero (i.e.e[n] = y[n] —y[n] = 0).
The NLMS algorithm slightly adjusts the coefficients of
the 4[n] in each iteration inAorder to minimize the error
signal (e/n]). In this sense, h[n] acts as an adaptive Wie-
ner filter in this system identification problem [2—4].

The output of the adaptive filter (¥[n]) is given by
Eq. (1.a) below whereL tap of x/n/ is transposed (rep-
resented by xLT[n]) and is then multiplied by h[n].
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Equation (1.b) provides a short form of Eq. (1.a) where *
denotes convolution.

3] = [x(man — 1.x(n — L — DT [A[1]A[2) ... ALY}
(1.a)

3n] = x[n] * hln] (1b)

__The adaptation process occurs by estimating a new
h[n] per_each sample of y/n/ through a small adjust-
ment A/[n] in each iteration, as expressed in Eq. (2.a,
2.b and 2.c). This adjustment value is determined based
on the error signal (e/n]) and the reference signal (x/n/)
according to Eq. (2.b) where u[n] is known as “step
size” Choosing an optimized step size is important for
the convergence rate and accuracy of the system and
has been studied extensively in the literature [2—4, 19].
According to the NLMS method, the step size is adap-
tively changed in each iteration proportional to the
variance of x;[n], denoted by aszm, as presented by
Eq. (2.c) [2-4].

hn + 1] = hln] + Ahn] (2.2)

Ahln] = p[n)(x.[n)e[n]) 2.b)

uln) = 02 1y = var(e [n]) = x, [l (]

o
B+onpm
(2.¢)

The terms « and B need to be adjusted according to
the specifics of every given NLMS problem. Choosing
appropriate values for « and § has been comprehensively
studied to a great complication [2—4, 19]. The term o,
which could take a value between 0 and 2, determines the
speed of convergence. Higher « values result in quicker
adaptation of the NLMS algorithm; however, there is
a tradeoff between convergence and overall success of
the echo canceller in terms of echo return loss enhance-
ment (ERLE) [3]. Here, we chose o = 1.98 to assure the
fast convergence of the algorithm. The term S, known
as the regularization parameter, is meant to improve the
performance of the NLMS in the presence of noise, and
it has to be adjusted according to the characteristics of
the ambient noise (r/n/ in Fig. 1) and the intrinsic signal-
to-noise ratio (SNR) of the microphone hardware [3].
Here, we chose 8 = 0.1 which corresponds to the intrin-
sic SNR of the electret condenser microphones that are
commonly used in the automotive industry. The Wiener
adaptive filtering method has been successfully imple-
mented in vehicles for non-stationary noise cancelation,

e.g., by [20].
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2.1.1 Choosing the length of the Wiener filter

The length of /[n], represented by L, has a great impact
on the outcome of an AEC, and it is related to the rever-
beration in the near-end acoustic space [2]. If the goal of
the AEC is to achieve an ERLE of 30 dB, then L should
be chosen long enough to cover the T30 reverberation
time (i.e., the time it takes for sound to decay 60 dB after
the source is muted). Previous studies have shown that
setting the length much longer than the correspond-
ing reverberation time not only imposes unnecessary
excess computational cost but also increases numerical
errors [3, 4, 19]. T30 has been measured around 40 ms in
medium-sized trucks (Volvo FM series) and estimated up
to 60 ms in larger heavy-duty trucks (Volvo FH series).
Here, we use the average of these two numbers (i.e.,
50 ms) to have a generic solution for both series. There-
fore, at Fs=16 kHz, the Wiener filter, 4/n/, would have
800 coefficients (L = Fs x T30 = 16000 x 0.05 = 800).
To achieve a tailored solution, it is reasonable to allow
automakers to set L based on the T30 reverberation time
associated with the cabin geometry of every particular
vehicle model.

2.2 Double-talk detection based on normalized
cross-correlation

The method presented in the previous section was built
on the assumption that the near-end talker is silent
(s/n]=0) while the echo from the far end is present. How-
ever, in natural full-duplex communication, the near-end
talker might as well talk at the same time as the far end
(i.e., double talk, DT). Moreover, a non-negligible amount
of ambient noise (r/n/) might also be present. In these
situations, the captured microphone signal (d[n]) con-
veys components that are unrelated to the acoustic path,
hfn], and therefore, the underlying modeling principal of
the AEC becomes violated, and consecutively, the adap-
tive process would diverge and fail [2, 3, 21-23]. To avoid
this scenario, as illustrated in Fig. 1A, our solution con-
stantly monitors the signals x/n/ and d[n/ for detecting
the occurrence of DT. In case DT is detected, as shown in
Fig. 1A, the adaptation process is halted by setting p =0
in Eq. (2.b). By doing so, Ak[n] = 0 which means that no
new impulse response will be estimated as long as a DT is
ongoing but, instead, the last valid /[#] will be applied to
the signal. This mechanism prevents DT from contami-
nating the process of new /[#] estimation.

Different methods have been developed to detect
DT and stop the adaptive process until the end of the
DT period. These methods can be categorized into two
groups: (1) methods that detect DT by comparing the
amplitude of the captured signal (d[n]) with the far-end
reference signal (x/n]) [21, 22] and (2) methods that
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detect the DT by analyzing the statistical differences
between d/n] and x/n] [5, 23].

While amplitude-based DTDs are easier to imple-
ment and are more computationally efficient than sta-
tistical DTDs, their main shortcoming is that the sound
level produced by the loudspeaker is in many cases
unknown, and thus, comparing the amplitudes of x/n/
and d/n] might lead to a wrong decision by the DTD.
This is especially an important shortcoming for vehicle
applications wherein the user is capable of increasing
the loudspeaker’s gain at any time and thereby manipu-
lating the amplitude of d[n/.

Therefore, we developed a statistical DTD deci-
sion circuit based on the normalized cross-correlation
(NCC) between x/n] and d[n] [23]. NCC is also called
the “Pearson correlation coefficient” in statistics [24]. In
case the far-end is the only talker, there will be a non-
zero cross-correlation between x/n/ and dfn]. How-
ever, when the near end talks too (i.e., DT occurs), the
cross-correlation between x/n/ and d/n] diminishes and
approaches zero since dfn] would convey s/n] compo-
nents as well. Accordingly, DT is detected if NCC drops
below a certain threshold (1)

Equation (3) presents the NCC between x/n/ and
d[n] where oy, [, and oy, are the standard deviation
(square root of variance) of L samples of x/n] and d/n],
respectively, and cov(x[n],dr[n]) is the covariance
between them. NCC can yield a number in the range
[-1,+1], where+1 indicates a perfect correlation
and—1 is a perfect anti-correlation between the two
inputs while 0 shows a non-existing correlation.

NCCz ] iy [n]) = 2L AL )

Ouxr[n]9dy [n]

2.2.1 Optimizing the DTD threshold (3¢)

DT is detected when NCC falls below a certain thresh-
old (no) and approached zeros. Choosing an appropriate
1o is vital to assure accurate DTD and avoid false alarms
[23]. There are four possible scenarios: (1) both far-end
and near-end parties are silent, (2) the far end is talking
meanwhile the near end is silent, (3) the far end is silent
meanwhile the near end is talking, and (4) both far-end
and near-end parties are talking (DT). Scenarios 1 and
3, wherein the far end is silent, are taken care of by the
VAD which is explained in the next section. Therefore,
no should be chosen to enable the system to distinguish
the last scenario (i.e., scenario 4) from the scenario 2
above. NCC is always higher for scenario (2) than for
scenario 4 in every situation. Accordingly, no should be
chosen around the minimum of the NCC for scenario
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2. Every NCC that falls below 1o would then indicate
that scenario 4 has occurred (i.e., the DT is detected).
The truck’s loudspeaker is not ideal and thus constantly
produces a low-intensity wideband noise that travels
through the acoustic path and leaks to the captured sig-
nal by the microphone. We symbolize this particular
noise signal byv[z]. In case of scenario 2, the signal cap-
tured by the microphone (d[n]) consists of two compo-
nents (i.e.d[n] = y[n] + v[n]). The NCC between d[n]
and x[n] in this case is NCC(xy [n], dy[n]) = 2v@Lldiin)

cov(ey Inlyr [l v ) . R e
= : . According to the principle of bi-line-
Oxp [n)9dy [n]

arity of covariance, this term can be written as
W Given that the minimum possible value
for cov(x, y) is O (which occurs when the far end is talking
at very low intensities), 1o can be then calculated accord-

ing to Eq. (4) below.

no = min(“’“’“”) @

0,04

We calculated ng defined by Eq. (4) above in all of our
audio files recorded in various truck models. The results
yielded 1.1 x10~* in average with a standard deviation
of SD=0.5 x10~>, This choice of o, as seen in Eq. (4), is
dependent on the specific statistical relations between
the loudspeaker noise and the captured microphone sig-
nal. This can vary based on the loudspeaker hardware
and cabin geometry. Our verification tests have shown
that choosing this threshold results in a low false alarm
(pf) of lower than 0.1 across all truck models, as recom-
mended by [23], while a substantial majority of DTs are
appropriately detected. Our DTD optimization presented
in this section is specifically targeting large vehicle cabins
and truck models (with their typical loudspeaker hard-
ware and cabin geometry), but our method can be gen-
eralized and used to optimize 7 for any type of cabin and
loudspeaker hardware.

2.2.2 Ambient noise

The main contributor to the ambient noise is the noise
generated by the engine. The engine noise recorded in
Volvo truck models is mostly a low-frequency noise with
a peak at its fundamental frequency of about 30 Hz and
decaying harmonics that can be detected up to about
1 kHz. The fan noise, if the air conditioner is on, and
road noise, if the vehicle is in motion, are other contribu-
tors to r[n]. All these sources are uncorrelated with the
speech signals (cov(r,s) = 0), and they are low intensity
(o7 = 0). In other words, the NCC between these noise
components and the speech signals must be close to zero
[i.e.,, NCC(xz[n], rz[n]) = 0, and NCC(s[n], rr[n]) = 0].
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2.3 Far-end voice activity detection

The AEC is a necessity when there is a meaningful
amount of echo in the system, but when the far-end refer-
ence signal is empty (i.e., x/n] does not convey significant
audio components to be canceled), the AEC becomes
a computationally expensive unnecessary burden. To
address this issue, as illustrated in Fig. 1A, we constantly
monitor the reference signal (x/n]) for relevant content
with regard to echo cancelation and run the AEC and DT
algorithms only when necessary.

2.3.1 Optimizing the VAD threshold (E)

In hands-free telephony applications, the far-end sig-
nal comes from a microphone mounted on a phone,
often from a mobile phone. Google has announced in its
requirements for Android mobile phone manufacturers
that the analog signal captured by the microphone should
be sampled at 16 bits and should yield specific sensitiv-
ity to sounds [18]. These requirements are the industry
standards and are generally followed by non-Android
phone producers as well.

The quantization error associated with a 16-bit sam-
pling analog-to-digital converter is—96.3 dB FS which
implies that sound components that are lower than
96.3 dB in intensity from the full scale (FS) fall under the
quantization noise floor [25]. It is reasonable to assume
that there is some imperfection in the microphone cir-
cuitry used on the far-end side and some irrelevant
background noise that can mount to—80 dB FS. We,
therefore, set Ey to 10~%, which corresponds to—80 dB
FS. Accordingly, any L tap of the reference signal (xz[n])
that conveys root mean square (RMS) energy below
this level is considered irrelevant (i.e., containing virtu-
ally zeros). As Fig. 1A shows, the AEC and DTD algo-
rithms are not applied on such taps and the microphone
signal is passed to the output without any processing
(er[n] = dr[n]). Our evaluations show that by stopping
AEC and DTD in these circumstances, a considerable
amount of unnecessary computation is avoided. The pro-
posed VAD proves vital for any realistic real-time imple-
mentation of our AEC solution on a commercial DSP.

2.4 Evaluation

Data were recorded in four common large commercial
vehicles produced by the Volvo group: two medium-
duty trucks from the FM series (FM928 and FM930), and
two heavy-duty trucks from the FH series (FH2250 and
FH2099). These truck models have various cabin geome-
tries that represent the majority of trucks sold worldwide.
Each recording consisted of 2 min of communication
between far-end and near-end parties over the phone.
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The far-end party talked on an HTC-11 phone while the
near-end party used an Apple iPhone 11 connected to
the head unit over Bluetooth. The phone volume was set
to maximum on both phones and maintained through-
out the tests. The truck’s loudspeaker’s volume was set
to produce a comfortable and clear sound level (vol-
ume =25) although the tests.

Both far-end and microphone signals, x/n/ and d[n]
respectively, were recorded by the vehicle’s head unit
and saved in the memory. Each recording started with
the far end reading a list of 10 special sentences from the
standard Hearing-in-noise test (HINT). These sentences
are short everyday sentences that have been phonemi-
cally balanced and are currently used widely in audio-
logical research setups for measuring speech recognition
thresholds in humans [26]. During the time the far end
was reading the HINT sentences, the near end was silent.
Afterward, there was a natural multi-turn conversa-
tion between the two parties followed by a DT wherein
both near-end and far-end parties articulated numbers
simultaneously.

The recording was done while the vehicle was station-
ary under two scenarios: (1) engine off or (2) engine on.
The recorded files were in *Wav format and originally
sampled at 48 kHz. These data were imported to MAT-
LAB v.2022(a) and down-sampled to 16 kHz for analysis.

The algorithm shown in Fig. 1A and explained so far
was coded in MATLAB and applied to the two files x/n/
and dfn] using an iCore7 Intel computer and the output,
e[n], was saved. For each case, the time it takes for the
code to run and finish the task was also assessed using
the “tic, toc” instruction in MATLAB.

2.4.1 Echo reduction loss enhancement as a measure
of the AEC performance

ERLE is a commonly used indicator for quantifying the
achievement of an AEC solution to attenuate echoes [2—
4, 6, 7, 10]. To estimate the ERLE achieved by the pro-
posed solution, a segment of the signals corresponding to
the part wherein the HINT sentences are read by the far-
end participant is extracted and the ERLE is estimated
using Eq. (5) below [10] when the far end is the sole talker

(s/[n]=0).

“din)
o3 (5)
ERLE = 10 x log;g"

2.4.2 Convergence time as a measure of the AEC
performance

The convergence time is another important quantitative

measure of an AEC success [2—4, 6, 7, 10]. It refers to the

time it takes for the AEC to reach a specific amount of

(2023) 2023:39

Page 8 of 16

ERLE, usually 25 dB, and stay over that afterward [2—4, 6,
7, 10]. Here, the convergence time is calculated using the
Swedish HINT sentence. According to the requirements
stated by ITU, an AEC solution should yield at least 6 dB
of ERLE at the second frame (L). The ERLE should then
increase to a minimum of 20 dB at 1 s. Thereafter, the
ERLE should reach its steady state at 10 s and should stay
over that steady state value, afterward [10].

2.4.3 Word error rate as a measure of the AEC performance
in DT periods

WER is a standard metric to measure the speech intelligi-
bility of a speech signal [8, 11]. During the DT, the system
is supposed to stop adapting but still be able to cancel
far-end echo components while preserving the near-end
speech signal. WER during DT periods is a good measure
for assessing the system’s ability in preserving the near-
end speech quality in the presence of simultaneously
competing far-end speech components. The WER cal-
culates the Levenshtein distance of the recognized word
sequence from the ground truth transcription divided by
the number of words in the ground truth transcription. It
is defined as WER = W where S is the number of sub-
stitutions, D is the number of deletions, I is the number
of insertions, and N is the number of words in the ground
truth transcription.

To assess the performance of our solution in improv-
ing speech intelligibility during DTs, we fed the original
microphone recording (d[n]) during the periods where
both near-end and far-end parties simultaneously read
out numbers into Google’s speech-to-text API, which is
freely available online. The WER was calculated for the
recognized text. We also fed in the error signal (e[#n]),
which is the output of our AEC processing, to the same
speech-to-text API and likewise calculated the WER.
We compared the two WER scores (original versus pro-
cessed) and reported as a measure of our solution’s
success in increasing the speech intelligibility during
challenging DT periods.

2.5 Real-time implementation

To assess the computational feasibility of the proposed
solution for real-time embedded implementation, it was
implemented in C language on an evaluation board pro-
vided by ST [27] using the standard CMSIS libraries and
uVision Keil, which is a commercial integration develop-
ment environment (IDE) provided by ARM for compiling
C code into the machine code for ARM microprocessors.
This evaluation board contains a standard ARM Cortex-
M7 microprocessor, called STM32F767, manufactured
by ST microelectronics. This microprocessor is equipped
with DSP capabilities and libraries. This microprocessor’s
central processing unit (CPU), when clocked at 216 MHz
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(rated maximum), provides a computation power of 462
Dhrystone million instructions per second (DMIPS). It
comes with 2 Mbytes of internal flash memory and 512
kB of volatile RAM [27].

A new project was created in the uVision Keil IDE. The
reference far-end signal (x/n/) and the microphone signal
(d[n]) were down-sampled to 16 kHz and saved as *.Wav
files in the project user data space. An open-source code
was used to read the files in STM32F767 with buffers of
size 800 which matches the filter length (L) and the tap
size used throughout this work.

A key concept in real-time signal processing is that the
algorithm processes the data without being interrupted
for reading the input data from memory. To secure this,
the direct memory access (DMA) unit of the micropro-
cessor should be configured and used [28]. The DMA
unit runs on an independent clock from that of the CPU,
which allows the microprocessor to apply the algorithm
and process a buffer while the next buffer is being read
from the memory in parallel. Two buffers (B1 and B2
in Fig. 2) are used for reading x/n/ data. When the first
buffer (B1) is filled, an interrupt is generated. The buffer
is then processed by the CPU. While the buffer is being
processed, the new samples are read and transferred by
the DMA into the second buffer (B2) to be fetched and
processed by the CPU in the next cycle. This procedure
continues and the data are filled in B1 and B2 and fetched
by the CPU consecutively. This double buffering mecha-
nism, empowered by the DMA, guarantees a continu-
ous real-time flow and processing of the data. The same
procedure is also performed to read the microphone data
(d[n]) using buffers C1 and C2, as seen in Fig. 2.

The described echo canceling algorithm (Fig. 1A) is
applied to each buffer, and the output (e/n]) is sent to the
digital-to-analog converter (DAC) of the microprocessor
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which then sends it via an analog operational amplifier
(LM4871) to a 4-W loudspeaker to play the result. This
analog amplifier is supplied by 3.3 V DC and is config-
ured according to the circuit in Fig. 2. The analog ampli-
fier amplifies and broadcasts the result on a loudspeaker
to be heard.

We assessed the computational efficiency of the imple-
mentation by measuring the algorithmic latency (i.e., the
time it takes for the CPU to process a buffer) using the
debugging tools available in the Keil uVision environ-
ment. A key requirement for a real-time system to func-
tion properly is that the algorithmic latency is less than
the length of the buffer itself (i.e., 50 ms here). If this
requirement fails, a phenomenon known as “CPU over-
run” occurs whereby the continuous flow of the data
from input to output is disrupted [28]. Through our code
development, we used ‘optimization level-2 for speed’
option in our tool chain to guide the compiler to gener-
ate underlying assembly codes that are optimized for
enhancing the execution speed on our particular micro-
processor CPU.

3 Results
3.1 Echo attenuation and convergence time in absence
of engine noise

Figure 3A shows the microphone signal (d/n]) versus
the output of the AEC (e/n]) for an FM928 truck while
the engine is off. The AEC solution manages to attenu-
ate the echo received by the microphone significantly by
25.54 dB according to Eq. (5). Figure 3B shows the ERLE
per sentence and how the ERLE becomes stronger as the
algorithm continues adapting.

Figure 4 shows the ERLE per HINT sentences and, addi-
tionally, at 0.1 and 1 s (marked by crosses). The dashed
line shows the convergence requirement announced in
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Fig. 2 An overview of the real-time implementation on a Cortex M-7 microprocessor (STM32F767) accompanied by an analog amplifier circuitry

and a loudspeaker
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Fig. 4 The ERLE convergence achieved by the presented AEC method as a function of time (circles and crosses) versus the requirement stated

by ITU G.168 standards (dashed)

Fig. 12(A) of ITU G.168 standard for AECs [10]. Based on
this requirement, the AEC should yield ERLE values that
lie above the dashed line. Accordingly, the AEC should
yield at least 6 dB of ERLE at the second frame (since
each buffer is 50 ms in our solution, this means 0.1 s). The
ERLE should then increase to a minimum of 20 dB at 1 s.

Thereafter, the ERLE should reach its steady state at 10 s
and should stay over that steady state value, afterward.
Figure 4 shows that the presented AEC solution achieves
over 22 dB of ERLE at 0.1 s which is much higher than the
requirement (6 dB). This demonstrates the very fast con-
vergence of the AEC because it already reaches 22 dB in a



Saremi et al. EURASIP Journal on Audio, Speech, and Music Processing

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

Amplitude [+/-1 denotes 0 dB FS]

-0.06

-0.08

-0.1

o
w

o o
N w

Amplitude [+/-1 denotes 0 dB FS]

0.2

0.15

Amplitude [+/-1 denotes 0 dB FS]

-0.15

e
ES

(2023) 2023:39

Page 11 of 16

FM930
. ; - i B)
A) — — - microphone signal
Il error signal (e) 1 FM930 : ERLE per sentence
32 T T T T T T
L ] 30
[ 1 28 - o0~ -
o B ==
| ) o~ o
| o 4
I 26 /0/
| u s
L 1l = P
w
ufb !
L 1 /
/
L 4 22
i 1 20 . x - -
1 3 4 5 6 F 8 9 10
- . - : sentences
10 15 20 25
Time [s]
FH2099
Wl C) T T T T : '11 : tl 1 D)
T 7 ~microphone signal A
FH2099: ERLE per sentence
4 32 T T T T T T —y
2 27 N
S s §
b 30 <{ 4
7%
/
4 O
& 28 /T ~d 1
. I //
W 2% P J
]l e 7
b /
24 ;/ 4
4 22 4
|
il 5 i
2 3 4 5 6 7 8 9 10
: : ] . ; ; sentences
0 6 8 10 12 14 16
Time [s]
FH2250
T : : - - - F)
E) — = =microphone signal
| i error signal (e) FH2250: ERLE per sentence
32
1 30 - 4
P~
. [l e o
T 4 L4
‘u—-" 4
EJ 26 o 2 4
_ x &
24 / ]
J #
2 -
20 -
2 3 4 5 6 7 8 9 10
: : * : : sentences
0 8 0 12 14 16 18 20
Time [s]

Fig.5 A, C, E Captured microphone data (d[n]) versus the output of the AEC, error signal (e[n]) while the far end is reading ten HINT sentences
for FM920, FH2099, and FH2250, respectively. B, D, F The ERLE achieved by the presented AEC solution in terms of ERLE per sentence for each truck.
The engine was off in all these measurements
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very short time. Thereafter, the ERLE stays over the dashed
line and its steady state at 25 dB, as depicted in Fig. 4.

Figure 5A shows the microphone signal (d[n]) versus
the output of the AEC (e/n]) for the FM930 truck while
the engine was off illustrating a 25.43-dB ERLE. Fig-
ure 5B shows the ERLE values per sentence. Figure 5C-F
illustrates similar data for FH2099 and FH2250 where the
overall ERLE values are 27.26 and 30.9, respectively. Fig-
ure 5 indicates that in all cases the ERLE surpassed 25 dB
somewhere before the onset of the second sentence.

Table 1 reports the ERLE assessed in the four truck
models under test while the engines were off. The execu-
tion times for the MATLAB code to process 2 min (120 s)
of data are also given. The WER during the DT period
before and after the AEC are provided too. Table 1 also
reports the execution time of the C code on the real-
time ARM STM32F767 DSP. The execution time on the
DSP has been reported as an average of the algorithmic
latency per buffer. Each buffer is 50 ms long.

The IDE debugging tools provide a tool that can pro-
vide information on the time the CPU takes for process-
ing each buffer. Table 1 reports the average of this value
over all buffers in each audio file. It is worth noticing
that the proposed algorithm consists of about 6.4 mil-
lion basic operations per buffer. Since the STM32F-
767CPU can process 460 million instructions per second
(i.e., DMIPS =460), it should take around 13.9 ms for the
CPU to execute 6.4 million basic operations. However,
as Table 1 shows, the average processing time per buffer
is about 20 ms and 25 ms for recordings in FM and FH
trucks, respectively. The difference between the theo-
retical estimation above (13.9 ms) and the measurement
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(around 20 and 25 ms) must be due to overheads, periph-
eral computations, and other background operations.

3.2 Echo attenuation in the presence of engine noise
Table 2 reports ERLE for the four truck models while
the engine is on. The difference with Table 1 is that, due
to the running engine, there is a remarkable amount of
ambient noise (r/n]) that contaminates the microphone
signal (d[n]). The existence of noise affects the calcula-
tion of ERLE as defined by Eq. (5) since that equation is
based on the assumption that ambient noise is negligible.
However, in the presence of noise, the microphone signal
should be considered an addition of the speech compo-
nent received at the microphone, and the ambient noise
(i.e., d[n]=s[n]+r[n]) and the output error signal will
likewise be an addition of the actual error signal from the
speech (denoted by es[n]) which has been processed by
AEC and the ambient noise that has been captured by the
microphone (i.e., e/n]/=es[n] + r[n]).

Since r/n] is uncorrelated with speech (s/n/ and es[n]),
Eq. (6.a) and (6.b) can be written as below. Consequently,
the effect of the ambient noise could be excluded from
the ERLE estimation using Eq. (6.c) below. Equation (6.c)
is only valid if r/n/ is uncorrelated with speech signals
(s/n] and x[n]) which is a realistic assumption for vehi-
cle engine noise. Equation (6.c) replaces Eq. (5) in order
to compensate for ambient noise in our ERLE estima-
tion, and it yields the corresponding values reported in
Table 2. From another perspective, Eq. (6.c) presents the
spectral subtraction of the ambient noise from the micro-
phone signal and the error signal. Spectral subtraction is
one of the most common de-noising methods in speech

Table 1 The ERLE achieved by the proposed echo cancelation solution in four truck models while the engine is off

Truck model ERLE WER during DT (before and after Total code execution time Average processing
AECQ) (MATLAB) time per buffer
(DSP)
FM 928 25.54dB 0.28 — 0.08 96 203 ms
FM 930 2543 dB 046 — 0.1 975 204 ms
FH 2099 27.26dB 04— 0.08 10.7 s 255 ms
FH 2250 30.9dB 05—0.1 10.1s 252ms

Table 2 The ERLE achieved by the proposed echo cancelation solution in four truck models while the engine is on

Truck model ERLE ERLE (after correction =~ WER during DT (before Total Code execution Average processing
for noise) and after AEC) time (MATLAB) time per buffer
(DSP)
FM 928 17.13dB 27.84dB 0.28 — 0.08 102s 24.2ms
FM 930 156d8B 255d8B 045—0.14 11.7s 25.1ms
FH 2099 23.07dB 4937 dB 05—0.12 12.2's 25.7 ms
FH 2250 12.7dB 453dB 054 —0.14 11.7s 24.1ms
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signal enhancement [29]. However, it is used here in
Eq. (6.c) for the purpose of ERLE estimation.

2 2 2 2 2 2 2
O] = Oslm+rin1= Osin] T Or[n) = Osiu] = Od[n] — Or[n]

(6.2)
2 2 2 2 2 2 2
Oeln] = Ocsm+rim = Cestnl T Orlnl = Oeylnl = eln] — Orim
(6.b)
52 o2 g2
s[n] dln] "r[n]
(6.c)

(72 {12 702
ERLE = 10 x log;¢" = 10 x log," "

As Table 2 shows, the ERLE values rise substantially
after correcting for the ambient noise. In the two first
cases (FM 928 and FM 930), the corrected ERLE values
lie in the same range as the ERLE values in Table 1. How-
ever, the corrected ERLE values for the two last cases (FH
2099 and FH 2250) in Table 2 are respectively 49.37 and
45.3 dB, which are much higher than previous cases. The
reason for this anomaly is that the ambient noise levels
are higher in these two truck models because they are
heavy-duty models with much larger (noisier) engines.
As a result, the term GVZM in Eq. (6.a, 6.b and 6.c) is large
meanwhile the algorithm is successful in reducing the
echo and thus yields a low value for %Z[n]' Consequently,
the term Uez[n] - crrz[n] in the denominator of Eq. (6.c)
becomes very small which results in high ERLE output.

Tables 1 and 2 show that the WER improves (reduces)
substantially during the challenging DT periods as a result
of the AEC processing. In Table 1, the WER has fallen from
an average of 0.41 (SD=0.09) down to 0.09 (SD=0.01). In
Table 2, the WER falls from an average of 0.44 (SD=0.11)
down to 0.12 (SD=0.02). In both cases, the AEC has sig-
nificantly (p<0.05) reduced (improved) the WER which
indicates the success of the AEC in making the near-end
speech signal much more intelligible. The WER values in
Table 2 are higher compared to Table 1 (both before and
after applying the AEC) which is likely due to the presence
of relatively higher engine noise in the latter case.

The presented results show that the AEC algorithm
attenuates the echo by more than 25 dB in all cases and
that the convergence time of the algorithm complies with
ITU G.168 requirements [7], as seen in Fig. 4. From an
implementation perspective, our results in Tables 1 and
2 show that each buffer of the data could be processed in
a time significantly shorter than the buffer size itself (i.e.,
50 ms) which indicates the feasibility of the proposed
algorithm for being implemented on common DSPs.

3.3 Evaluating the choice of the Wiener filter length R
Choosing an appropriate length for the Wiener filter (4
[n]), L, has a great impact on the outcome of an AEC [2].
It also has a very substantial effect on the computational
complexity of the AEC i.e,, long Wiener filters might not
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be computationally feasible to be implemented on real-
time DSPs with limited computational and memory
resources. Here, based on the acoustical attributes of the
truck cabins, we chose 800 coefficients for h/n] corre-
sponding to 50 ms at Fs =16 kHz. To verify how a longer
choice of L could have affected the result, we used 1360
coeflicients for the Wiener filter, corresponding to 85 ms
in time, and then ran the AEC algorithm over the 10
HINT sentences recorded in the FM928 truck.

Figure 6 shows the Wiener filter, h/n], adapted to
the echo path after 10 sentences have been read by the
far end on the loudspeaker while the near-end party is
silent. Figure 6 shows that the choice of the first 50 ms
(corresponding to L =800 coefficients for h/n/) is a good
choice because the filter coefficients become sparse
and negligible after 50 ms. Furthermore, Fig. 6 shows
that the first 110 coefficients bear sparse values near
zero, as well. These correspond to 6.9 ms (ie., 110/
Fs=110/16,000=0.0069). This time corresponds to the
“end-to-end delay” (or “flat delay”) which is determined
by the time it takes for the sound wave to travel from
the loudspeaker to the microphone. Some real-world
AEC algorithms benefit from prior knowledge about the
fixed physical distance between the loudspeaker and the
microphone by zero-padding the corresponding coeffi-
cients of the Wiener filter beforehand and thereby save
computation (i.e., “delay-coefficient method” or “seg-
mented method”) [30]. However, we chose not to apply
these methods to keep our solution as generic and robust
as possible for different cabin sizes and models.

4 Discussion

We presented a linear NLMS-based echo canceller that
together with a statistical DTD and audio activity detec-
tor can achieve high ERLE and fast convergence time
consistent with ITU G.168 guidelines. The presented
solution is a wideband time domain algorithm in the
sense that it applies the algorithm on the input time
series (x/n] and dfn]) directly and does not distinguish
the frequency content of the input signals before apply-
ing the algorithm. An alternative method is to decom-
pose x[n] and dfn] into N frequency sub-bands, forming a
filterbank, and run the adaptive NLMS algorithm in each
sub-band independently. The outputs of all sub-band are
then synthesized together. A substantial benefit of this
method, known as frequency sub-band adaptive filtering
(FSAF), is that it offers computational simplicity because
the input signals can be down-sampled by a factor of
Fs/N. Furthermore, it assures a faster and more success-
ful convergence [2, 31]. A drawback of this method is that
the “flat delay” must be already known when filtering
x[n]. Moreover, the analysis/synthesis process in FSAF
means that the spectral content of the final output is
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Fig. 6 The Winer filter (h[n]) coefficients after the AEC adapted to 10 HINT sentences read by the far end in an FM928 truck, engine off. The
end-to-end delay corresponds to the physical distance between the microphone and the loudspeaker. The coefficients become sparse after 50 ms

indicating that 50 ms is an optimal length for hin) in this AEC setup

manipulated. Here, we presented a time domain solution
instead that is computationally efficient for being imple-
mented on modern commercial DSPs. More importantly,
the presented echo canceler is largely independent of the
“flat delay” and thus is a more generic solution that could
also be suitable for setups where the distance between
loudspeaker and microphone is different from these spe-
cific truck models.

The length of the impulse response (L) has a great
impact on the accuracy and also the computation feasi-
bility of an AEC. Our results show that T30 reverbera-
tion time is a good indicator for choosing L. The T30
metric is very dependent on the size of the cabin and its
furniture. The size and the furnishing in truck cabins can
hugely vary across manufacturers and from one model to
another which is most likely the main source of challenge
in designing generic AEC systems for large vehicle cab-
ins. We tested our solution in FM (mid) and FH (heavy)
truck cabins and our choice of L proved appropriate for
both series. However, it is more optimal to allow the
manufacturers to fine-tune this important parameter
based on the T30 associated with each cabin. Our codes
(both MATLAB and C) are written in a manner to allow
the parametric adjustment of L, thereby allowing the
software architect to optimize and adjust this parameter.

Furthermore, besides L, we identified three other key
parameters (namely: S, 0o, and Ep) that have a decisive
impact on the general performance of our AEC sys-
tem. We described in detail how these parameters are

explicitly optimized according to the cabin geometry,
typical noise levels, and typical microphone and loud-
speaker hardware characteristics. The suggested values
turned out to be functional for all four truck models
used in this study, which suggests that these values must
be valid for a large variety of other truck models in the
market. However, we recommend that these parameters
be exposed to the software architect to be able to poten-
tially tune them for each cabin model, if necessary. This
recommendation is more advisable if the proposed AEC
solution is supposed to be implemented in small personal
vehicles with quite different cabin acoustics.

The results showed that the presented echo cancel-
ler achieves a high level of ERLE values. However, these
ERLE values might still not be sufficient if the gain of the
loudspeaker is increased by the driver to very high vol-
umes. In such cases, although the AEC attenuates the
echo to a large degree since the initial echo intensity is
very high, the far end might still be able to hear a notice-
able amount of echo.

To address such issues and to attenuate the residual
echoes beyond what a linear AEC can deliver, differ-
ent post-processing methods based on nonlinear AES
have been developed [2]. According to these methods,
a gain is applied to the microphone signal when the
near-end party is talking and the gain is reduced when-
ever the far-end party is talking and thereby reducing
the effect of echo. The transition between the increase
and the decrease of the gain function in AES is usually
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facilitated by a ramping attack/release function to ease
the abrupt changes and suppress the undesired spectral
splatter [2].

Adding an AES module as a post-processor to the AEC
can produce further attenuation of the residual echo
and thereby improve the audio quality during a phone
call. However, since AES is a nonlinear process [2], it
cannot be applied to audio streams that are transmit-
ted to ASR neural networks for voice assistance [8, 18].
In the Android operative system, the audio designer is
capable of defining two separate streams for telephony
applications versus speech recognition applications
[32]. Android hardware abstraction layer (HAL) exposes
three different audio streams: (1) Voice_communication,
which is used by telephony applications; (2) Voice_rec-
ognition, which is used by voice assistance and speech
dialog applications for speech recognition; and (3)
UNPROCESSED, which enables applications to access
the raw data captured by the microphone [32]. An opti-
mal solution is that both AEC and AES are applied to the
Voice_communication stream whereas only the AEC is
applied to the voice reconition stream. Accordingly, the
telephony application can benefit from both AEC and
AES while the speech recognition application fulfills its
linearity requirements by only applying the fully-linear
AEC algorithm.

5 Conclusion and future works

We presented a wideband time-domain NLMS-based
adaptive AEC for large commercial vehicles and evalu-
ated its performance in four different truck models pro-
duced by the Volvo group using standard HINT in the
presence and absence of engine noise. The results showed
that the ERLE and the convergence time achieved by this
adaptive algorithm fulfill and even surpass the ITU G.168
requirements. The paper presents a fully linear AEC that
could be used as a front end in telephony applications but
also for keyword spotting modules in speech recognition
systems and voice assistants. Furthermore, a real-time
implementation of the algorithm on a Cortex-M7 DSP
was presented which showed the computational feasibil-
ity of the proposed solution for implementation on auto-
motive embedded systems with limited computational
and memory resources.

The AEC solution presented here is a one-microphone,
one-speaker solution that suits the current typical truck
production setup where speech-related signals (tele-
phone calls) are played on a specific loudspeaker. How-
ever, if the AEC is supposed to also cancel echo from
music being played on multiple loudspeakers, the pre-
sented algorithm must be expanded to multiple loud-
speakers, e.g., [33]. Furthermore, dual microphones are
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becoming popular in the vehicle industry which implies
that future AEC solutions should be expanded to include
multi-microphone multi-speaker situations, which is a
more general form of AEC [2, 33].

Abbreviations
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AES Acoustic echo suppression
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ERLE Echo reduction loss enhancement
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