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Abstract 

Acoustic echo cancelation (AEC) is a system identification problem that has been addressed by various techniques 
and most commonly by normalized least mean square (NLMS) adaptive algorithms. However, performing a successful 
AEC in large commercial vehicles has proved complicated due to the size and challenging variations in the acous-
tic characteristics of their cabins. Here, we present a wideband fully linear time domain NLMS algorithm for AEC 
that is enhanced by a statistical double-talk detector (DTD) and a voice activity detector (VAD). The proposed solution 
was tested in four main Volvo truck models, with various cabin geometries, using standard Swedish hearing-in-noise 
(HINT) sentences in the presence and absence of engine noise. The results show that the proposed solution achieves 
a high echo return loss enhancement (ERLE) of at least 25 dB with a fast convergence time, fulfilling ITU G.168 
requirements. The presented solution was particularly developed to provide a practical compromise between accu-
racy and computational cost to allow its real-time implementation on commercial digital signal processors (DSPs). 
A real-time implementation of the solution was coded in C on an ARM Cortex M-7 DSP. The algorithmic latency 
was measured at less than 26 ms for processing each 50-ms buffer indicating the computational feasibility of the pro-
posed solution for real-time implementation on common DSPs and embedded systems with limited computational 
and memory resources. MATLAB source codes and related audio files are made available online for reference and fur-
ther development.

Keywords Speech signal enhancement, Automotive speech processing, Acoustic echo cancelation, Adaptive filters, 
NLMS, Keyword spotting, Hands-free telephony, Automotive voice assistant

1 Introduction
1.1  Background
Acoustic echoes are generated in speech telecommu-
nication networks due to acoustic feedback from loud-
speakers to microphones. This phenomenon deteriorates 

the perception of sound by causing the users to hear a 
delayed replica of their own voice being reflected from 
the other side of the network. To remove acoustic ech-
oes in earlier speech telecommunication systems, micro-
phones were completely muted while the far end was 
talking over the loudspeaker. This simple method was 
efficient; however, it reduced a natural full-duplex dialog 
(i.e., simultaneous transmission in both directions) into 
a half-duplex (one direction) [1, 2]. Today, a less aggres-
sive version of this technique, known as acoustic echo 
suppression (AES), is still used. This technique works by 
automatically reducing the gain on the microphone sig-
nal whenever the far end is talking to suppress the echo. 
The side effect of AES is, however, the nonlinearity in the 
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system due to the automatic gain control. Another type 
of solution, categorized as acoustic echo cancelation 
(AEC), has been developed which dynamically estimates 
the acoustic echo path between the loudspeaker and the 
microphone in real time and subtract its effect from the 
captured signal so that only the desired near-end speech 
components remain [1–4]. AEC, unlike AES, is a fully lin-
ear solution, and it also conserves the full-duplex nature 
of the communication.

Although AEC might appear like a straightforward 
“system identification” problem, it bears several intrin-
sic challenges. Most of these challenges are because the 
acoustic echo path from the loudspeaker to the micro-
phone is very dependent on the acoustical characteris-
tics of the specific room where the near end is located. In 
many applications, the room’s acoustic characteristics are 
either totally unknown or solely partially known. Moreo-
ver, these characteristics alter significantly due to object 
movements, temperature differences, and any relocation 
of the loudspeaker or the microphone. This means that 
there is generally not a generic time-invariant estimation 
of the acoustic echo path but rather a room-specific esti-
mation that should be adaptively adjusted continuously 
[1–4]. Because of this, AEC algorithms need to impose 
a constant computational load on the embedded sys-
tem that they run on. In many cases, the computational 
cost might become infeasible demanding a compromise 
between accuracy and computational efficiency [2–4].

Various model-based adaptive techniques have 
emerged to address the AEC problem: Least mean square 
(LMS) adaptive filter was used even in the early genera-
tion of the AECs [1], and several of its variants such as 
normalized LMS (NLMS) have been developed since 
then [2–4]. Other adaptive filtering approaches have 
been developed based on the recursive least square (RLS) 
method [2] and Kalman filters [5]. The RLS method con-
stitutes a similar adaptive approach to LMS. However, 
the major distinction is that the RLS includes a “forget-
ting factor” (usually denoted by � ) which gives expo-
nentially less weight to older error samples. The Kalman 
method is based on defining time-varying states for the 
filter properties which enable the system to adapt quickly 
to fast-varying changes in the echo path.

Besides the fourth mentioned model-based adaptive 
filters, probabilistic clustering techniques have been suc-
cessfully used for blind source separation (BSS) of the 
echo components from the near-end speech signal [6]. 
However, BSS methods rely on the existence of multiple 
microphones (usually 4 microphones) for successfully 
estimating the location cues for source separation. There-
fore, BSS methods are not applicable to most vehicles 
which are typically equipped with either single or dual 
microphones only.

Moreover, deep neural networks (DNNs) have also 
been deployed successfully to directly address acoustic 
echoes [7]. Some DNNs are also used for improving the 
parameterization of the existing model-based adaptive 
methods such as the step-size parameter in RLS [8] or 
the covariance of the state noise and observation noise 
in the Kalman filtering technique [9]. DNNs can only be 
used effectively in less time-critical applications that run 
on much larger computers. Consecutively, for real-time 
implementation on local embedded systems (DSPs) with 
limited computational and memory resources, adap-
tive filtering approaches (specifically NLMS) are still the 
most commonly used solutions due to their good balance 
between computational efficiency and accuracy [3, 4].

The performance of an AEC system is often assessed in 
accordance with the technical requirements announced 
by the International Telecommunication Union (ITU) 
G.168 standards for AECs [10]. These standards mainly 
focus on two metrics: (1) the echo loss achieved by the 
AEC which determines how much the acoustic echo 
is attenuated and (2) convergence time which deter-
mines how quickly the AEC addresses the acoustic echo. 
Besides ITU standards, word error rate (WER) during 
double-talk periods is also used as a benchmarking met-
ric to evaluate the success of the AEC system. This metric 
is specifically more interesting if the AEC system is sup-
posed to be used as a front end for automatic speech rec-
ognition (ASR) applications [8, 11].

1.2  AEC in the automotive context
The main application of AEC in the automotive industry 
is related to Bluetooth-based hands-free telephony. Blue-
tooth-based hands-free telephony systems were intro-
duced into the vehicle’s infotainment systems in the 1990s 
enabling drivers to make phone calls wirelessly using the 
vehicle’s embedded microphone and loudspeaker while 
driving [12]. The common practice for echo cancelation 
in vehicles is to use an NLMS-based adaptive AEC com-
bined with a nonlinear AES as a post-processor to further 
attenuate the residual echoes [2, 12, 13].

Although echo cancelation has become relatively suc-
cessful in personal cars despite some common failures 
[14], it has proved very challenging in large commercial 
vehicles. One main reason is the physical attributes of 
these vehicles, e.g., a truck cabin could be three to five 
times larger than a personal vehicle’s cabin leading to 
much longer reverberation times. Furthermore, rela-
tive to personal cars, the geometry and the furnishing 
in truck cabins can hugely vary across manufacturers 
and from one model to another. As a result, creating a 
generic model of the acoustic echo path in truck cabins 
is challenging and typically requires longer adaptive fil-
ters which usually impose an unaffordable computational 



Page 3 of 16Saremi et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:39  

load on the vehicle’s embedded system. Consequently, 
truck producers often receive a large number of customer 
complaints about low audio quality due to echo issues. 
These complaints are important given that a typical 
commercial truck driver might make several telephone 
conversations a day to arrange the logistics of their deliv-
eries. Moreover, truck drivers could cause serious safety 
risks for themselves and other road users if they resort to 
using their phones while driving due to frustration with 
the audio quality of the hands-free telephony system.

Besides hands-free telephony, the speech dialog system 
is the other major application that requires echo cancela-
tion. Mercedes-Benz launched the first speech dialog sys-
tem in 1996 which allowed the driver to interact with the 
vehicle functions using their voice [13, 15]. Since then, 
many automotive brands have adopted similar systems 
in their products [13]. All of these conventional speech 
dialog systems are half-duplex because the user needs 
to push a specific physical button on the steering wheel 
(known as the push-to-talk (PTT) button) each time they 
want to talk to the system [13, 15]. When the user pushes 
the PTT button, the loudspeakers are immediately muted 
and thus no echo is generated.

In contrast, voice assistant systems (such as Google 
Assistant, Siri, and Amazon Alexa) have been developed 
in recent years that are independent of the PTT button 
and rather rely on specific words (known as keywords) 
to trigger the application [16, 17]. These are for instance 
“OK Google!” for Google Assistant, “Alexa!” for Ama-
zon Alexa, and “Hey Siri” for Siri. These voice assistants 
aim to provide full-duplex natural communication in 
the sense that they allow users to interrupt (“barge in”) 
using the keyword while the system is reading informa-
tion over the loudspeakers. This is a vital ingredient in 
the desired user experience and, to achieve that, acoustic 
echoes need to be constantly canceled during the entire 
operation of these voice assistants. Google and Amazon 
publicly announced that they will introduce their voice 
assistants in vehicles with the first products launched in 
2020 [16, 17].

The key difference between a hands-free telephony sys-
tem and a speech dialog system is that the far-end party 
in the former is a human, whereas in the latter, the far 
end is a neural network performing the speech recogni-
tion task. A major requirement for speech recognition is 
that the input audio stream provided is free of nonlinear-
ity [8, 18]. As a result, unlike for hands-free telephony, 
the echo cancelation for such systems can solely rely on 
AEC, and no AES post-processing is allowed. This limi-
tation places a higher burden on echo canceling systems 
that are designed to work for both hands-free telephony 
and speech dialog systems.

1.3  Our contribution

1) AEC in large vehicle cabins is challenging which 
leads to substantial customer complaints reported to 
truck manufacturers. We provide an adaptive time-
domain AEC solution tailored for large vehicle cabins 
and tested it on four main Volvo truck models. The 
solution achieves and surpasses the quality standards 
required by ITU G.168 standards.

2) Our AEC solution provides a good balance between 
accuracy and computational feasibility. The AEC 
algorithm runs only when it is deemed needed. A 
real-time version of the solution was coded in C and 
implemented on a very low-cost commercial DSP 
platform with limited computational and memory 
resources.

3) The proposed AEC solution is fully linear which 
makes it a good lightweight frontend for ASR systems 
and more specifically keyword spotting algorithms, 
which typically need to run locally on the host device, 
i.e., an embedded system with limited memory and 
computational resources.

4) The successful features mentioned above are only 
achievable by means of carefully optimizing four key 
parameters, namely (1) the length of the Wiener fil-
ter, (2) the regularization parameter of the step size 
( β) , (3) the correlation threshold of the statistical 
double-talk detector ( η0) , and (4) the energy thresh-
old for voice activity detection ( E0) . In this work, we 
describe how these four parameters could be suc-
cessfully optimized. To our knowledge, our work is 
unique in explicitly describing and presenting these 
tailored optimizations for AEC inside large vehicle 
cabins.

The paper provides information on the used methods, 
the performance, the computational efficiency, and the 
DSP implementation of the proposed solution, in the fol-
lowing sections.

2  Methods
The proposed AEC solution was implemented and evalu-
ated in MATLAB v.2019b. The real-time implementation 
of the AEC solution was performed in C language using 
uVision Keil environment on a common ARM Cortex M7 
DSP. All participants in the tests consented to the anony-
mous use of their voices, in compliance with applicable 
ethical regulations.

2.1  NLMS adaptive filtering
Figure 1A shows an overview of the AEC setup. The sig-
nal received from the far-end party over the communica-
tion “downlink” port is denoted by x[n]. This signal is also 
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Fig. 1 A An overview of the proposed AEC algorithm which consists of the main “NLMS-based adaptive AEC” block accompanied by two decision 
circuits, i.e., “far-end voice activity detector” (VAD) and “double-talk detector” (DTD). The AEC algorithm runs only whenever the far end is active (i.e., 
“YES” switch is activated). The double-talk detector stops the AEC adaptation (sets µ =0 in Eq. 2.b) if double talk is detected. B A driver in the FM928 
Volvo truck serving as the near-end party during a hands-free phone conversation
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called “the reference signal” since it is used as the refer-
ence for the adaptive algorithm. After this signal propa-
gates through the near-end acoustic environment (i.e., 
the truck cabin), the microphone receives y[n] which is 
an echo of x[n] that has been filtered by the correspond-
ing echo path impulse response. The microphone also 
receives s[n], i.e., components of the speech signal pro-
duced by the near-end talker as well as some ambient 
noise components represented by r[n] in Fig.  1A. The 
signal captured by the microphone (d[n]) is then an addi-
tion of these three signals (i.e., d[n] = y[n]+ s[n]+ r[n]) . 
All these signals are considered to be zero-mean, real, 
statistically independent of each other, and wideband 
(i.e., convey frequencies from 0.1 to 8 kHz). In this sec-
tion, we begin by presenting the AEC concept based on 
the assumption that the near-end talker is silent (s[n] = 0) 
and the ambient noise is absent (r[n] = 0). Therefore, 
y[n] is the sole signal received by the microphone, i.e., 
d[n] = y[n]. The effects of the near-end speech (s[n]), and 
ambient noise (r[n]) are added to the model and analyzed 
in subsequent sections.

Figure  1B shows a driver in an FM928 truck during a 
hands-free phone conversation serving the role of the 
near-end talker in Fig. 1A. The microphone and the front 
loudspeaker are marked by red circles while the dashed 
line represents the corresponding acoustic echo path. 
The AEC algorithm assumes that the acoustic echo path 
between the loudspeaker and the microphone is a lin-
ear system that could be simulated by a finite impulse 
response (FIR) filter, with its impulse response denoted 
by h[n], at any given time. This impulse response consists 
of L coefficients  which corresponds to Fs/L seconds in 
time, where Fs is the sampling rate.

The true impulse response of the acoustic echo path 
(i.e., h[n] in Fig.  1A) is unknown, and the task of an 
AEC solution is to estimate it. To do so, the NLMS 
algorithm is an iterative process that tries to find an 
impulse response (represented by ĥ[n] in Fig.  1A) that 
ideally matches the true impulse response of the acous-
tic path ( i.e.h[n] ∼= h[n]). As a result, once the algorithm 
finds this impulse response, the output of the adap-
tive filter ( ̂y[n]) approaches the received signal by the 
microphone. In other words, the error signal (denoted 
by e[n] in Fig. 1A), which is the difference between ŷ[n] 
and y[n], approaches zero (i.e.,e[n] = y[n]− ŷ[n] ∼= 0) . 
The NLMS algorithm slightly adjusts the coefficients of 
the ĥ[n] in each iteration in order to minimize the error 
signal (e[n]). In this sense, ĥ[n] acts as an adaptive Wie-
ner filter in this system identification problem [2–4].

The output of the adaptive filter ( ̂y[n]) is given by 
Eq.  (1.a) below whereL tap of x[n] is transposed (rep-
resented by xLT [n] ) and is then multiplied by ĥ[n] . 

Equation (1.b) provides a short form of Eq. (1.a) where * 
denotes convolution.

The adaptation process occurs by estimating a new 
ĥ[n] per each sample of y[n] through a small adjust-
ment �ĥ[n] in each iteration, as expressed in Eq. (2.a, 
2.b and 2.c). This adjustment value is determined based 
on the error signal (e[n]) and the reference signal (x[n]) 
according to Eq.  (2.b) where µ[n] is known as “step 
size.” Choosing an optimized step size is important for 
the convergence rate and accuracy of the system and 
has been studied extensively in the literature [2–4, 19]. 
According to the NLMS method, the step size is adap-
tively changed in each iteration proportional to the 
variance of xL[n] , denoted by σ 2

xL[n]
 , as presented by 

Eq. (2.c) [2–4].

The terms α and β need to be adjusted according to 
the specifics of every given NLMS problem. Choosing 
appropriate values for α and β has been comprehensively 
studied to a great complication [2–4, 19]. The term α , 
which could take a value between 0 and 2, determines the 
speed of convergence. Higher α values result in quicker 
adaptation of the NLMS algorithm; however, there is 
a tradeoff between convergence and overall success of 
the echo canceller in terms of echo return loss enhance-
ment (ERLE) [3]. Here, we chose α = 1.98 to assure the 
fast convergence of the algorithm. The term β , known 
as the regularization parameter, is meant to improve the 
performance of the NLMS in the presence of noise, and 
it has to be adjusted according to the characteristics of 
the ambient noise (r[n] in Fig. 1) and the intrinsic signal-
to-noise ratio (SNR) of the microphone hardware [3]. 
Here, we chose β = 0.1 which corresponds to the intrin-
sic SNR of the electret condenser microphones that are 
commonly used in the automotive industry. The Wiener 
adaptive filtering method has been successfully imple-
mented in vehicles for non-stationary noise cancelation, 
e.g., by [20].

(1.a)
ŷ[n] = [x(n)x(n− 1)...x(n− L− 1)]

T
[ĥ[1]ĥ[2] . . . ĥ[L]]

(1.b)ŷ[n] = x[n] ∗ ĥ[n]

(2.a)ĥ[n+ 1] = ĥ[n]+�ĥ[n]

(2.b)�ĥ[n] = µ[n](xL[n]e[n])

(2.c)

µ[n] =
α

β + σ 2
xL[n]

, σ 2
xL[n]

= var(xL[n]) = xL
T [n]xL[n]
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2.1.1  Choosing the length of the Wiener filter
The length of ĥ[n] , represented by L, has a great impact 
on the outcome of an AEC, and it is related to the rever-
beration in the near-end acoustic space [2]. If the goal of 
the AEC is to achieve an ERLE of 30 dB, then L should 
be chosen long enough to cover the T30 reverberation 
time (i.e., the time it takes for sound to decay 60 dB after 
the source is muted). Previous studies have shown that 
setting the length much longer than the correspond-
ing reverberation time not only imposes unnecessary 
excess computational cost but also increases numerical 
errors [3, 4, 19]. T30 has been measured around 40 ms in 
medium-sized trucks (Volvo FM series) and estimated up 
to 60  ms in larger heavy-duty trucks (Volvo FH series). 
Here, we use the average of these two numbers (i.e., 
50 ms) to have a generic solution for both series. There-
fore, at Fs = 16  kHz, the Wiener filter, ĥ[n], would have 
800 coefficients ( L = Fs × T30 = 16000× 0.05 = 800) . 
To achieve a tailored solution, it is reasonable to allow 
automakers to set L based on the T30 reverberation time 
associated with the cabin geometry of every particular 
vehicle model.

2.2  Double‑talk detection based on normalized 
cross‑correlation

The method presented in the previous section was built 
on the assumption that the near-end talker is silent 
(s[n] = 0) while the echo from the far end is present. How-
ever, in natural full-duplex communication, the near-end 
talker might as well talk at the same time as the far end 
(i.e., double talk, DT). Moreover, a non-negligible amount 
of ambient noise (r[n]) might also be present. In these 
situations, the captured microphone signal (d[n]) con-
veys components that are unrelated to the acoustic path, 
h[n], and therefore, the underlying modeling principal of 
the AEC becomes violated, and consecutively, the adap-
tive process would diverge and fail [2, 3, 21–23]. To avoid 
this scenario, as illustrated in Fig. 1A, our solution con-
stantly monitors the signals x[n] and d[n] for detecting 
the occurrence of DT. In case DT is detected, as shown in 
Fig. 1A, the adaptation process is halted by setting µ = 0 
in Eq. (2.b). By doing so, �ĥ[n] = 0 which means that no 
new impulse response will be estimated as long as a DT is 
ongoing but, instead, the last valid ĥ[n] will be applied to 
the signal. This mechanism prevents DT from contami-
nating the process of new ĥ[n] estimation.

Different methods have been developed to detect 
DT and stop the adaptive process until the end of the 
DT period. These methods can be categorized into two 
groups: (1) methods that detect DT by comparing the 
amplitude of the captured signal (d[n]) with the far-end 
reference signal (x[n]) [21, 22] and (2) methods that 

detect the DT by analyzing the statistical differences 
between d[n] and x[n] [5, 23].

While amplitude-based DTDs are easier to imple-
ment and are more computationally efficient than sta-
tistical DTDs, their main shortcoming is that the sound 
level produced by the loudspeaker is in many cases 
unknown, and thus, comparing the amplitudes of x[n] 
and d[n] might lead to a wrong decision by the DTD. 
This is especially an important shortcoming for vehicle 
applications wherein the user is capable of increasing 
the loudspeaker’s gain at any time and thereby manipu-
lating the amplitude of d[n].

Therefore, we developed a statistical DTD deci-
sion circuit based on the normalized cross-correlation 
(NCC) between x[n] and d[n] [23]. NCC is also called 
the “Pearson correlation coefficient” in statistics [24]. In 
case the far-end is the only talker, there will be a non-
zero cross-correlation between x[n] and d[n]. How-
ever, when the near end talks too (i.e., DT occurs), the 
cross-correlation between x[n] and d[n] diminishes and 
approaches zero since d[n] would convey s[n] compo-
nents as well. Accordingly, DT is detected if NCC drops 
below a certain threshold (η0).

Equation  (3) presents the NCC between x[n] and 
d[n] where σxL[n] and σdL[n] are the standard deviation 
(square root of variance) of L samples of x[n] and d[n], 
respectively, and cov(xL[n], dL[n]) is the covariance 
between them. NCC can yield a number in the range 
[− 1, + 1], where + 1 indicates a perfect correlation 
and − 1 is a perfect anti-correlation between the two 
inputs while 0 shows a non-existing correlation.

2.2.1  Optimizing the DTD threshold (η0)
DT is detected when NCC falls below a certain thresh-
old ( η0) and approached zeros. Choosing an appropriate 
η0 is vital to assure accurate DTD and avoid false alarms 
[23]. There are four possible scenarios: (1) both far-end 
and near-end parties are silent, (2) the far end is talking 
meanwhile the near end is silent, (3) the far end is silent 
meanwhile the near end is talking, and (4) both far-end 
and near-end parties are talking (DT). Scenarios 1 and 
3, wherein the far end is silent, are taken care of by the 
VAD which is explained in the next section. Therefore, 
η0 should be chosen to enable the system to distinguish 
the last scenario (i.e., scenario 4) from the scenario 2 
above. NCC is always higher for scenario (2) than for 
scenario 4 in every situation. Accordingly, η0 should be 
chosen around the minimum of the NCC for scenario 

(3)NCC(xL[n], dL[n]) =
cov(xL[n], dL[n])

σxL[n]σdL[n]
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2. Every NCC that falls below η0 would then indicate 
that scenario 4 has occurred (i.e., the DT is detected).

The truck’s loudspeaker is not ideal and thus constantly 
produces a low-intensity wideband noise that travels 
through the acoustic path and leaks to the captured sig-
nal by the microphone. We symbolize this particular 
noise signal byv[n] . In case of scenario 2, the signal cap-
tured by the microphone ( d[n] ) consists of two compo-
nents (i.e.,d[n] = y[n]+ v[n]) . The NCC between d[n] 
and x[n] in this case is NCC(xL[n], dL[n]) =

cov(xL[n],dL[n])
σxL[n]σdL[n]

=cov(xL[n],yL[n]+vL[n])
σxL[n]σdL[n]

 . According to the principle of bi-line-
arity of covariance, this term can be written as 
cov(x,y)+cov(x,v)

σxσd
 . Given that the minimum possible value 

for cov(x, y) is 0 (which occurs when the far end is talking 
at very low intensities), η0 can be then calculated accord-
ing to Eq. (4) below.

We calculated η0 defined by Eq. (4) above in all of our 
audio files recorded in various truck models. The results 
yielded 1.1 ×10−4 in average with a standard deviation 
of SD = 0.5 ×10−5. This choice of η0 , as seen in Eq. (4), is 
dependent on the specific statistical relations between 
the loudspeaker noise and the captured microphone sig-
nal. This can vary based on the loudspeaker hardware 
and cabin geometry. Our verification tests have shown 
that choosing this threshold results in a low false alarm 
(pf ) of lower than 0.1 across all truck models, as recom-
mended by [23], while a substantial majority of DTs are 
appropriately detected. Our DTD optimization presented 
in this section is specifically targeting large vehicle cabins 
and truck models (with their typical loudspeaker hard-
ware and cabin geometry), but our method can be gen-
eralized and used to optimize η0 for any type of cabin and 
loudspeaker hardware.

2.2.2  Ambient noise
The main contributor to the ambient noise is the noise 
generated by the engine. The engine noise recorded in 
Volvo truck models is mostly a low-frequency noise with 
a peak at its fundamental frequency of about 30 Hz and 
decaying harmonics that can be detected up to about 
1  kHz. The fan noise, if the air conditioner is on, and 
road noise, if the vehicle is in motion, are other contribu-
tors to r[n]. All these sources are uncorrelated with the 
speech signals ( cov(r, s) ∼= 0 ), and they are low intensity 
( σr ∼= 0) . In other words, the NCC between these noise 
components and the speech signals must be close to zero 
[i.e., NCC(xL[n], rL[n]) ∼= 0 , and NCC(sL[n], rL[n]) ∼= 0].

(4)η0 = min

(
cov(x, v)

σxσd

)

2.3  Far‑end voice activity detection
The AEC is a necessity when there is a meaningful 
amount of echo in the system, but when the far-end refer-
ence signal is empty (i.e., x[n] does not convey significant 
audio components to be canceled), the AEC becomes 
a computationally expensive unnecessary burden. To 
address this issue, as illustrated in Fig. 1A, we constantly 
monitor the reference signal (x[n]) for relevant content 
with regard to echo cancelation and run the AEC and DT 
algorithms only when necessary.

2.3.1  Optimizing the VAD threshold ( E0)
In hands-free telephony applications, the far-end sig-
nal comes from a microphone mounted on a phone, 
often from a mobile phone. Google has announced in its 
requirements for Android mobile phone manufacturers 
that the analog signal captured by the microphone should 
be sampled at 16 bits and should yield specific sensitiv-
ity to sounds [18]. These requirements are the industry 
standards and are generally followed by non-Android 
phone producers as well.

The quantization error associated with a 16-bit sam-
pling analog-to-digital converter is − 96.3  dB FS which 
implies that sound components that are lower than 
96.3 dB in intensity from the full scale (FS) fall under the 
quantization noise floor [25]. It is reasonable to assume 
that there is some imperfection in the microphone cir-
cuitry used on the far-end side and some irrelevant 
background noise that can mount to − 80  dB FS. We, 
therefore, set E0 to 10−4 , which corresponds to − 80  dB 
FS. Accordingly, any L tap of the reference signal ( xL[n]) 
that conveys root mean square (RMS) energy below 
this level is considered irrelevant (i.e., containing virtu-
ally zeros). As Fig.  1A shows, the AEC and DTD algo-
rithms are not applied on such taps and the microphone 
signal is passed to the output without any processing 
( eL[n] = dL[n] ). Our evaluations show that by stopping 
AEC and DTD in these circumstances, a considerable 
amount of unnecessary computation is avoided. The pro-
posed VAD proves vital for any realistic real-time imple-
mentation of our AEC solution on a commercial DSP.

2.4  Evaluation
Data were recorded in four common large commercial 
vehicles produced by the Volvo group: two medium-
duty trucks from the FM series (FM928 and FM930), and 
two heavy-duty trucks from the FH series (FH2250 and 
FH2099). These truck models have various cabin geome-
tries that represent the majority of trucks sold worldwide. 
Each recording consisted of 2  min of communication 
between far-end and near-end parties over the phone. 
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The far-end party talked on an HTC-11 phone while the 
near-end party used an Apple iPhone 11 connected to 
the head unit over Bluetooth. The phone volume was set 
to maximum on both phones and maintained through-
out the tests. The truck’s loudspeaker’s volume was set 
to produce a comfortable and clear sound level (vol-
ume = 25) although the tests.

Both far-end and microphone signals, x[n] and d[n] 
respectively, were recorded by the vehicle’s head unit 
and saved in the memory. Each recording started with 
the far end reading a list of 10 special sentences from the 
standard Hearing-in-noise test (HINT). These sentences 
are short everyday sentences that have been phonemi-
cally balanced and are currently used widely in audio-
logical research setups for measuring speech recognition 
thresholds in humans [26]. During the time the far end 
was reading the HINT sentences, the near end was silent. 
Afterward, there was a natural multi-turn conversa-
tion between the two parties followed by a DT wherein 
both near-end and far-end parties articulated numbers 
simultaneously.

The recording was done while the vehicle was station-
ary under two scenarios: (1) engine off or (2) engine on. 
The recorded files were in *.Wav format and originally 
sampled at 48 kHz. These data were imported to MAT-
LAB v.2022(a) and down-sampled to 16 kHz for analysis.

The algorithm shown in Fig.  1A and explained so far 
was coded in MATLAB and applied to the two files x[n] 
and d[n] using an iCore7 Intel computer and the output, 
e[n], was saved. For each case, the time it takes for the 
code to run and finish the task was also assessed using 
the “tic, toc” instruction in MATLAB.

2.4.1  Echo reduction loss enhancement as a measure 
of the AEC performance

ERLE is a commonly used indicator for quantifying the 
achievement of an AEC solution to attenuate echoes [2–
4, 6, 7, 10]. To estimate the ERLE achieved by the pro-
posed solution, a segment of the signals corresponding to 
the part wherein the HINT sentences are read by the far-
end participant is extracted and the ERLE is estimated 
using Eq. (5) below [10] when the far end is the sole talker 
(s[n] = 0).

2.4.2  Convergence time as a measure of the AEC 
performance

The convergence time is another important quantitative 
measure of an AEC success [2–4, 6, 7, 10]. It refers to the 
time it takes for the AEC to reach a specific amount of 

(5)
ERLE = 10× log

σ2
d[n]

σ2
e[n]

10

ERLE, usually 25 dB, and stay over that afterward [2–4, 6, 
7, 10]. Here, the convergence time is calculated using the 
Swedish HINT sentence. According to the requirements 
stated by ITU, an AEC solution should yield at least 6 dB 
of ERLE at the second frame (L). The ERLE should then 
increase to a minimum of 20  dB at 1  s. Thereafter, the 
ERLE should reach its steady state at 10 s and should stay 
over that steady state value, afterward [10].

2.4.3  Word error rate as a measure of the AEC performance 
in DT periods

WER is a standard metric to measure the speech intelligi-
bility of a speech signal [8, 11]. During the DT, the system 
is supposed to stop adapting but still be able to cancel 
far-end echo components while preserving the near-end 
speech signal. WER during DT periods is a good measure 
for assessing the system’s ability in preserving the near-
end speech quality in the presence of simultaneously 
competing far-end speech components. The WER cal-
culates the Levenshtein distance of the recognized word 
sequence from the ground truth transcription divided by 
the number of words in the ground truth transcription. It 
is defined as WER = S+D+I

N  where S is the number of sub-
stitutions, D is the number of deletions, I is the number 
of insertions, and N is the number of words in the ground 
truth transcription.

To assess the performance of our solution in improv-
ing speech intelligibility during DTs, we fed the original 
microphone recording ( d[n] ) during the periods where 
both near-end and far-end parties simultaneously read 
out numbers into Google’s speech-to-text API, which is 
freely available online. The WER was calculated for the 
recognized text. We also fed in the error signal ( e[n] ), 
which is the output of our AEC processing, to the same 
speech-to-text API and likewise calculated the WER. 
We compared the two WER scores (original versus pro-
cessed) and reported as a measure of our solution’s 
success in increasing the speech intelligibility during 
challenging DT periods.

2.5  Real‑time implementation
To assess the computational feasibility of the proposed 
solution for real-time embedded implementation, it was 
implemented in C language on an evaluation board pro-
vided by ST [27] using the standard CMSIS libraries and 
uVision Keil, which is a commercial integration develop-
ment environment (IDE) provided by ARM for compiling 
C code into the machine code for ARM microprocessors. 
This evaluation board contains a standard ARM Cortex-
M7 microprocessor, called STM32F767, manufactured 
by ST microelectronics. This microprocessor is equipped 
with DSP capabilities and libraries. This microprocessor’s 
central processing unit (CPU), when clocked at 216 MHz 
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(rated maximum), provides a computation power of 462 
Dhrystone million instructions per second (DMIPS). It 
comes with 2 Mbytes of internal flash memory and 512 
kB of volatile RAM [27].

A new project was created in the uVision Keil IDE. The 
reference far-end signal (x[n]) and the microphone signal 
(d[n]) were down-sampled to 16 kHz and saved as *.Wav 
files in the project user data space. An open-source code 
was used to read the files in STM32F767 with buffers of 
size 800 which matches the filter length (L) and the tap 
size used throughout this work.

A key concept in real-time signal processing is that the 
algorithm processes the data without being interrupted 
for reading the input data from memory. To secure this, 
the direct memory access (DMA) unit of the micropro-
cessor should be configured and used [28]. The DMA 
unit runs on an independent clock from that of the CPU, 
which allows the microprocessor to apply the algorithm 
and process a buffer while the next buffer is being read 
from the memory in parallel. Two buffers (B1 and B2 
in Fig.  2) are used for reading x[n] data. When the first 
buffer (B1) is filled, an interrupt is generated. The buffer 
is then processed by the CPU. While the buffer is being 
processed, the new samples are read and transferred by 
the DMA into the second buffer (B2) to be fetched and 
processed by the CPU in the next cycle. This procedure 
continues and the data are filled in B1 and B2 and fetched 
by the CPU consecutively. This double buffering mecha-
nism, empowered by the DMA, guarantees a continu-
ous real-time flow and processing of the data. The same 
procedure is also performed to read the microphone data 
(d[n]) using buffers C1 and C2, as seen in Fig. 2.

The described echo canceling algorithm (Fig.  1A) is 
applied to each buffer, and the output (e[n]) is sent to the 
digital-to-analog converter (DAC) of the microprocessor 

which then sends it via an analog operational amplifier 
(LM4871) to a 4-W loudspeaker to play the result. This 
analog amplifier is supplied by 3.3  V DC and is config-
ured according to the circuit in Fig. 2. The analog ampli-
fier amplifies and broadcasts the result on a loudspeaker 
to be heard.

We assessed the computational efficiency of the imple-
mentation by measuring the algorithmic latency (i.e., the 
time it takes for the CPU to process a buffer) using the 
debugging tools available in the Keil uVision environ-
ment. A key requirement for a real-time system to func-
tion properly is that the algorithmic latency is less than 
the length of the buffer itself (i.e., 50  ms here). If this 
requirement fails, a phenomenon known as “CPU over-
run” occurs whereby the continuous flow of the data 
from input to output is disrupted [28]. Through our code 
development, we used ’optimization level-2 for speed’ 
option in our tool chain to guide the compiler to gener-
ate underlying assembly codes that are optimized for 
enhancing the execution speed on our particular micro-
processor CPU. 

3  Results
3.1  Echo attenuation and convergence time in absence 

of engine noise
Figure  3A shows the microphone signal (d[n]) versus 
the output of the AEC (e[n]) for an FM928 truck while 
the engine is off. The AEC solution manages to attenu-
ate the echo received by the microphone significantly by 
25.54 dB according to Eq. (5). Figure 3B shows the ERLE 
per sentence and how the ERLE becomes stronger as the 
algorithm continues adapting.

Figure 4 shows the ERLE per HINT sentences and, addi-
tionally, at 0.1 and 1  s (marked by crosses). The dashed 
line shows the convergence requirement announced in 

Fig. 2 An overview of the real-time implementation on a Cortex M-7 microprocessor (STM32F767) accompanied by an analog amplifier circuitry 
and a loudspeaker
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Fig. 12(A) of ITU G.168 standard for AECs [10]. Based on 
this requirement, the AEC should yield ERLE values that 
lie above the dashed line. Accordingly, the AEC should 
yield at least 6  dB of ERLE at the second frame (since 
each buffer is 50 ms in our solution, this means 0.1 s). The 
ERLE should then increase to a minimum of 20 dB at 1 s. 

Thereafter, the ERLE should reach its steady state at 10 s 
and should stay over that steady state value, afterward. 
Figure 4 shows that the presented AEC solution achieves 
over 22 dB of ERLE at 0.1 s which is much higher than the 
requirement (6 dB). This demonstrates the very fast con-
vergence of the AEC because it already reaches 22 dB in a 

Fig. 3 A Captured microphone data (d[n]) versus the output of the AEC, error signal (e[n]) while the far end is reading the HINT sentences 
(altogether 10 sentences). The sentences are marked by numerical indicators. B The echo attenuation achieved by the presented AEC solution 
in terms of ERLE per sentence

Fig. 4 The ERLE convergence achieved by the presented AEC method as a function of time (circles and crosses) versus the requirement stated 
by ITU G.168 standards (dashed)
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Fig. 5 A, C, E Captured microphone data (d[n]) versus the output of the AEC, error signal (e[n]) while the far end is reading ten HINT sentences 
for FM920, FH2099, and FH2250, respectively. B, D, F The ERLE achieved by the presented AEC solution in terms of ERLE per sentence for each truck. 
The engine was off in all these measurements
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very short time. Thereafter, the ERLE stays over the dashed 
line and its steady state at 25 dB, as depicted in Fig. 4.

Figure  5A shows the microphone signal (d[n]) versus 
the output of the AEC (e[n]) for the FM930 truck while 
the engine was off illustrating a 25.43-dB ERLE. Fig-
ure 5B shows the ERLE values per sentence. Figure 5C–F 
illustrates similar data for FH2099 and FH2250 where the 
overall ERLE values are 27.26 and 30.9, respectively. Fig-
ure 5 indicates that in all cases the ERLE surpassed 25 dB 
somewhere before the onset of the second sentence.

Table  1 reports the ERLE assessed in the four truck 
models under test while the engines were off. The execu-
tion times for the MATLAB code to process 2 min (120 s) 
of data are also given. The WER during the DT period 
before and after the AEC are provided too. Table 1 also 
reports the execution time of the C code on the real-
time ARM STM32F767 DSP. The execution time on the 
DSP has been reported as an average of the algorithmic 
latency per buffer. Each buffer is 50 ms long.

The IDE debugging tools provide a tool that can pro-
vide information on the time the CPU takes for process-
ing each buffer. Table 1 reports the average of this value 
over all buffers in each audio file. It is worth noticing 
that the proposed algorithm consists of about 6.4 mil-
lion basic operations per buffer. Since the STM32F-
767CPU can process 460 million instructions per second 
(i.e., DMIPS = 460), it should take around 13.9 ms for the 
CPU to execute 6.4 million basic operations. However, 
as Table 1 shows, the average processing time per buffer 
is about 20 ms and 25 ms for recordings in FM and FH 
trucks, respectively. The difference between the theo-
retical estimation above (13.9 ms) and the measurement 

(around 20 and 25 ms) must be due to overheads, periph-
eral computations, and other background operations.

3.2  Echo attenuation in the presence of engine noise
Table  2 reports ERLE for the four truck models while 
the engine is on. The difference with Table 1 is that, due 
to the running engine, there is a remarkable amount of 
ambient noise (r[n]) that contaminates the microphone 
signal (d[n]). The existence of noise affects the calcula-
tion of ERLE as defined by Eq. (5) since that equation is 
based on the assumption that ambient noise is negligible. 
However, in the presence of noise, the microphone signal 
should be considered an addition of the speech compo-
nent received at the microphone, and the ambient noise 
(i.e., d[n] = s[n] + r[n]) and the output error signal will 
likewise be an addition of the actual error signal from the 
speech (denoted by es[n]) which has been processed by 
AEC and the ambient noise that has been captured by the 
microphone (i.e., e[n] = es[n]+ r[n]).

Since r[n] is uncorrelated with speech (s[n] and es[n]) , 
Eq. (6.a) and (6.b) can be written as below. Consequently, 
the effect of the ambient noise could be excluded from 
the ERLE estimation using Eq. (6.c) below. Equation (6.c) 
is only valid if r[n] is uncorrelated with speech signals 
(s[n] and x[n]) which is a realistic assumption for vehi-
cle engine noise. Equation (6.c) replaces Eq. (5) in order 
to compensate for ambient noise in our ERLE estima-
tion, and it yields the corresponding values reported in 
Table 2. From another perspective, Eq. (6.c) presents the 
spectral subtraction of the ambient noise from the micro-
phone signal and the error signal. Spectral subtraction is 
one of the most common de-noising methods in speech 

Table 1 The ERLE achieved by the proposed echo cancelation solution in four truck models while the engine is off

Truck model ERLE WER during DT (before and after 
AEC)

Total code execution time 
(MATLAB)

Average processing 
time per buffer 
(DSP)

FM 928 25.54 dB 0.28 → 0.08 9.6 s 20.3 ms

FM 930 25.43 dB 0.46 → 0.1 9.7 s 20.4 ms

FH 2099 27.26 dB 0.4 → 0.08 10.7 s 25.5 ms

FH 2250 30.9 dB 0.5 → 0.1 10.1 s 25.2 ms

Table 2 The ERLE achieved by the proposed echo cancelation solution in four truck models while the engine is on

Truck model ERLE ERLE (after correction 
for noise)

WER during DT (before 
and after AEC)

Total Code execution 
time (MATLAB)

Average processing 
time per buffer 
(DSP)

FM 928 17.13 dB 27.84 dB 0.28 → 0.08 10.2 s 24.2 ms

FM 930 15.6 dB 25.5 dB 0.45 → 0.14 11.7 s 25.1 ms

FH 2099 23.07 dB 49.37 dB 0.5 → 0.12 12.2 s 25.7 ms

FH 2250 12.7 dB 45.3 dB 0.54 → 0.14 11.7 s 24.1 ms
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signal enhancement [29]. However, it is used here in 
Eq. (6.c) for the purpose of ERLE estimation.

As Table  2 shows, the ERLE values rise substantially 
after correcting for the ambient noise. In the two first 
cases (FM 928 and FM 930), the corrected ERLE values 
lie in the same range as the ERLE values in Table 1. How-
ever, the corrected ERLE values for the two last cases (FH 
2099 and FH 2250) in Table 2 are respectively 49.37 and 
45.3 dB, which are much higher than previous cases. The 
reason for this anomaly is that the ambient noise levels 
are higher in these two truck models because they are 
heavy-duty models with much larger (noisier) engines. 
As a result, the term σ 2

r[n] in Eq. (6.a, 6.b and 6.c) is large 
meanwhile the algorithm is successful in reducing the 
echo and thus yields a low value for σ 2

e[n] . Consequently, 
the term σ 2

e[n] − σ 2
r[n] in the denominator of Eq.  (6.c) 

becomes very small which results in high ERLE output.
Tables 1 and 2 show that the WER improves (reduces) 

substantially during the challenging DT periods as a result 
of the AEC processing. In Table 1, the WER has fallen from 
an average of 0.41 (SD = 0.09) down to 0.09 (SD = 0.01). In 
Table 2, the WER falls from an average of 0.44 (SD = 0.11) 
down to 0.12 (SD = 0.02). In both cases, the AEC has sig-
nificantly (p < 0.05) reduced (improved) the WER which 
indicates the success of the AEC in making the near-end 
speech signal much more intelligible. The WER values in 
Table 2 are higher compared to Table 1 (both before and 
after applying the AEC) which is likely due to the presence 
of relatively higher engine noise in the latter case.

The presented results show that the AEC algorithm 
attenuates the echo by more than 25 dB in all cases and 
that the convergence time of the algorithm complies with 
ITU G.168 requirements [7], as seen in Fig.  4. From an 
implementation perspective, our results in Tables 1 and 
2 show that each buffer of the data could be processed in 
a time significantly shorter than the buffer size itself (i.e., 
50  ms) which indicates the feasibility of the proposed 
algorithm for being implemented on common DSPs.

3.3  Evaluating the choice of the Wiener filter length
Choosing an appropriate length for the Wiener filter ( ̂h
[n]), L, has a great impact on the outcome of an AEC [2]. 
It also has a very substantial effect on the computational 
complexity of the AEC i.e., long Wiener filters might not 

(6.a)
σ 2
d[n] = σ 2

s[n]+r[n]= σ 2
s[n] + σ 2

r[n] ⇒ σ 2
s[n] = σ 2

d[n] − σ 2
r[n]

(6.b)
σ 2
e[n] = σ 2

es[n]+r[n]= σ 2
es[n]

+ σ 2
r[n] ⇒ σ 2

es[n]
= σ 2

e[n] − σ 2
r[n]

(6.c)
ERLE = 10× log

σ2
s[n]

σ2
es [n]

10 = 10× log

σ2
d[n]

−σ2
r[n]

σ2
e[n]

−σ2
r[n]

10

be computationally feasible to be implemented on real-
time DSPs with limited computational and memory 
resources. Here, based on the acoustical attributes of the 
truck cabins, we chose 800 coefficients for ĥ[n] corre-
sponding to 50 ms at Fs = 16 kHz. To verify how a longer 
choice of L could have affected the result, we used 1360 
coefficients for the Wiener filter, corresponding to 85 ms 
in time, and then ran the AEC algorithm over the 10 
HINT sentences recorded in the FM928 truck.

Figure  6 shows the Wiener filter, ĥ[n], adapted to 
the echo path after 10 sentences have been read by the 
far end on the loudspeaker while the near-end party is 
silent. Figure  6 shows that the choice of the first 50  ms 
(corresponding to L = 800 coefficients for ĥ[n]) is a good 
choice because the filter coefficients become sparse 
and negligible after 50  ms. Furthermore, Fig.  6 shows 
that the first 110 coefficients bear sparse values near 
zero, as well. These correspond to 6.9  ms (i.e., 110/
Fs = 110/16,000 = 0.0069). This time corresponds to the 
“end-to-end delay” (or “flat delay”) which is determined 
by the time it takes for the sound wave to travel from 
the loudspeaker to the microphone. Some real-world 
AEC algorithms benefit from prior knowledge about the 
fixed physical distance between the loudspeaker and the 
microphone by zero-padding the corresponding coeffi-
cients of the Wiener filter beforehand and thereby save 
computation (i.e., “delay-coefficient method” or “seg-
mented method”) [30]. However, we chose not to apply 
these methods to keep our solution as generic and robust 
as possible for different cabin sizes and models.

4  Discussion
We presented a linear NLMS-based echo canceller that 
together with a statistical DTD and audio activity detec-
tor can achieve high ERLE and fast convergence time 
consistent with ITU G.168 guidelines. The presented 
solution is a wideband time domain algorithm in the 
sense that it applies the algorithm on the input time 
series (x[n] and d[n]) directly and does not distinguish 
the frequency content of the input signals before apply-
ing the algorithm. An alternative method is to decom-
pose x[n] and d[n] into N frequency sub-bands, forming a 
filterbank, and run the adaptive NLMS algorithm in each 
sub-band independently. The outputs of all sub-band are 
then synthesized together. A substantial benefit of this 
method, known as frequency sub-band adaptive filtering 
(FSAF), is that it offers computational simplicity because 
the input signals can be down-sampled by a factor of 
Fs/N. Furthermore, it assures a faster and more success-
ful convergence [2, 31]. A drawback of this method is that 
the “flat delay” must be already known when filtering 
x[n]. Moreover, the analysis/synthesis process in FSAF 
means that the spectral content of the final output is 
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manipulated. Here, we presented a time domain solution 
instead that is computationally efficient for being imple-
mented on modern commercial DSPs. More importantly, 
the presented echo canceler is largely independent of the 
“flat delay” and thus is a more generic solution that could 
also be suitable for setups where the distance between 
loudspeaker and microphone is different from these spe-
cific truck models.

The length of the impulse response (L) has a great 
impact on the accuracy and also the computation feasi-
bility of an AEC. Our results show that T30 reverbera-
tion time is a good indicator for choosing L. The T30 
metric is very dependent on the size of the cabin and its 
furniture. The size and the furnishing in truck cabins can 
hugely vary across manufacturers and from one model to 
another which is most likely the main source of challenge 
in designing generic AEC systems for large vehicle cab-
ins. We tested our solution in FM (mid) and FH (heavy) 
truck cabins and our choice of L proved appropriate for 
both series. However, it is more optimal to allow the 
manufacturers to fine-tune this important parameter 
based on the T30 associated with each cabin. Our codes 
(both MATLAB and C) are written in a manner to allow 
the parametric adjustment of L, thereby allowing the 
software architect to optimize and adjust this parameter.

Furthermore, besides L, we identified three other key 
parameters (namely: β, η0 , and E0 ) that have a decisive 
impact on the general performance of our AEC sys-
tem. We described in detail how these parameters are 

explicitly optimized according to the cabin geometry, 
typical noise levels, and typical microphone and loud-
speaker hardware characteristics. The suggested values 
turned out to be functional for all four truck models 
used in this study, which suggests that these values must 
be valid for a large variety of other truck models in the 
market. However, we recommend that these parameters 
be exposed to the software architect to be able to poten-
tially tune them for each cabin model, if necessary. This 
recommendation is more advisable if the proposed AEC 
solution is supposed to be implemented in small personal 
vehicles with quite different cabin acoustics.

The results showed that the presented echo cancel-
ler achieves a high level of ERLE values. However, these 
ERLE values might still not be sufficient if the gain of the 
loudspeaker is increased by the driver to very high vol-
umes. In such cases, although the AEC attenuates the 
echo to a large degree since the initial echo intensity is 
very high, the far end might still be able to hear a notice-
able amount of echo.

To address such issues and to attenuate the residual 
echoes beyond what a linear AEC can deliver, differ-
ent post-processing methods based on nonlinear AES 
have been developed [2]. According to these methods, 
a gain is applied to the microphone signal when the 
near-end party is talking and the gain is reduced when-
ever the far-end party is talking and thereby reducing 
the effect of echo. The transition between the increase 
and the decrease of the gain function in AES is usually 

Fig. 6 The Winer filter ( ̂h[n]) coefficients after the AEC adapted to 10 HINT sentences read by the far end in an FM928 truck, engine off. The 
end-to-end delay corresponds to the physical distance between the microphone and the loudspeaker. The coefficients become sparse after 50 ms 
indicating that 50 ms is an optimal length for ĥ[n] in this AEC setup
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facilitated by a ramping attack/release function to ease 
the abrupt changes and suppress the undesired spectral 
splatter [2].

Adding an AES module as a post-processor to the AEC 
can produce further attenuation of the residual echo 
and thereby improve the audio quality during a phone 
call. However, since AES is a nonlinear process [2], it 
cannot be applied to audio streams that are transmit-
ted to ASR neural networks for voice assistance [8, 18]. 
In the Android operative system, the audio designer is 
capable of defining two separate streams for telephony 
applications versus speech recognition applications 
[32]. Android hardware abstraction layer (HAL) exposes 
three different audio streams: (1) Voice_communication, 
which is used by telephony applications; (2) Voice_rec-
ognition, which is used by voice assistance and speech 
dialog applications for speech recognition; and (3) 
UNPROCESSED, which enables applications to access 
the raw data captured by the microphone [32]. An opti-
mal solution is that both AEC and AES are applied to the 
Voice_communication stream whereas only the AEC is 
applied to the voice_reconition stream. Accordingly, the 
telephony application can benefit from both AEC and 
AES while the speech recognition application fulfills its 
linearity requirements by only applying the fully-linear 
AEC algorithm.

5  Conclusion and future works
We presented a wideband time-domain NLMS-based 
adaptive AEC for large commercial vehicles and evalu-
ated its performance in four different truck models pro-
duced by the Volvo group using standard HINT in the 
presence and absence of engine noise. The results showed 
that the ERLE and the convergence time achieved by this 
adaptive algorithm fulfill and even surpass the ITU G.168 
requirements. The paper presents a fully linear AEC that 
could be used as a front end in telephony applications but 
also for keyword spotting modules in speech recognition 
systems and voice assistants. Furthermore, a real-time 
implementation of the algorithm on a Cortex-M7 DSP 
was presented which showed the computational feasibil-
ity of the proposed solution for implementation on auto-
motive embedded systems with limited computational 
and memory resources.

The AEC solution presented here is a one-microphone, 
one-speaker solution that suits the current typical truck 
production setup where speech-related signals (tele-
phone calls) are played on a specific loudspeaker. How-
ever, if the AEC is supposed to also cancel echo from 
music being played on multiple loudspeakers, the pre-
sented algorithm must be expanded to multiple loud-
speakers, e.g., [33]. Furthermore, dual microphones are 

becoming popular in the vehicle industry which implies 
that future AEC solutions should be expanded to include 
multi-microphone multi-speaker situations, which is a 
more general form of AEC [2, 33].
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