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Abstract 

Unsupervised anomalous sound detection (ASD) aims to detect unknown anomalous sounds of devices 
when only normal sound data is available. The autoencoder (AE) and self-supervised learning based methods are 
two mainstream methods. However, the AE-based methods could be limited as the feature learned from normal 
sounds can also fit with anomalous sounds, reducing the ability of the model in detecting anomalies from sound. The 
self-supervised methods are not always stable and perform differently, even for machines of the same type. In addi-
tion, the anomalous sound may be short-lived, making it even harder to distinguish from normal sound. This paper 
proposes an ID-constrained Transformer-based autoencoder (IDC-TransAE) architecture with weighted anomaly score 
computation for unsupervised ASD. Machine ID is employed to constrain the latent space of the Transformer-based 
autoencoder (TransAE) by introducing a simple ID classifier to learn the difference in the distribution for the same 
machine type and enhance the ability of the model in distinguishing anomalous sound. Moreover, weighted anomaly 
score computation is introduced to highlight the anomaly scores of anomalous events that only appear for a short 
time. Experiments performed on DCASE 2020 Challenge Task2 development dataset demonstrate the effectiveness 
and superiority of our proposed method.
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1 Introduction
Anomalous sound detection (ASD) aims to detect anom-
alies from acoustic signals. Since anomalous sounds can 
indicate system error or malicious activities, ASD has 
received much attention [1–5], which has been widely 
used in various applications, such as road surveil-
lance [6, 7], animal disease detection [8], and industrial 

equipment predictive maintenance [9]. Recently, ASD 
has also been used to monitor the abnormality of indus-
trial machinery equipment, such as anomaly detection 
for surface-mounted device machine [10, 11], and the 
Detection and Classification of Acoustic Scenes and 
Events (DCASE) challenge Task2 from 2020 to 2023 
[12–15], to reduce the loss caused by machine damage 
and the cost of manual inspection.

Supervised learning based methods usually train a 
binary classifier to detect the anomaly [7, 16]. However, it 
is hard to collect enough anomalous data for supervised 
learning, as actual anomalous sounds rarely occur in real 
scenarios. In addition, the high diversity of the anomalies 
can reduce the robustness of supervised methods. There-
fore, unsupervised methods are often employed to detect 
unknown anomalous sounds without using anomalous 
sound samples.
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In unsupervised ASD, a method is to employ the 
autoencoder (AE) to learn the distributions of sound 
signals and perform anomaly detection. Conventional 
AE-based approaches adopt autoencoder to reconstruct 
multiple frames of spectrogram to learn the distribution 
of normal sounds, and then the reconstruction error is 
used to obtain the anomaly score for anomaly detection 
[10, 12, 17–19]. However, the conventional AE-based 
methods do not work well for non-stationary ASD [20], 
as non-stationary normal sounds (e.g., sound signals of 
valves) can easily have larger reconstruction errors than 
abnormal sounds, thus deteriorating the detection per-
formance. In [20], an interpolation deep neural network 
(IDNN) method is proposed, which masks the center 
frame of the input, and only uses the reconstruction error 
of the masked center frame to improve non-stationary 
sound reconstruction, without considering the edge 
frames, while the method in [21] adopts a similar strat-
egy as IDNN and applies the local area mask on the input 
and employs attentive neural process (ANP) [22] for the 
reconstruction of the masked input.

Instead of reconstructing spectrogram feature, the 
method in [23] mixes multiple features as the input, and 
adopts a fully connected U-Net for the mixed feature 
reconstruction. To utilize the intra-frame statistics of 
sound signal, a novel group masked autoencoder for dis-
tribution estimation (Group MADE) is proposed for unsu-
pervised ASD [24, 25], which estimates the density of an 
audio time series and achieves better performance. How-
ever, the distributions of normal audio clips from different 
machines are different even for the same sound class. This 
difference can be even greater than that between normal 
and anomalous sound, which makes it harder to distin-
guish normal and anomalous sounds for these purely AE-
based methods, as the learned feature from these normal 
sounds may also fit with the anomalous sounds [26].

Machine identity (ID) has been used as the additional 
condition for encoding in the latent feature space of 
AE, in order to allow the decoder to provide different 
reconstructions for each machine [27, 28]. However, 
the encoder is unable to learn the difference in dis-
tributions for different machines, and as a result, the 
anomalous sound may be well reconstructed. For this 
reason, it could still be difficult to distinguish normal 
and anomalous sound. In addition, the abovemen-
tioned AE-based methods often use averaged anomaly 
score for detection, which does not take into account 
the short-lived condition in anomalous sound, result-
ing in low anomaly scores for anomalous events that 
appear only for a short time, which makes it even more 
challenging for the AE-based methods.

Therefore, instead of reconstructing normal sounds 
to learn the feature representation, the self-supervised 

methods are presented to learn the feature representa-
tion by utilizing the difference in distributions among dif-
ferent machines [29–36]. The study in [29] uses machine 
type and machine ID in addition to the machine con-
dition (normal/abnormal) as training labels for self-
supervised classification. The flow-based self-supervised 
method [37] adopts normalizing flow (NF) [38, 39] 
models, such as generative flow (Glow) [40] and masked 
autoregressive flow (MAF) [41], to obtain the likeli-
hood estimation for anomaly detection. In this method, 
an auxiliary task is introduced to distinguish the sound 
data of that machine ID (i.e., target data) from the sound 
data of other machine IDs with the same machine type 
(i.e., outlier data). Moreover, although the self-supervised 
learning-based methods can achieve better performance 
than the AE-based methods, they are not always stable 
and could perform differently even for the machines of 
the same type.

In this paper, we present an ID-constrained Trans-
former-based autoencoder (IDC-TransAE) architec-
ture with weighted anomaly score computation for 
unsupervised ASD. Our method includes two stages, 
namely, spectrogram reconstruction and anomaly 
detection. First, an IDC-TransAE is introduced to 
reconstruct the spectrogram of normal sounds, where 
Transformer [42] is employed to build the AE architec-
ture, and a simple ID classifier is incorporated into the 
AE. Specifically, the Transformer captures the time-
dependent information of the sound signal, and the 
classifier utilizes machine ID to constrain the latent 
space of AE, so that our proposed IDC-TransAE can 
learn different distributions of normal machines, even 
with the same type. In the proposed IDC-TransAE 
architecture, instead of using the positional encoding 
(PE) for Transformer to provide additional temporal 
information, a linear phase embedding (LPE) method 
is proposed to represent the temporal information of 
sound signal by using its phase information, which can 
further enhance the classification performance of the 
proposed IDC-TransAE. In addition, the center frame 
prediction (CFP) is also employed in our IDC-TransAE 
to improve the ASD ability for non-stationary signals 
(e.g., Valve). Then, the reconstruction error from the 
trained IDC-TransAE can be used to calculate the 
anomaly score to detect the anomaly. Here, we intro-
duce a weighted anomaly score computation method 
via global weighted ranking pooling (GWRP) [43], 
which can highlight the anomaly scores for the anoma-
lous events that only appear for a short time. Finally, 
we obtain the final anomaly score with the combina-
tion of the classification anomaly score and weighted 
reconstruction anomaly score, to obtain more stable 
and consistent detection performance.
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In summary, the innovations and contributions of 
this paper for unsupervised anomalous sound detec-
tion can be summarized as follows: 

1. We analyze the generalization problem of AE for 
ASD and point out the main reason for this problem, 
and propose a solution, i.e., IDC-TransAE, to miti-
gate the generalization of AE and improve the detec-
tion performance. To the best of our knowledge, this 
is the first work to clearly point out the main reason 
for the generalization problem of AE for ASD.

2. We propose an ID constraint (IDC) classifier to learn 
different audio feature distributions from the same 
machine type, which can enhance the distinguishing 
ability for anomaly detection.

3. We design a linear phase embedding (LPE) to replace 
the traditional positional encoding (PE) to preserve 
the own temporal information of machine sounds by 
the phase of sounds.

4. In the anomaly score calculation, we introduce the 
global weighted ranking pooling (GWRP) to high-
light the anomaly score of sounds with short-time 
non-stationary anomalies, which obtains a more sta-
ble and consistent detection performance.

5. Experimental results verify that the proposed IDC-
TransAE method can mitigate the generalization 
problem of AE for ASD. Ablation studies and visuali-
zations further verify the effectiveness of the design 
of ID constraint, LPE and GWRP for ASD. Our study 
employs the DCASE 2020 Challenge Task2 data-
set to address AE’s generalization problem in ASD, 
excluding DCASE 2022 and 2023 datasets tailored 
for domain-shift and first-shot scenarios beyond our 
paper’s scope.

2  Preliminary
The AE-based methods are widely used for unsupervised 
ASD [10, 12, 17, 18] An AE model is trained with nor-
mal sounds to learn their feature distribution. It implicitly 

assumes that it can reconstruct normal sounds better 
than anomalous sounds, so that anomalous sounds often 
have larger reconstruction errors than normal sound. The 
reconstruction error is then used for deriving the anomaly 
scores for anomaly detection. Figure  1 shows the AE archi-
tecture for unsupervised ASD.

Regarding model training, multiple frames of a spectro-
gram are usually used as the input, and the same number 
of frames are generated as the output. Suppose X ∈ R

N×M 
is the log-Mel spectrogram of the sound signal, where N is 
the number of frames and M is the feature dimension of 
each frame of X . The loss for the AE model training is

where E(·) and D(·) are the encoder and the decoder of 
AE, respectively.

Then, the trained AE model can be used to detect the 
anomaly. Y  is the test audio clip, split into I segments, 
{Y i}

I
i=1 . Here, Y i ∈ R

N×M is the ith segment and also the 
ith input of the model. The reconstruction error ei for Y i is

where Y i = D(E(Y i)) is the corresponding output 
frames, and �·�F denotes Frobenius norm. It results in a 
reconstruction error sequence e = {ei}

I
i=1 for Y  , and the 

mean reconstruction error of e can be used as the anom-
aly score

Here, A(e)mean represents the anomalous degree of the 
audio clip. The normal or anomaly of the clip is deter-
mined by H(e, θ) [44]:

(1)LAE = �X − D(E(X))�22,

(2)ei =
1

NM
(Y i − Y i)

2

F
,

(3)A(e)mean =
1

I

I
∑

i=1

ei.

(4)H(e, θ) =

{

0 (Normal) A(e)mean ≤ θ

1 (Anomaly) A(e)mean > θ
,

Fig. 1 Typical architecture of AE for unsupervised ASD uses the reconstruction error between the input and output as the anomaly score
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where θ is a pre-defined threshold value to determine 
whether an audio clip is anomalous.

However, for normal non-stationary sounds, the AE-
based methods tend to give large reconstruction errors 
for both normal and abnormal sounds; this is because 
the edge frames of non-stationary sound are hard to 
reconstruct. In [20], IDNN is proposed for non-sta-
tionary sound ASD, which removes the center frame of 
the multiple frames as the input, and predicts the 
removed frame as the output, as shown in Fig. 2. The 
input multiple frames of IDNN can be expressed as 
X =

[

x1, · · · , x N+1
2

−1
, x N+1

2
+1

, · · · , xN

]T
 , and T denotes 

transposition. The loss function of IDNN is formu-
lated as

where x N+1
2

 is the removed center frame of original input 
frames. Unlike conventional AE-based methods, the 
reconstruction error ei of the ith input is only calculated 
by the center frame.

However, the training procedure does not involve the 
anomalous sound, as a result, the AE-based methods 
could be limited in the scenario where the learned fea-
ture also fits with the anomalous sound [2]. In this case, 
the anomalous sound could be well reconstructed with 
a smaller reconstruction error than that of the normal 
sounds of different machines, even of the same type. For 
example, the anomalous sounds from one machine may 
be similar to the normal sounds of another machine, due 
to different usage of different machines. In this case, the 
AE trained with these different machines of the same 
machine type can reconstruct the anomalous sounds 
well, and thus it may not be able to detect these anoma-
lous sounds.

In addition, for anomalous events that only appear for a 
short time in audio clips, the anomaly score calculated by 
mean reconstruction error is often too small, making it 
difficult to detect the anomaly.

(5)LIDNN =

∥

∥

∥
x N+1

2
− D(E(X))

∥

∥

∥

2

2
,

3  Proposed method
This section presents our IDC-TransAE with weighted 
anomaly score computation for unsupervised ASD. We 
introduce IDC-TransAE to reconstruct the spectrogram 
of normal sounds to learn their distributions, and apply 
GWRP for weighted anomaly score computation to per-
form anomaly detection.

3.1  ID constraint Transformer autoencoder
We utilize Transformer to exploit temporal information 
for better reconstruction of normal sounds, where only 
the encoder layer of Transformer is employed to build 
the encoder and decoder of our IDC-TransAE architec-
ture. In addition, machine ID is adopted to constrain the 
latent space of the AE by introducing a simple ID classi-
fier to learn different representations for different normal 
sounds. The framework of the proposed IDC-TransAE is 
illustrated in Fig. 3.

3.1.1  Center frame prediction
For better reconstruction of the spectrogram of normal 
non-stationary sound, following IDNN, we introduce a 
center frame prediction (CFP) method by removing the 
center frame of input frames and predicting the removed 
frame. After removing center frame x N+1

2
 , the input 

frames can be expressed as

where T denotes the matrix transposition operation. 
Unlike IDNN, the predicted center frame obtained by 
CFP is the average pooling of decoder output in frames 
and then processed by a linear layer, as shown in Fig. 3.

3.1.2  Linear phase embedding
To represent the appropriate positional relationship of 
the sound signal, we propose a linear phase embedding 

(6)X =
[

x1, · · · , x N+1
2

−1
, x N+1

2
+1

, · · · , xN

]T
,

Fig. 2 The architecture of IDNN uses the reconstruction error of center frame as the anomaly score
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(LPE) method for IDC-TransAE, to replace positional 
encoding (PE), often used in Transformer to provide 
additional position information via sinusoid function 
[42], which is, however, not strongly correlated with the 
sound signal. In contrast, LPE in the proposed method 
preserves the signal’s temporal information by linearly 
embedding the phase angles of the signal to the same 
dimensions with the input X . The phase angle is obtained 
via the short-time Fourier transform (STFT).

Assuming the phase angles corresponding to X are 
denoted as � =

[

φ1, · · · ,φ N+1
2

−1
,φ N+1

2
+1

, · · · ,φN

]T
 , 

with center frame removed, and F(·) is the linear embed-
ding function, including two linear layers with batch nor-
malization. The output X  of decoder D(·) can be obtained 
as

where X = [x1, · · · , xn, · · · , xN−1]
T . Then, the average 

pooling of X  is used to predict the center frame, and the 
reconstruction loss for the center frame is

where Wo and bo are the learnable parameters of the last 
output linear layer. The LPE module helps preserve the 
temporal information of the signal to enhance the ability 
of the model for anomalous sound detection.

(7)X = D(E(X + F(�))),

(8)Lr =

∥

∥

∥

∥

∥

x N+1
2

−

(

Wo
1

N − 1

N−1
∑

n=1

xn + bo

)∥

∥

∥

∥

∥

2

2

,

3.1.3  ID classifier
We observed that the performance of the trained AE 
model on different machines with the same type could 
be quite different. The potential cause is the difference in 
distributions of normal machine sound when individual 
machines have different usages. However, the trained 
model only learns how to reconstruct the general distri-
bution of different normal machines sounds.

To enable the model to learn different representations 
for different machine sounds even with the same type, we 
introduce an ID classifier C(·) with machine ID informa-
tion to constrain the latent feature z of AE. The structure 
of the ID classifier C(·) is given in Fig. 3, which consists 
of a max pooling layer, two linear layers with a ReLU [45] 
function and a softmax activation function.

Here, the latent feature z is the output of the encoder 
of AE, which is the input of the classifier, defined 
as z = E(X + F(�)) . The output of the ID classifier 
l̂ = C(z) ∈ R

K  is the probability indicating normal/
anomalous sound corresponding to the machine ID, and 
K is the number of machines with the same type. Then, 
the classification error of C(·) can be obtained via a cross-
entropy loss function [46]

where l ∈ R
K  is the one-hot vector of machine ID label of 

the sound signal.
Therefore, the proposed IDC-TransAE can be jointly 

trained by minimizing the center frame reconstruction 

(9)Lc = CrossEntropy(l, l̂),

Fig. 3 The architecture of the proposed IDC-TransAE for normal sound reconstruction. X  and � are the inputs to the model, which are obtained 
from the sound signal by removing the center frame. The final predicted center frame is obtained by average pooling of the output of the decoder 
X  in frames and a linear layer, and l̂  is the predicted machine ID probability of sound signal, which is obtained by max pooling of output of encoder 
z in frames and two linear layers with softmax. IDC-TransAE is optimized by the combination of reconstruction error and classification error



Page 6 of 16Guan et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:42 

error and the machine ID classification error with the joint 
loss function

where α ∈ [0, 1) is a hyper-parameter. The magnitude of 
α denotes the extent to which the machine ID classifier 
restricts z . By jointly training the AE with the ID classi-
fier, we can improve anomaly detection performance.

3.2  Weighted anomaly score computation
For anomaly detection, the formula A(e)mean in Eq. (3) 
usually underestimates the anomaly scores of anomalous 
audio clips when the anomalous events only appear for a 
short time. One solution is to use the maximal reconstruc-
tion error as the anomaly score, i.e., max anomaly score 
A(e)max = max(e) , to highlight the anomalies of these 
audio clips. However, it is not robust to use the maximum 
value of e as the anomaly score of the whole audio clip, as 
it may overestimate the anomaly scores of some normal 
audio clips.

To improve the reliability of the calculated anomaly score, 
we employ the global weighted rank pooling (GWRP) 
method to obtain weighted anomaly score, where GWRP is 
a generalization of max and mean, which can highlight the 
anomaly score by setting different weights to reconstruc-
tion error sequence e . For example, let ê = {ê1, ..., êI } be 
sorted by descending order of e , the GWRP anomaly score 
can be calculated as

where 0 ≤ r ≤ 1 is a hyper-parameter and 
Z(r) =

∑I
i=1 r

i−1 is a normalization term. When r = 0 , 
A(ê)gwrp degenerates to A(e)max , and when r = 1 , 
A(ê)gwrp becomes A(e)mean . It intends to assign larger 
weights to anomalous audio clips and lower weights to 
normal audio clips, to generate high anomaly scores for 
the anomalous events of short duration. In addition, the 
classification error is combined with the reconstruction 
error to calculate the anomaly score, to allow the anom-
aly score to increase if the ID classifier misclassifies the 
machine ID. Finally, the weighted anomaly score can be 
calculated as

where β ∈ [0, 1] is a parameter weighting the impact of a 
false prediction by the ID classifier on the anomaly score. 
For clarity, the proposed IDC-TransAE with weighted 
anomaly score computation is denoted as IDC-TransAE-
W in the following section.

(10)Ltotal = (1− α)Lr + αLc,

(11)A(ê)gwrp =
1

Z(r)

I
∑

i=1

ri−1êi,

(12)A(ê, l, l̂) = (1− β)A(ê)gwrp + βLc ,

4  Experiments and results
4.1  Experimental setup
4.1.1  Dataset
We evaluate our method on the DCASE 2020 Challenge 
Task2 [12] dataset, which comprises parts of MIMII 
[47] and ToyADMOS dataset [48] including the nor-
mal/anomalous operating sounds of six types of real/
toy machines. The MIMII dataset includes four types of 
machines (i.e., Fan, Pump, Slider, and Valve), with four 
different machines for each machine type. The ToyAD-
MOS dataset consists of two types of machines (i.e., 
ToyCar and ToyConveyor), with four and three different 
machines for each type, respectively. Each recording is 
a single-channel audio of 10-s long with a 16-kHz sam-
pling rate that includes both a target machine’s operat-
ing sound and environmental noise. Following [12], the 
training set only includes normal sounds, with around 
6000 items for each machine type, and the test set con-
sists of both normal and anomalous sounds, including 
about 500 to 1000 items for normal and anomaly in each 
machine type.

4.1.2  Performance metrics
Following [12, 20, 29, 37, 49], we employ area under the 
receiver operating characteristic (ROC) curve (AUC) 
and the partial-AUC (pAUC) as the performance met-
rics, where the pAUC is calculated as the AUC over a 
low false-positive-rate (FPR) range [0, p] and p = 0.1 as 
in [12]. Higher AUC indicates better model performance. 
pAUC reflects the reliability of the ASD system based on 
practical requirements. It is important to increase pAUC 
to avoid the ASD system predicting false alerts frequently 
[12]. In addition, the minimum AUC (mAUC) is adopted 
to represent the worst detection performance achieved 
among individual machines of same machine type, fol-
lowing [37].

4.1.3  Implementation details
The implementation details of IDC-TransAE can be 
seen in Table 1. We use the log-Mel spectrogram and 
phase angle of the sound signal as the input of our 
IDC-TransAE. The frame size is 1024 with an overlap-
ping 50%, i.e., the number of FFT bins (n_FFT) is 1024, 
and the hop length is 512. The number of Mel filter 
banks (n_Mels) is set as 128. The number of frames 
(i.e., N) is 5. The dimension of phase angles is 513, 
which is embedded to a 128-dimensional vector by 
the linear function F(·) . Here, F(·) consists of two lin-
ear layers with batch normalization. The encoder and 
decoder of IDC-TransAE include two layers, respec-
tively. The classifier includes a max pooling layer, two 
linear layers with a ReLU and a softmax activation 
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function. The hyper-parameter α of the joint loss func-
tion is empirically set as 0.3.

Adam optimizer [50] is used to optimize our model 
with a learning rate of 0.0001. For each machine type, 
our model is trained 300 epochs, and the batch size is 
set as 2000. In the joint training stage, we found that 
the classification loss converges much faster than the 
reconstruction loss, so we adopt a training strategy to 
avoid the overfitting of the classifier, by training the 
classifier every 10 epochs (i.e., using Ltotal loss) and the 
remaining epochs for autoencoder (i.e., using Lr loss). 
In weighted anomaly score computation, r and β are 
empirically selected, and the values of r and β are pro-
vided in Table 1.

4.2  Experimental results and performance analysis
4.2.1  Comparison with other methods
To demonstrate the performance of our method for 
unsupervised ASD, we compare our approach with the 
AE baseline of DCASE 2020 Challenge Task2 [12] and 
mainstream models, including AE-based methods (i.e., 

IDNN [20], ANP-Boot [49], Group MADE [24], and 
IDCAE [27]) and self-supervised based methods (i.e., 
MobileNetV2 [29] and Glow_Aff [37]), where IDCAE, 
MobileNetV2 and Glow_Aff employ the ID information 
for anomalous sound detection.

Table  2 shows the comparison results in terms of 
AUC and pAUC. Here, IDC-TransAE-W and IDC-
TransAE-mean represent IDC-TransAE with weighted 
anomaly score computation and mean anomaly score 
computation, respectively. In addition, the proposed 
methods without using ID information are evaluated, i.e., 
TransAE-W and TransAE-mean.

As shown in Table 2, the methods with ID information 
(denoted as w/ ID) give better detection performance 
than the methods without ID information (denoted as 
w/o ID), except IDCAE. The proposed IDC-TransAE-W 
performs the best in terms of average AUC and pAUC. 
Amongst the methods without using ID information, 
our TransAE-W also achieves the best overall perfor-
mance. Especially, both TransAE-W and IDC-TransAE-
W can substantially improve the performance on the 

Table 1 Implementation details for all machine types

Fan Pump Slider Valve ToyCar ToyConveyor

n_FFT 1024

n_Mels 128

Hop length 512

Frames 5

α 0.3

r 1.00 1.00 0.96 0.92 1.00 1.00

β 0.84 0.82 0.80 0.72 0.62 0.98

Table 2 Performance comparison in terms of AUC (%) and pAUC (%) for different types of machines

Fan Pump Slider Valve ToyCar ToyConveyor Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC 

w/o ID information

AE baseline [12] 65.91 51.93 70.20 61.69 83.42 65.72 67.78 51.67 78.77 67.58 72.53 60.43 73.10 59.84

IDNN [20] 65.94 52.48 74.26 62.20 84.34 65.48 83.70 62.02 77.42 62.64 69.36 58.58 75.67 60.57

ANP-Boot [21] 64.80 53.00 65.50 59.00 94.90 83.10 85.20 72.00 72.90 68.10 67.10 54.20 75.07 64.90

Group MADE [24] 68.00 53.10 74.10 66.20 94.40 83.70 95.60 85.50 79.50 68.40 74.70 60.30 81.05 69.53

TransAE-mean 73.91 54.14 77.31 68.96 91.51 74.66 96.09 84.65 80.62 72.65 74.32 59.80 82.29 69.14

TransAE-W 73.91 54.14 77.31 68.96 94.52 82.33 99.68 98.31 80.62 72.65 74.32 59.80 83.39 72.70
w/ ID information

MobileNetV2 [29] 80.19 74.40 82.53 76.50 95.27 85.22 88.65 87.98 87.66 85.92 69.71 56.43 84.34 77.74

Glow_Aff [37] 74.90 65.30 83.40 73.80 94.60 82.80 91.40 75.00 92.20 84.10 71.50 59.00 85.20 73.90

IDCAE [27] 77.45 70.32 77.29 70.33 80.04 68.25 78.26 55.80 78.07 74.22 70.29 59.46 76.90 66.40

IDC-TransAE-mean 80.44 70.21 83.41 79.24 92.17 77.10 94.04 78.94 93.17 87.43 75.69 62.96 86.49 75.98

IDC-TransAE-W 80.44 70.21 83.41 79.24 96.20 86.38 99.60 98.29 93.40 87.43 75.69 62.96 88.12 80.94
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non-stationary sound signal of Valve (i.e., with 13.66% 
and 19.35% pAUC improvements compared to TransAE-
mean and IDC-TransAE-mean, respectively), which 
demonstrates the effectiveness of the weighted anomaly 
score computation for anomalous events appearing for a 
short time. In addition, the significantly improved aver-
age pAUC (i.e., 80.94%) shows that the proposed IDC-
TransAE-W is more reliable than other methods.

Note that  r in the weighted anomaly score compu-
tation can be adjusted according to the time length 
of the anomalous event, for example, when r = 1 , 
A(ê)gwrp = A(e)mean . This means it is more applicable 
than mean anomaly score. The influence of r will be dis-
cussed in Section 4.4

4.2.2  Detection stability
To demonstrate the effectiveness of our method for 
more stable detection, another experiment is conducted 
to show the worst detection performance on individual 
machines of the same type, where the self-supervised 
based methods (i.e., MobileNetV2 and Glow_Aff) and 
the typical AE-based method (i.e., IDNN) are employed 
for comparison. The results in terms of mAUC are given 
in Table 3.

As can be seen from Tables 2 and 3, the self-supervised 
methods, i.e., MoblieNetV2 and Glow_Aff, can achieve 
significant improvements in average AUC and pAUC, as 
compared to the AE-based method IDNN. However, they 
perform dramatically different even for the machines 
of the same type, as observed from Tables 2 and 3, e.g., 
MobileNetV2 has much smaller mAUC than AUC on 
Fan, Pump, ToyCar, and ToyConveyor. The results dem-
onstrate the instability of the self-supervised methods.

Especially, the average mAUC (i.e., 59.73%) of Mobile-
NetV2 is lower than that of IDNN (i.e., 64.46%), which 
indicates that the self-supervised classification method 
(i.e., MobileNetV2) indeed easily fails on some individual 
machines and lacks performance consistency. In contrast, 
the AE-based method IDNN can provide a relatively 

stable detection performance. Although the flow-based 
self-supervised method (Glow_Aff) can improve detec-
tion stability to some extent compared to the AE-based 
method, our proposed method can achieve the best aver-
age mAUC performance and obtain more stable perfor-
mance for some machine types, i.e., Slider, Valve, and 
ToyCar.

Although Glow_Aff has a higher mAUC on Pump than 
our proposed method, the model needs to be trained for 
each individual machine which could be limited in real-
world applications. In contrast, our proposed method 
only needs to train one model for each machine type.

4.2.3  Generalization to anomaly
To demonstrate the proposed IDC-TransAE can miti-
gate the generalization of AE for anomalous sound and 
improve its detection performance, experiments are con-
ducted to compare it with the typical AE-based method 
(i.e., IDNN).

First, we show the histograms of anomaly score dis-
tribution on Slider, Valve, and ToyCar using IDNN and 
our proposed IDC-TransAE. For a fair comparison, our 
method (i.e., IDC-TransAE-mean) also adopts mean 
anomaly score computation as IDNN, and the results are 
provided in Fig. 4. Here, the anomaly score is on the hori-
zontal axis of the histogram, which is normalized to facil-
itate comparison. The vertical axis represents the number 
of audio samples corresponding to the anomaly score dis-
tribution on the histogram.

From Fig.  4, we can see that, for IDNN, the anomaly 
score distribution of the anomalous sound tends to be 
similar to that of the normal sound, especially on ToyCar, 
as shown in Fig. 4a. It shows that most anomalous sound 
have a small anomaly score similar to normal sound. This 
indicates that the AE-based method (i.e., IDNN) is able 
to generalize the representation for anomalous sound, 
which reduces its ability to distinguish between normal 
and abnormal sound. In contrast, our proposed method 
can give higher anomaly scores for the anomalous sound, 
and provide better detection ability than the AE-based 
method, as shown in the histograms in Fig.  4b, which 
demonstrates the effectiveness of our proposed IDC-
TransAE architecture.

To further demonstrate that our proposed IDC-
TransAE can mitigate its generalization for the anom-
aly, we perform another experiment for non-stationary 
anomalous sound detection (i.e., sound of Valve) as 
compared with IDNN, where the log-Mel spectro-
gram reconstruction of normal and anomalous sound 
is illustrated in Fig. 5. From left to right, Fig. 5 shows 
the original log-Mel spectrograms, the reconstructed 
log-Mel spectrograms, and the absolute values of their 
difference.

Table 3 Performance comparison in terms mAUC (%) among 
the individual machines of the same type

MobileNetV2 
[29]

Glow_Aff 
[37]

IDNN [20] IDC-
TransAE-W

Fan 50.40 49.60 56.56 50.55

Pump 52.90 65.70 61.86 57.27

Slider 82.80 87.80 74.22 88.64
Valve 67.90 77.70 66.83 99.24
ToyCar 55.70 80.10 64.41 81.35
ToyConveyor 48.70 61.00 62.89 62.31

Average 59.73 70.32 64.46 73.23
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Comparing the red box areas illustrated in Fig. 5a and 
b, the proposed IDC-TransAE can provide better normal 
sound reconstruction, as it can achieve smaller recon-
struction error for normal sound than that of the typi-
cal AE-based method (i.e., IDNN). This can be clearly 
observed in the comparison of the absolute value differ-
ence of original log-Mel spectrogram and reconstrcuted 
log-Mel spectrogram, as the red box indicated areas in 
Fig. 5a and b. Whereas for the anomalous sound recon-
struction, our proposed method can give larger recon-
struction error than the typical AE-based method, which 
means that our method has a better ability to high-
light the anomalies when reconstructing the anoma-
lous sound. This can be observed from the comparison 
between the red box areas in Fig.  5c and d, where the 
absolute value difference shown in Fig. 5d is much more 
clear than that in Fig. 5c. The results further demonstrate 
that our proposed IDC-TransAE can solve the generaliza-
tion problem of the AE-based method and has a better 
ability in anomaly detection.

Note that the log-Mel spectrogram of the anomalous 
sound also shows that the anomalies may appear for a 
short time in the sound, as illustrated in Fig.  5. In this 
case, the mean anomaly score computation method will 

give low anomaly scores for the anomalous events that 
only appear for a short time.

4.3  Ablation studies
To show the effectiveness of different parts of our pro-
posed IDC-TransAE-W, ablation studies are conducted, 
where AUC and pAUC are used as performance metric. 
The results are given in Table  4. Here, TransAE/PE-W 
denotes the proposed model without using machine ID 
constraint (IDC) module and CFP module, and adopts PE 
instead of LPE, with weighted anomaly score computa-
tion for anomaly detection. TransAE/PE/CFP-W denotes 
the TransAE/PE-W using CFP, and TransAE/LPE/
CFP-W denotes replacing PE with LPE in Transformer/
PE/CFP-W.

As shown in Table 4, TransAE/PE/CFP-W can signifi-
cantly improve the detection performance for the non-
stationary sound signal of Valve, with 12.61% AUC and 
30.40% pAUC improvements as compared with TransAE/
PE-W. To show the effectiveness of LPE, we compare the 
performance of TransAE/PE/CFP-W and TransAE/LPE/
CFP-W. The result shows that TransAE/LPE/CFP-W 
can improve the detection performance on Fan, Slider, 
Valve, and ToyConveyor and achieve better average AUC 

Fig. 4 The histograms of anomaly scores distribution on Slider, Valve, and ToyCar using IDNN and the proposed IDC-TransAE-mean, where blue 
and orange indicate the anomaly score distribution of normal and anomalous sound, respectively
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Fig. 5 The log-Mel spectrogram reconstruction analysis of IDNN and IDC-TransAE on normal and anomalous Valve’s sound, the “original,” 
“reconstruction,” and “original-reconstruction” represent original spectrogram, reconstructed spectrogram and the absolute value of their difference, 
respectively

Table 4 Validation of different modules of IDC-TransAE

TransAE/PE-W TransAE/PE/CFP-W TransAE/LPE/CFP-W IDC-TransAE-W

AUC pAUC AUC pAUC AUC pAUC AUC pAUC 

Fan 70.06 52.73 72.46 52.95 73.91 54.14 80.44 70.21
Pump 79.76 70.79 77.66 71.30 77.31 68.96 83.41 79.24
Valve 92.88 81.05 94.12 82.16 94.52 82.33 96.20 86.38
Slider 85.10 62.91 97.71 93.31 99.68 98.31 99.60 98.29

ToyCar 82.95 72.47 81.27 72.69 80.62 72.65 93.40 87.43
ToyConveyor 76.81 63.88 74.35 58.51 74.32 59.80 75.69 62.96

Average 81.26 67.31 82.93 71.82 83.39 72.70 88.12 80.94
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and pAUC performance. It indicates that LPE can better 
represent the temporal information of the sound signal 
by using its phase information. By introducing the ID 
classifier, the proposed IDC-TransAE-W with the IDC 
module can achieve the best overall detection perfor-
mance, giving more than 10% improvement in pAUC on 
Fan, Pump, and ToyCar as compared with TransAE/LPE/
CFP-W. Besides, we can see that the proposed IDC mod-
ule contributes the most to the performance improve-
ment in Table 4, which further verifies the effectiveness 
of the proposed IDC module to enhance the ability of the 
model in distinguishing anomalous sound.

To further demonstrate the effectiveness of the IDC 
module, we compare the performance of IDC-TransAE-
W and TransAE/LPE/CFP-W in terms of AUC and 
pAUC on four different machines of the machine type 
Fan. The result is illustrated in Fig. 6. From Fig. 6, we can 
see that IDC-TransAE-W can significantly improve the 
performance on ID_02, ID_04, and ID_06, as compared 
with TransAE/LPE/CFP-W. This means the IDC method 
can better distinguish the anomalous sound for differ-
ent machines with the same type. The results in Table 4 
and Fig. 6 verify the effectiveness of different modules of 
our proposed method. To further illustrate the effective-
ness of each module, we give the visualization analysis for 
each module in the following Section 4.4.

4.4  Visualization analysis
In this section, visualization analysis is provided for bet-
ter understanding the experimental results in the abla-
tion studies. Specifically, the effectiveness of CFP, LPE 
module and IDC module in our proposed IDC-TransAE 

method are further evaluated. Besides, the influence of 
the parameter in the GWRP operation of anomaly score 
calculation is also explored in this section.

4.4.1  Effectiveness of CFP
To show how CFP operation affects the anomaly detec-
tion for non-stationary sound signals, we compare 
the histograms of anomaly score distribution between 
TransAE/PE-W and TransAE/PE/CFP-W on Valve. The 
result is given in Fig. 7. Same as Fig. 4, the anomaly score 
is also normalized to facilitate comparison. By comparing 
Fig. 7a and b, we can see that the distribution of normal 
sound samples is on a smaller range of anomaly scores 
when adopting the CFP module (i.e., TransAE/PE/CFP-
W), as illustrated in Fig. 7b. It verifies that CFP operation 
can improve the reconstruction of non-stationary signals 
as described in [20]. Therefore, it can improve the perfor-
mance of our proposed method for anomaly detection of 
non-stationary sound signals.

4.4.2  Visualization of linear phase embedding
To show why the LPE module can enhance the ability 
of the model for anomalous sound detection, we visual-
ize the encoding result of five consecutive input sound 
signals of TransAE/LPE/CFP, and compare it with the 
encoding result of positional encoding for TransAE/PE/
CFP, as illustrated in Fig. 8. Here, f1 to f5 are the encod-
ing visualizations corresponding to the five consecu-
tive input sound signals, respectively, where each input 
includes four frames.

From Fig. 8a, we can see that the positional encoding vis-
ualization of each input is the same because the positional 

Fig. 6 Performance illustration for 4 different machines with the same type, i.e., Fan
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encoding operation adopts the same cosine representa-
tion for signal encoding. In contrast, by linearly encoding 
the phase information of the signal, our proposed LPE can 
preserve the signal’s own temporal information and give 
different encoding representations for each different input 
signal, as indicated in the red box in Fig.  8b. Therefore, 
our proposed method can learn better latent features with 
unique characteristics from each signal, and enhance the 
ability of the model for anomalous sound detection.

4.4.3  Validation of IDC module
We show the t-distributed stochastic neighbor embed-
ding (t-SNE) cluster visualization of the latent features 
to validate the IDC module further. The experiment is 
conducted on the test dataset of the machine type Toy-
Car, where the proposed method IDC-TransAE with-
out using ID information (i.e., TransAE/LPE/CFP) is 
employed for comparison. The result is illustrated in 
Fig. 9.

Fig. 7 The comparison between TransAE/PE-W and TransAE/PE/CFP-W on histograms of anomaly scores distribution of Valve

Fig. 8 Encoding visualization of five consecutive input sound signals using positional encoding (PE) and linear phase embedding (LPE), respectively
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As observed from Fig. 9a, the latent features of normal 
and anomalous sound samples from different machines 
overlap with each other when using the method with-
out IDC module (i.e., TransAE/LPE/CFP). In addition, 
the latent features of the normal sound samples of one 
machine may be close to that of the anomalous samples 
from other machines, rather than the normal samples 
from the same machine, as illustrated in Fig. 9a. It results 
in the latent features of some anomalous samples from 
one machine on the manifold of the normal samples from 
another machine. Thereby these anomalous sounds will 
be well reconstructed, making it hard to distinguish the 
anomalies and reducing the detection performance. By 
introducing the IDC module to constrain the latent fea-
ture, the proposed method can reduce the generalization 
of AE for anomalous sound and further improve its dis-
tinguishing ability that the normal and anomalous latent 
features are well separated, as illustrated in Fig. 9b.

4.4.4  Influence of parameter r for anomaly detection
As mentioned in Section 3.2, we introduce the weighted 
anomaly score computation to highlight the anomalous 
events that only appear for a short time. The parameter 
r in Eq. (11) will decide the way for anomaly score com-
putation, i.e., weighted anomaly score computation will 
degenerate to max anomaly score computation when 
r = 0 , and it will become mean anomaly score compu-
tation when r = 1 . Therefore, we also carry out another 
experiment to show the impact of parameter r on the 
performance of our proposed IDC-TransAE for anomaly 
detection. Here, different values of r from 0 ≤ r ≤ 1 with 
an interval of 0.05 are selected to evaluate the perfor-
mance of our proposed method in terms AUC and pAUC 
on all six machine types. The result is shown in Fig. 10.

From Fig. 10, we can see that the mean score compu-
tation (i.e., r = 1 ) can achieve the best performance for 
the machine types of Fan, Pump, ToyCar, and ToyCon-
veyor. However, it obtains the worst performance for 
the machine types of Slider and Valve, where the anom-
alous sound often occurs in a short time. Though using 
max anomaly score computation ( r = 0 ) can achieve 
better performance than adopting mean anomaly score 
computation on Slider and Valve, the weighted anom-
aly score computation method can provide the best 
performance for the machine type of Slider and Valve. 
Especially, the weighted anomaly score computation 
method can significantly improve the pAUC perfor-
mance over the mean and max anomaly score com-
putation on Slider and Valve. The result verifies the 
effectiveness of weighted anomaly score computation 
for the anomalous sound that appears over short time. 
In addition, the values of r can be adjusted according to 
different machine types, which makes it more applica-
ble than mean anomaly score and max anomaly score 
computation.

5  Conclusions
In this paper, we have presented an IDC-TransAE 
architecture with weighted anomaly score computa-
tion for unsupervised ASD, where an ID classifier was 
introduced to mitigate the generalization of AE for 
anomalous sound and enhance the distinguishing abil-
ity for different machines with the same type. In addi-
tion, center frame prediction was utilized to improve 
the reconstruction of the non-stationary sound signal, 
and a linear phase embedding strategy was applied to 
preserve the signal’s temporal information and further 
improve its distinguishing ability for anomalous sound 

Fig. 9 The t-SNE visualization of latent feature on the test dataset for the machine type ToyCar using TransAE/LPE/CFP and IDC-TransAE. Different 
color represents different machine ID. The “ • ” and “ × ” denote normal and anomalous samples, respectively
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detection. Moreover, a weighted anomaly score compu-
tation method was introduced to highlight the anom-
aly scores for anomalous events that only appear for a 
short time. The experiments demonstrate the effective-
ness and superiority of our proposed method, as com-
pared with the baseline methods.
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