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Abstract 

Snoring affects 57 % of men, 40 % of women, and 27 % of children in the USA. Besides, snoring is highly correlated 
with obstructive sleep apnoea (OSA), which is characterised by loud and frequent snoring. OSA is also closely asso-
ciated with various life-threatening diseases such as sudden cardiac arrest and is regarded as a grave medical ail-
ment. Preliminary studies have shown that in the USA, OSA affects over 34 % of men and 14 % of women. In recent 
years, polysomnography has increasingly been used to diagnose OSA. However, due to its drawbacks such as being 
time-consuming and costly, intelligent audio analysis of snoring has emerged as an alternative method. Considering 
the higher demand for identifying the excitation location of snoring in clinical practice, we utilised the Munich-Passau 
Snore Sound Corpus (MPSSC) snoring database which classifies the snoring excitation location into four categories. 
Nonetheless, the problem of small samples remains in the MPSSC database due to factors such as privacy concerns 
and difficulties in accurate labelling. In fact, accurately labelled medical data that can be used for machine learning 
is often scarce, especially for rare diseases. In view of this, Model-Agnostic Meta-Learning (MAML), a small sample 
method based on meta-learning, is used to classify snore signals with less resources in this work. The experimental 
results indicate that even when using only the ESC-50 dataset (non-snoring sound signals) as the data for meta-
training, we are able to achieve an unweighted average recall of 60.2 % on the test dataset after fine-tuning on just 
36 instances of snoring from the development part of the MPSSC dataset. While our results only exceed the baseline 
by 4.4 %, they still demonstrate that even with fine-tuning on a few instances of snoring, our model can outperform 
the baseline. This implies that the MAML algorithm can effectively tackle the low-resource problem even with limited 
data resources.

Keywords  Computer audition, Snore sound classification, Meta-learning, Low-resource, Obstructive sleep apnoea, 
Digital health

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Audio,
Speech, and Music Processing

†Jingtan Li and Mengkai Sun contributed equally to this work.

*Correspondence:
Kun Qian
qian@bit.edu.cn
Bin Hu
bh@bit.edu.cn
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1918-6453
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-023-00309-3&domain=pdf


Page 2 of 9Li et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:43 

1  Introduction
In the UK, more than 40 % of people frequently snore [1]. 
Moreover, research has indicated that snoring signifi-
cantly affects the quality of the bed partner’s sleep qual-
ity  [2]. Related research shows that snoring is closely 
associated with obstructive sleep apnoea  (OSA)  [3]. Fif-
teen million American adults suffer from OSA by estima-
tion [4]. The presence of comorbidities such as excessive 
daytime sleepiness and heightened risk of cardiovascular 
disease are commonly associated with this disorder  [5]. 
Furthermore, obesity, increased risk of mental illness, 
endocrine system imbalances, and sexual dysfunction 
have all been confirmed to be associated with OSA [6–9]. 
At present, the clinical diagnosis of OSA heavily depends 
on the analysis of monitoring data obtained from poly-
somnography  (PSG) and the personal expertise of phy-
sicians  [10]. On the one hand, despite its unique value 
in the clinical diagnosis of OSA, PSG has limitations 
including high cost, inconvenience in terms of portabil-
ity, high application difficulty, and unsuitability for large-
scale population screening, as well as its primary focus 
on snoring loudness and frequency rather than analysis 
of snoring characteristics [11, 12]. Snoring, on the other 
hand, can provide detailed information on a person’s 
respiratory status, highlighting its potential for use as a 
valuable diagnostic tool in OSA [13]. Early studies dem-
onstrate that acoustic-based methods can be used to 
diagnose respiratory disorders such as OSA  [14–16]. 
With the development of artificial intelligence, machine 
learning  (ML), and deep learning  (DL), algorithms have 
been shown to be effective in audio signal process-
ing  [17–19]. However, accurately determining the loca-
tion of snore excitation is essential for the clinical surgical 
management of OSA  [20, 21]. In view of this, an open 
snoring sound dataset, the Munich-Passau Snore Sound 
Corpus  (MPSSC)  [22], that classifies snoring into four 
different types, naming velum  (V), oropharyngeal  (O), 
tongue (T), and epiglottis (E), is considered in this work. 
Figure 1 illustrates the locations of four types of snoring 
in the upper airway.

Nonetheless, due to the private nature of medical data 
such as snoring and the difficulty in accurately labelling, 
medical data for machine learning remains scarce  [23]. 
Therefore, this paper considers using the Model-Agnos-
tic Meta-Learning  (MAML) algorithm (a meta-learning 
strategy), which has already achieved success in small-
sample image processing, to tackle the issue of scarce 
medical data [24]. The aim of MAML is to learn the best 
initialisation parameter θ from tasks constructed from 
the training set, which can be quickly adapted to different 
new tasks  [25]. This research focuses on one question: 
how to use less data for training, but still achieve good 
performance on the test set. Therefore, in this study, the 

ESC-50 sound dataset and the MiniImageNet dataset are 
used as the training data. Then, we test and compare the 
model on the test partition of the MPSSC dataset.

The main contributions of this work are as follows: 
First, we are able to achieve a UAR of 60.2 % that exceeds 
the benchmark of 55.8 % [22]. Second, the performance 
improvement was achieved by using a limited amount 
of fine-tuning data (only 36 snoring sounds, less than 
7  % of the original training dataset). The paper’s struc-
ture is organised as follows: Section  2 summarises pre-
vious research related to this work. Section 3 provides a 
detailed description of the MPSSC dataset and the meth-
ods used in this study. Section 4 presents the findings and 
outcomes obtained from the conducted experiments. 
Section 5 shows the limitations and prospects for future 
research of this paper. Finally, we conclude our work in 
the “Conclusion” section.

2 � Related work
Cosztolya  et al.  [26] use the ‘ComParE’ features 
of the openSMILE toolkit and a Support Vector 
Machine  (SVM) classifier on MPSSC achieving a UAR 
of 62  %. Amiriparian  et al.  [27] propose employing 
deep spectrum features and an SVM for snoring clas-
sification and achieve a UAR of 67  %. Qian  et al.  [28] 
improve the low-level wavelet features extracted from 
snoring data with a bag-of-audio-words approach and 
get a UAR of 69.4 %. Demir et al. [29] obtained a UAR 
of 72.6  % by utilising a histogram of local binary pat-
terns and a histogram of oriented gradients to describe 
snore sounds. Li et al. [30] first treat the MPSSC dataset 

Fig. 1  A diagram of the upper airway showing the location 
where VOTE snoring is triggered
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as a few-shot learning task, and they apply one of the 
meta-learning strategies named prototypical network 
to the MPSSC dataset and yield a UAR of 77.13 %.

In recent years, meta-learning has achieved signifi-
cant breakthroughs in the domain of acoustic events. 
Shi  et al.  [31] found that meta-learning models can 
achieve superior performance in acoustic event detec-
tion compared to supervised baselines. By incor-
porating self-supervised learning with MAML (a 
meta-learning strategy), Lemkhenter et al.  [32] signifi-
cantly improved the performance of the sleep scoring 
model compared to standard supervised learning. Heg-
gan et al. [33] demonstrated that gradient-based meta-
learning methods consistently outperformed baseline 
methods across seven audio datasets.

In comparison to Li et al. [30], we did not use the test 
set from the original MPSSC partition to extract snor-
ing sounds as the support set for fine-tuning during 
testing. Instead, we used the development set from the 
original MPSSC partition to extract snoring sounds as 
the support set. This ensures that the testing data was 
not used before testing, leading to more accurate test 
results. Therefore, there is a considerable difference 
between our results and that of Li et al.

Although previous studies have achieved promis-
ing UAR results on the MPSSC dataset, they have all 
utilised the entire MPSSC dataset for training. Hence, 
we are contemplating utilising a smaller quantity of 
MPSSC training data to train the model.

3 � Datasets and Methods
3.1 � Datasets
3.1.1 � Munich‑Passau Snore Sound Corpus
The MPSSC dataset is a publicly available collection 
of snore sounds from 219 subjects who underwent 
drug-induced sleep endoscopy  (DISE) at three differ-
ent medical centres. Snoring can be classified into four 
distinct types, namely velum  (V), oropharyngeal  (O), 
tongue  (T), and epiglottis  (E), based on the respec-
tive locations of their excitation within the upper air-
way [22]. In MPSSC, the number of T-type and E-type 
snoring samples is less than that of V-type and O-type 
snoring samples in each division (Train: V: 168, O: 76, 
T: 8, E: 30). The detailed information of the MPSSC 
dataset is presented in Table  1. In this paper, we only 
use 36 snoring samples from the development portion 
of MPSSC as the fine-tuning support data during the 
meta-testing, while the remaining 529 snoring sam-
ples (including training and development) are not used. 
Meanwhile, we use the test portion of the MPSSC data-
set with the original split to test our model in this work.

3.1.2 � ESC‑50
The ESC-50 dataset encompasses 2000 environmental 
sound recordings that have been labelled with corre-
sponding tags. Each recording has a duration of 5 s and 
can be assigned to one of 50 distinct semantic classes, 
with 40 exemplary instances per class [34]. We employ 
Mel-spectrograms to extract the acoustic features of 
sound from the ESC-50 dataset. For model training, we 
utilise 35 out of the 50 distinct sound categories pre-
sent in the ESC-50 dataset as our training data, while 
the remaining 15 categories serve as our validation 
data.

3.1.3 � MiniImageNet
The DeepMind team has used the MiniImageNet data-
set for few-shot learning research for the first time [35]. 
Therefore, we aim to investigate whether employing non-
audio datasets such as MiniImageNet for training pur-
poses can still yield commendable results on new tasks, 
such as those presented in the MPSSC dataset. By doing 
so, we hope to demonstrate the universality and robust-
ness of MAML in the field of audio classification.

3.2 � Methods
3.2.1 � Mel‑spectrogram
Mel spectrograms provide visualised information on the 
auditory system of human hearing, making them a viable 
input for convolutional neural networks [36].

In view of this, we extract Mel spectrograms from 
four distinct snoring types, as well as the ESC-50 sound 
dataset. Due to the fact that the image size in the Mini-
ImageNet dataset is 84×84× 3, we set the size of the 
spectrograms extracted from the MPSSC and ESC-50 
datasets also to 84×84× 3, in order to maintain consist-
ency of image size. The spectrograms of the different 
categories of snoring sounds are displayed in Fig.  2. To 
preserve the genuine and efficacious portions of the spec-
trogram, we implement a cropping mechanism, which 

Table 1  Detailed information on the MPSSC dataset. The 
snoring sounds of 219 subjects were equitably allocated among 
three partitions, specifically the training, development, and 
testing sets

Train Dev Test

V 168 161 155 484

O 76 75 65 216

T 8 15 16 39

E 30 32 27 89
∑

282 283 263 828

No. of patients 73 73 73 219
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involves removing the upper segment of the spectrogram 
image beyond the 10,000 Hz threshold.

3.2.2 � Model‑Agnostic Meta‑Learning
MAML divides the train set and test set into N-way, 
K-shot, and Q-query problems. This indicates that N cat-
egories are randomly selected from the data set each time, 
and K+ Q samples are selected for each category as one 
task  (in this paper, all random functions utilise a Python 
random function with a seed value 400), which means that 
each task contains N× (K+ Q) sampled data [25]. Specifi-
cally, we randomly initialise a parameter θ and assign this 
parameter θ to each taski in a batch as θi . In each taski, we 
update the parameter θi using K support images for each 

task (using the inner learning rate) to obtain θi ’ – the com-
putation formula is presented in Eq. (1).

where LTi denotes the loss obtained on the support set 
of taski by the model and α represents the inner learn-
ing rate. Then, we test on Q query images and obtain the 
lossi for this task. After that, we sum up the batch of lossi 
to obtain the loss and use this loss to update the outer 
parameter θ to θ ’ (using the outer learning rate). The 
detailed calculation formula is given in Eq. (2) below. β is 
the outer learning rate.

(1)θ ′i = θ − α∇θLτi(fθ ),

(2)θ ′i ← θ − β∇θ

∑
τi∼p(τ )Lτi(fθ ′i

).

Fig. 2  Spectrograms of the four distinct types of snoring sounds V, O, T, and E. By analysing the spectrograms, we can extract distinctive features 
of the four different types of snoring sounds
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For the next batch of tasks, we initialise the parameters 
for each task using θ ’ and repeat the above process until 
completion. The framework of MAML used in this paper 
is shown in Fig. 3.

By training and adjusting model parameters on one 
task distribution within a given dataset, the MAML algo-
rithm enables the resultant model to quickly adapt to 
new tasks through one or a few updates on the support 
set. This also means that the MAML algorithm can adapt 
to different new learning tasks with greater universality 
and robustness.

In this paper, as the MPSSC dataset is a four-classifi-
cation problem, we set the N of N-way to 4 in MAML. 
Additionally, taking into account the number of samples 
in the T category (the smaller category) in the test set, we 
set the parameter values to K = 5 and Q = 9  (the value 
of K-shot and Q-query mentioned above). Therefore, for 
each training task, we randomly select 14 images from 
each of the 4 selected categories, totalling 56 images 
within each task distribution.

During the meta-testing phase, we got 9 images for 
each category of snoring sounds and fine-tuned the 
meta-trained model using a total of 36 snoring samples (4 
categories * 9 samples each) as the support set for meta-
testing. Meanwhile, the query set comprised the testing 
portion of the entire MPSSC dataset.

3.2.3 � Experiment
In this work, we have devised experiments in two distinct 
directions, and the detailed demonstration of experi-
ments is presented in Table 2. The first set use 64 classes 
from MiniImageNet that are unrelated to snore sound as 
the meta-training data, with 16 classes as meta-valida-
tion, and the MPSSC test data was used for meta-testing. 
In the second set, we extract Mel-spectrograms from dif-
ferent sound data in the ESC-50 dataset, using 35 classes 
as meta-training, and 15 classes as meta-validation. The 
meta-testing was performed on the original test parti-
tion of the MPSSC data, similar to MiniImageNet. To 
ensure the test data is only used for testing, during the 
meta-testing, we apply the 36 snoring samples from the 
development set of the original MPSSC dataset to the 
support set of the new snoring classification task and use 
the entire test set of the MPSSC dataset’s original split 
for prediction on the query set. In the two directions, 
we use a four-layer convolutional neural network with a 

Fig. 3  The framework of MAML is employed in this work. After training, the optimal model parameters θ are obtained and used as the initial 
parameters for the meta-testing stage

Table 2  The training data used includes MiniImageNet and ESC-
50, with testing conducted on the original test set of MPSSC

Training set Development set Testing set

MiniImageNet MiniImageNet MPSSC

ESC-50 ESC-50 MPSSC
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ReLU activation function and an Adam optimiser, with 
a meta-learning inner learning rate of 0.01 and an outer 
learning rate of 0.001. Furthermore, we utilised an FFT 
window size of 1024, a frameshift size of 512, a quantity 
of 128 Mel filters, and a power of 2 when computing the 
Mel spectrogram of the audio. The detailed architecture 
of the CNN utilised in this paper is illustrated in Fig. 4.

4 � Experimental results
As the MPSSC dataset is imbalanced, we use UAR to 
assess the performance of the model. As mentioned 
above, we define N = 4 as a four-class classification prob-
lem. To compute the UAR, we calculate the recall for each 
class and obtain the UAR by computing the unweighted 
average of the recall of the four classes. Specifically, the 
formula for calculating UAR is defined as follows:

The formula for recall in Eq.(3) refers to Eq. (4).

where TP refers to the number of samples correctly pre-
dicted as positive by the model, while FN refers to the 
number of samples that the model should have predicted 
as positive but were incorrectly predicted as negative.

According to the calculated UAR, the experimen-
tal results are shown in Table 3. We have observed that, 
although there are considerable differences between 
the MiniImageNet data set and the MPSSC snore 

(3)UAR =

∑Nc
i=1

Recalli

Nc
,

(4)Recall =
TP

TP + FN
,

spectrogram, the results show that MAML still learns 
some features from the MiniImageNet data set and 
achieves 41.2  % UAR, which exceeds the chance level 
of 25.0 % by 16.2  %. This result is also confirmed in the 
study of Heggan et al.  [33]. In addition, the other set of 
experiments using the ESC-50 sound dataset’s mel spec-
trogram as training achieved a UAR of 60.2 % on the test 
set. The confusion matrix is displayed in Fig. 5.

Moreover, the UAR of 60.2 % on the test data indicates 
that we have surpassed the MPSSC baseline using only 
36 instances of non-test snoring data. In other words, we 
have successfully addressed the low-resource challenge 
for snoring detection. This supports that the MAML 
algorithm can learn how to learn through other tasks and 
can fine-tune with a small amount of labelled snoring 
data for good performance on unlabelled data. Further-
more, using non-snoring sounds for training also indi-
cates that our model has better generalisability.

5 � Discussion
In this study, we achieved a UAR of 60.2 % on the MPSSC 
test set using ESC-50 as the meta-training data. This 
indicates our success in addressing the low-resource 

Fig. 4  The detailed architecture of the four-layer convolutional neural network with pooling used in this paper

Table 3  Performing meta-training using the MiniImageNet and 
ESC-50 datasets, respectively, and conducting meta-testing on 
the test set of the MPSSC dataset using the original partition

Meta-training dataset UAR​

MiniImageNet 41.2%

ESC-50 60.2%
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challenge for snoring detection. Since no snoring data 
was used during the entire training process, our results 
also suggest that the MAML algorithm can be applied to 
solve other low-resource problems in medical data, par-
ticularly for rare diseases. However, the limitation of our 
strategy is that the result only surpasses the benchmark 
by 4.4 %. In the future, we plan to use larger sound data-
sets such as AudioSet and UrbanSound8K as meta-train-
ing data, along with better meta-learning strategies and 
audio denoising techniques, to improve the performance 
of the model and achieve higher UAR after small-scale 
fine-tuning. Furthermore, we will incorporating addi-
tional model comparisons to render the experimental 
outcomes more comprehensive.

6 � Conclusion
In order to battle with the challenge of low resources, 
this paper proposes the use of the MAML algorithm 
and the design of two experiments to recognise snoring 
sounds in the MPSSC snoring recognition problem. The 
MAML algorithm updates the parameters during the 
meta-training by performing tasks and quickly adapts 
to new tasks through several updates in the meta-
testing. In this study, we use spectrograms of snoring 
sounds and natural sounds, as well as images from the 
MiniImageNet dataset, as inputs for the MAML algo-
rithm. The outcome indicates that by utilising solely the 

ESC-50 dataset as meta-training data and subsequently 
fine-tuning 36 instances of snoring sounds  (less than 
7  % of the original training dataset) from the original 
partitioned development section through MPSSC, 
a UAR of 60.2  % was achieved on the test section of 
MPSSC. This result surpasses the benchmark of 55.8 % 
UAR for this dataset. Furthermore, although the non-
sound dataset MiniImageNet did not perform well on 
the test set, it also indicates that the model learned 
useful information. This suggests that our model can 
quickly adapt to similar new classification tasks with 
very few new examples and achieve considerable 
results on testing. This achievement places the MAML 
algorithm as a promising solution for low-resource 
problems.
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